{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,10]],"date-time":"2025-04-10T23:04:00Z","timestamp":1744326240231,"version":"3.37.3"},"reference-count":49,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,7,1]],"date-time":"2020-07-01T00:00:00Z","timestamp":1593561600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2020,7]]},"DOI":"10.1016\/j.ins.2020.03.033","type":"journal-article","created":{"date-parts":[[2020,3,12]],"date-time":"2020-03-12T08:00:48Z","timestamp":1584000048000},"page":"59-76","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":18,"special_numbering":"C","title":["Kernel truncated regression representation for robust subspace clustering"],"prefix":"10.1016","volume":"524","author":[{"given":"Liangli","family":"Zhen","sequence":"first","affiliation":[]},{"given":"Dezhong","family":"Peng","sequence":"additional","affiliation":[]},{"given":"Wei","family":"Wang","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-8837-4442","authenticated-orcid":false,"given":"Xin","family":"Yao","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"year":"1998","series-title":"Comparison of Neural Networks and Discriminant Analysis in Predicting Forest Cover Types","author":"Blackard","key":"10.1016\/j.ins.2020.03.033_sbref0001"},{"issue":"8","key":"10.1016\/j.ins.2020.03.033_bib0002","doi-asserted-by":"crossref","first-page":"1548","DOI":"10.1109\/TPAMI.2010.231","article-title":"Graph regularized nonnegative matrix factorization for data representation","volume":"33","author":"Cai","year":"2011","journal-title":"IEEE. Trans. Pattern Anal. Mach. Intell."},{"issue":"3","key":"10.1016\/j.ins.2020.03.033_bib0003","doi-asserted-by":"crossref","first-page":"568","DOI":"10.1109\/TPAMI.2010.88","article-title":"Parallel spectral clustering in distributed systems","volume":"33","author":"Chen","year":"2011","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"4","key":"10.1016\/j.ins.2020.03.033_bib0004","doi-asserted-by":"crossref","first-page":"858","DOI":"10.1109\/TIP.2009.2038764","article-title":"Learning with \u21131-graph for image analysis","volume":"19","author":"Cheng","year":"2010","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.ins.2020.03.033_bib0005","series-title":"Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, California, USA","first-page":"895","article-title":"Approximate kernel k-means: Solution to large scale kernel clustering","author":"Chitta","year":"2011"},{"key":"10.1016\/j.ins.2020.03.033_bib0006","series-title":"Proceedings of the Advances in Neural Information Processing Systems, Granada, Spain","first-page":"55","article-title":"Sparse manifold clustering and embedding","author":"Elhamifar","year":"2011"},{"issue":"11","key":"10.1016\/j.ins.2020.03.033_bib0007","doi-asserted-by":"crossref","first-page":"2765","DOI":"10.1109\/TPAMI.2013.57","article-title":"Sparse subspace clustering: algorithm, theory, and applications","volume":"35","author":"Elhamifar","year":"2013","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"issue":"1","key":"10.1016\/j.ins.2020.03.033_bib0008","doi-asserted-by":"crossref","first-page":"72","DOI":"10.1109\/TFUZZ.2016.2637373","article-title":"A two-phase fuzzy clustering algorithm based on neurodynamic optimization with its application for polsar image segmentation","volume":"26","author":"Fan","year":"2018","journal-title":"IEEE Trans. Fuzzy Syst."},{"year":"2011","series-title":"Nonparametric statistical inference","author":"Gibbons","key":"10.1016\/j.ins.2020.03.033_bib0009"},{"key":"10.1016\/j.ins.2020.03.033_bib0010","doi-asserted-by":"crossref","unstructured":"C. Goutte, E. Gaussier, A probabilistic interpretation of precision, recall and F-score, with implication for evaluation, Springer, pp. 345\u2013359.","DOI":"10.1007\/978-3-540-31865-1_25"},{"issue":"11","key":"10.1016\/j.ins.2020.03.033_bib0011","doi-asserted-by":"crossref","first-page":"4001","DOI":"10.1109\/TIP.2015.2456504","article-title":"Robust subspace clustering with complex noise","volume":"24","author":"He","year":"2015","journal-title":"IEEE Trans. Image Process."},{"issue":"1","key":"10.1016\/j.ins.2020.03.033_bib0012","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1007\/BF01908075","article-title":"Comparing partitions","volume":"2","author":"Hubert","year":"1985","journal-title":"Journal of Classification"},{"issue":"5","key":"10.1016\/j.ins.2020.03.033_bib0013","doi-asserted-by":"crossref","first-page":"550","DOI":"10.1109\/34.291440","article-title":"A database for handwritten text recognition research","volume":"16","author":"Hull","year":"1994","journal-title":"IEEE Trans. Pattern Anal. Mach. Intel.l"},{"key":"10.1016\/j.ins.2020.03.033_bib0014","series-title":"Proceedings of the International Conference on Neural Information Processing Systems, USA","first-page":"23","article-title":"Deep subspace clustering networks","author":"Ji","year":"2017"},{"key":"10.1016\/j.ins.2020.03.033_bib0015","first-page":"inpress","article-title":"Robust graph learning from noisy data","author":"Kang","year":"2019","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.ins.2020.03.033_bib0016","doi-asserted-by":"crossref","first-page":"210","DOI":"10.1016\/j.neucom.2017.06.005","article-title":"Kernel-driven similarity learning","volume":"267","author":"Kang","year":"2017","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2020.03.033_bib0017","series-title":"Proceedings of the AAAI Conference on Artificial Intelligence, New York, USA","article-title":"Large-scale multi-view subspace clustering in linear time","author":"Kang","year":"2020"},{"issue":"11","key":"10.1016\/j.ins.2020.03.033_bib0018","doi-asserted-by":"crossref","first-page":"2278","DOI":"10.1109\/5.726791","article-title":"Gradient-based learning applied to document recognition","volume":"86","author":"LeCun","year":"1998","journal-title":"Proceedings of IEEE"},{"issue":"5","key":"10.1016\/j.ins.2020.03.033_bib0019","doi-asserted-by":"crossref","first-page":"684","DOI":"10.1109\/TPAMI.2005.92","article-title":"Acquiring linear subspaces for face recognition under variable lighting","volume":"27","author":"Lee","year":"2005","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"10","key":"10.1016\/j.ins.2020.03.033_bib0020","doi-asserted-by":"crossref","first-page":"2085","DOI":"10.1109\/TPAMI.2015.2400461","article-title":"Robust structured subspace learning for data representation","volume":"37","author":"Li","year":"2015","journal-title":"IEEE Trans. Pattern Anal Mach Intell"},{"issue":"5","key":"10.1016\/j.ins.2020.03.033_bib0021","doi-asserted-by":"crossref","first-page":"1947","DOI":"10.1109\/TNNLS.2017.2691725","article-title":"Robust structured nonnegative matrix factorization for image representation","volume":"29","author":"Li","year":"2017","journal-title":"IEEE Trans Neural Netw Learn Syst"},{"issue":"1","key":"10.1016\/j.ins.2020.03.033_bib0022","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1109\/TPAMI.2012.88","article-title":"Robust recovery of subspace structures by low-rank representation","volume":"35","author":"Liu","year":"2013","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.ins.2020.03.033_bib0023","series-title":"Proceedings of the International Conference on Computer Vision, Barcelona, Spain","first-page":"1615","article-title":"Latent low-rank representation for subspace segmentation and feature extraction","author":"Liu","year":"2011"},{"key":"10.1016\/j.ins.2020.03.033_bib0024","series-title":"Proceedings of the International Conference on Computer Vision, Sydney, Australia","first-page":"1801","article-title":"Correntropy induced L2 graph for robust subspace clustering","author":"Lu","year":"2013"},{"key":"10.1016\/j.ins.2020.03.033_sbref0024","series-title":"Proceedings of the Advances in Neural Information Processing Systems","first-page":"849","article-title":"On spectral clustering: Analysis and an algorithm","volume":"14","author":"Ng","year":"2002"},{"issue":"11","key":"10.1016\/j.ins.2020.03.033_bib0026","doi-asserted-by":"crossref","first-page":"1796","DOI":"10.1109\/TNN.2011.2162000","article-title":"Spectral embedded clustering: a framework for in-sample and out-of-sample spectral clustering","volume":"22","author":"Nie","year":"2011","journal-title":"IEEE Trans. Neural Networks"},{"issue":"1","key":"10.1016\/j.ins.2020.03.033_bib0027","doi-asserted-by":"crossref","first-page":"90","DOI":"10.1145\/1007730.1007731","article-title":"Subspace clustering for high dimensional data: a review","volume":"6","author":"Parsons","year":"2004","journal-title":"SIGKDD Explor."},{"key":"10.1016\/j.ins.2020.03.033_bib0028","series-title":"Proceedings of the International Conference on Image Processing","first-page":"2849","article-title":"Kernel sparse subspace clustering","author":"Patel","year":"2014"},{"issue":"10","key":"10.1016\/j.ins.2020.03.033_bib0029","doi-asserted-by":"crossref","first-page":"5076","DOI":"10.1109\/TIP.2018.2848470","article-title":"Structured autoencoders for subspace clustering","volume":"27","author":"Peng","year":"2018","journal-title":"IEEE Trans. Image Process."},{"issue":"11","key":"10.1016\/j.ins.2020.03.033_bib0030","doi-asserted-by":"crossref","first-page":"3583","DOI":"10.1109\/TCYB.2016.2572306","article-title":"Automatic subspace learning via principal coefficients embedding","volume":"47","author":"Peng","year":"2017","journal-title":"IEEE Trans Cybern"},{"issue":"12","key":"10.1016\/j.ins.2020.03.033_bib0031","doi-asserted-by":"crossref","first-page":"2499","DOI":"10.1109\/TNNLS.2015.2490080","article-title":"A unified framework for representation-based subspace clustering of out-of-sample and large-scale data","volume":"27","author":"Peng","year":"2016","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"4","key":"10.1016\/j.ins.2020.03.033_bib0032","doi-asserted-by":"crossref","first-page":"1053","DOI":"10.1109\/TCYB.2016.2536752","article-title":"Constructing the l2-graph for robust subspace learning and subspace clustering","volume":"47","author":"Peng","year":"2017","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.ins.2020.03.033_bib0033","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"430","article-title":"Scalable sparse subspace clustering","author":"Peng","year":"2013"},{"key":"10.1016\/j.ins.2020.03.033_bib0034","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Alaska, USA","first-page":"1","article-title":"Motion segmentation via robust subspace separation in the presence of outlying, incomplete, or corrupted trajectories","author":"Rao","year":"2008"},{"key":"10.1016\/j.ins.2020.03.033_bib0035","series-title":"Report","article-title":"Columbia Object Image Library (COIL-100)","author":"S. A. Nene","year":"1996"},{"key":"10.1016\/j.ins.2020.03.033_bib0036","series-title":"Report","article-title":"Columbia Object Image Library (COIL-20)","author":"S. A. Nene","year":"1996"},{"issue":"5500","key":"10.1016\/j.ins.2020.03.033_bib0037","doi-asserted-by":"crossref","first-page":"2268","DOI":"10.1126\/science.290.5500.2268","article-title":"The manifold ways of perception","volume":"290","author":"Seung","year":"2000","journal-title":"Science"},{"year":"2004","series-title":"Kernel methods for pattern analysis","author":"Shawe-Taylor","key":"10.1016\/j.ins.2020.03.033_bib0038"},{"issue":"2","key":"10.1016\/j.ins.2020.03.033_bib0039","doi-asserted-by":"crossref","first-page":"669","DOI":"10.1214\/13-AOS1199","article-title":"Robust subspace clustering","volume":"42","author":"Soltanolkotabi","year":"2014","journal-title":"The Annals of Statistics"},{"issue":"12","key":"10.1016\/j.ins.2020.03.033_bib0040","doi-asserted-by":"crossref","first-page":"1945","DOI":"10.1109\/TPAMI.2005.244","article-title":"Generalized principal component analysis","volume":"27","author":"Vidal","year":"2005","journal-title":"IEEE Trans. Pattern. Anal. Mach. Intell."},{"issue":"4","key":"10.1016\/j.ins.2020.03.033_bib0041","doi-asserted-by":"crossref","first-page":"395","DOI":"10.1007\/s11222-007-9033-z","article-title":"A tutorial on spectral clustering","volume":"17","author":"Von Luxburg","year":"2007","journal-title":"Stat Comput"},{"issue":"15","key":"10.1016\/j.ins.2020.03.033_bib0042","doi-asserted-by":"crossref","first-page":"4010","DOI":"10.1109\/TSP.2015.2425803","article-title":"Minimum error entropy based sparse representation for robust subspace clustering","volume":"63","author":"Wang","year":"2015","journal-title":"IEEE Trans. Signal Process."},{"issue":"11","key":"10.1016\/j.ins.2020.03.033_bib0043","doi-asserted-by":"crossref","first-page":"2268","DOI":"10.1109\/TNNLS.2015.2472284","article-title":"Robust kernel low-rank representation","volume":"27","author":"Xiao","year":"2015","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.ins.2020.03.033_bib0044","series-title":"Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France","first-page":"907","article-title":"Fast approximate spectral clustering","author":"Yan","year":"2009"},{"key":"10.1016\/j.ins.2020.03.033_bib0045","series-title":"Proceedings of the European Conference on Computer Vision","first-page":"94","article-title":"A general framework for motion segmentation: independent, articulated, rigid, non-rigid, degenerate and non-degenerate","author":"Yan","year":"2006"},{"key":"10.1016\/j.ins.2020.03.033_bib0046","doi-asserted-by":"crossref","first-page":"278","DOI":"10.1016\/j.ins.2019.04.014","article-title":"Objective reduction for visualising many-objective solution sets","volume":"512","author":"Zhen","year":"2020","journal-title":"Inf. Sci."},{"issue":"12","key":"10.1016\/j.ins.2020.03.033_bib0047","doi-asserted-by":"crossref","first-page":"3102","DOI":"10.1109\/TNNLS.2016.2610960","article-title":"Underdetermined blind source separation using sparse coding","volume":"28","author":"Zhen","year":"2017","journal-title":"IEEE Trans. Neural. Netw. Learn. Syst."},{"issue":"13","key":"10.1016\/j.ins.2020.03.033_bib0048","doi-asserted-by":"crossref","first-page":"942","DOI":"10.1049\/el.2014.0666","article-title":"Locally linear representation for image clustering","volume":"50","author":"Zhen","year":"2014","journal-title":"Electron Lett."},{"key":"10.1016\/j.ins.2020.03.033_bib0049","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"1596","article-title":"Deep adversarial subspace clustering","author":"Zhou","year":"2018"}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025520302127?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025520302127?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,6,23]],"date-time":"2022-06-23T07:39:25Z","timestamp":1655969965000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025520302127"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,7]]},"references-count":49,"alternative-id":["S0020025520302127"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2020.03.033","relation":{},"ISSN":["0020-0255"],"issn-type":[{"type":"print","value":"0020-0255"}],"subject":[],"published":{"date-parts":[[2020,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Kernel truncated regression representation for robust subspace clustering","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2020.03.033","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}