{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T16:33:05Z","timestamp":1726849985700},"reference-count":50,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,2,1]],"date-time":"2020-02-01T00:00:00Z","timestamp":1580515200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2020,2]]},"DOI":"10.1016\/j.ins.2019.10.040","type":"journal-article","created":{"date-parts":[[2019,11,1]],"date-time":"2019-11-01T01:57:14Z","timestamp":1572573434000},"page":"1264-1278","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":23,"special_numbering":"C","title":["Single image super resolution using dictionary learning and sparse coding with multi-scale and multi-directional Gabor feature representation"],"prefix":"10.1016","volume":"512","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-8226-2359","authenticated-orcid":false,"given":"Selen","family":"Ayas","sequence":"first","affiliation":[]},{"given":"Murat","family":"Ekinci","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"6","key":"10.1016\/j.ins.2019.10.040_bib0001","doi-asserted-by":"crossref","first-page":"1423","DOI":"10.1007\/s00138-014-0623-4","article-title":"Super-resolution: a comprehensive survey","volume":"25","author":"Nasrollahi","year":"2014","journal-title":"Mach. Vis. Appl."},{"issue":"10","key":"10.1016\/j.ins.2019.10.040_bib0002","doi-asserted-by":"crossref","first-page":"1039","DOI":"10.1016\/j.imavis.2006.02.026","article-title":"Image super-resolution survey","volume":"24","author":"Van Ouwerkerk","year":"2006","journal-title":"Image Vis. Comput."},{"key":"10.1016\/j.ins.2019.10.040_sbref0003","series-title":"Circuits and Systems, 2002. ISCAS 2002. IEEE International Symposium on","article-title":"Canny edge based image expansion","volume":"vol. 1","author":"Shi","year":"2002"},{"issue":"4","key":"10.1016\/j.ins.2019.10.040_bib0004","doi-asserted-by":"crossref","first-page":"889","DOI":"10.1109\/TIP.2007.891794","article-title":"A new orientation-adaptive interpolation method","volume":"16","author":"Wang","year":"2007","journal-title":"IEEE Trans. Image Process."},{"issue":"8","key":"10.1016\/j.ins.2019.10.040_bib0005","doi-asserted-by":"crossref","first-page":"2226","DOI":"10.1109\/TIP.2006.877407","article-title":"An edge-guided image interpolation algorithm via directional filtering and data fusion","volume":"15","author":"Zhang","year":"2006","journal-title":"IEEE Trans. Image Process."},{"issue":"10","key":"10.1016\/j.ins.2019.10.040_bib0006","doi-asserted-by":"crossref","first-page":"1521","DOI":"10.1109\/83.951537","article-title":"New edge-directed interpolation","volume":"10","author":"Li","year":"2001","journal-title":"IEEE Trans. Image Process."},{"issue":"7","key":"10.1016\/j.ins.2019.10.040_bib0007","doi-asserted-by":"crossref","first-page":"1121","DOI":"10.1109\/TIP.2008.924289","article-title":"Markov random field model-based edge-directed image interpolation","volume":"17","author":"Li","year":"2008","journal-title":"IEEE Trans. Image Process."},{"issue":"9","key":"10.1016\/j.ins.2019.10.040_bib0008","first-page":"2478","article-title":"Single-image super-resolution by subdictionary coding and kernel regression","volume":"47","author":"Yang","year":"2016","journal-title":"IEEE Trans. Syst. Man Cybern."},{"issue":"1","key":"10.1016\/j.ins.2019.10.040_bib0009","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1023\/A:1026501619075","article-title":"Learning low-level vision","volume":"40","author":"Freeman","year":"2000","journal-title":"Int. J. Comput. Vis."},{"key":"10.1016\/j.ins.2019.10.040_bib0010","series-title":"Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on","first-page":"1","article-title":"Super-resolution through neighbor embedding","author":"Chang","year":"2004"},{"issue":"6","key":"10.1016\/j.ins.2019.10.040_bib0011","doi-asserted-by":"crossref","first-page":"1596","DOI":"10.1109\/TIP.2007.896644","article-title":"Image superresolution using support vector regression","volume":"16","author":"Ni","year":"2007","journal-title":"IEEE Trans. Image Process."},{"issue":"6","key":"10.1016\/j.ins.2019.10.040_bib0012","doi-asserted-by":"crossref","first-page":"1127","DOI":"10.1109\/TPAMI.2010.25","article-title":"Single-image super-resolution using sparse regression and natural image prior","volume":"32","author":"Kim","year":"2010","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.ins.2019.10.040_bib0013","series-title":"Proceedings of the IEEE International Conference on Computer Vision","first-page":"1920","article-title":"Anchored neighborhood regression for fast example-based super-resolution","author":"Timofte","year":"2013"},{"key":"10.1016\/j.ins.2019.10.040_bib0014","series-title":"Asian Conference on Computer Vision","first-page":"111","article-title":"A+: adjusted anchored neighborhood regression for fast super-resolution","author":"Timofte","year":"2014"},{"key":"10.1016\/j.ins.2019.10.040_bib0015","series-title":"Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on","first-page":"1","article-title":"Image super-resolution as sparse representation of raw image patches","author":"Yang","year":"2008"},{"issue":"11","key":"10.1016\/j.ins.2019.10.040_bib0016","doi-asserted-by":"crossref","first-page":"2861","DOI":"10.1109\/TIP.2010.2050625","article-title":"Image super-resolution via sparse representation","volume":"19","author":"Yang","year":"2010","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.ins.2019.10.040_bib0017","series-title":"International Conference on Curves and Surfaces","first-page":"711","article-title":"On single image scale-up using sparse-representations","author":"Zeyde","year":"2010"},{"issue":"11","key":"10.1016\/j.ins.2019.10.040_bib0018","doi-asserted-by":"crossref","first-page":"4311","DOI":"10.1109\/TSP.2006.881199","article-title":"K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation","volume":"54","author":"Aharon","year":"2006","journal-title":"IEEE Trans. Signal Process."},{"key":"10.1016\/j.ins.2019.10.040_bib0019","series-title":"Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on","first-page":"2216","article-title":"Semi-coupled dictionary learning with applications to image super-resolution and photo-sketch synthesis","author":"Wang","year":"2012"},{"key":"10.1016\/j.ins.2019.10.040_bib0020","doi-asserted-by":"crossref","first-page":"319","DOI":"10.1016\/j.jvcir.2018.06.012","article-title":"Single image super-resolution via adaptive sparse representation and low-rank constraint","volume":"55","author":"Li","year":"2018","journal-title":"J. Vis. Commun. Image Represent."},{"issue":"24","key":"10.1016\/j.ins.2019.10.040_bib0021","doi-asserted-by":"crossref","first-page":"e4968","DOI":"10.1002\/cpe.4968","article-title":"Image super-resolution reconstruction based on adaptive sparse representation","volume":"30","author":"Xu","year":"2018","journal-title":"Concurrency Comput."},{"issue":"8","key":"10.1016\/j.ins.2019.10.040_bib0022","doi-asserted-by":"crossref","first-page":"3467","DOI":"10.1109\/TIP.2012.2192127","article-title":"Coupled dictionary training for image super-resolution","volume":"21","author":"Yang","year":"2012","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.ins.2019.10.040_bib0023","doi-asserted-by":"crossref","first-page":"231","DOI":"10.1016\/j.sigpro.2017.07.020","article-title":"Learning local dictionaries and similarity structures for single image super-resolution","volume":"142","author":"Zhang","year":"2018","journal-title":"Signal Process."},{"issue":"2","key":"10.1016\/j.ins.2019.10.040_bib0024","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1109\/TPAMI.2015.2439281","article-title":"Image super-resolution using deep convolutional networks","volume":"38","author":"Dong","year":"2016","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.ins.2019.10.040_bib0025","series-title":"European Conference on Computer Vision","first-page":"391","article-title":"Accelerating the super-resolution convolutional neural network","author":"Dong","year":"2016"},{"key":"10.1016\/j.ins.2019.10.040_bib0026","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"1646","article-title":"Accurate image super-resolution using very deep convolutional networks","author":"Kim","year":"2016"},{"key":"10.1016\/j.ins.2019.10.040_bib0027","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"1637","article-title":"Deeply-recursive convolutional network for image super-resolution","author":"Kim","year":"2016"},{"key":"10.1016\/j.ins.2019.10.040_bib0028","series-title":"Proceedings of the IEEE International Conference on Computer Vision","first-page":"370","article-title":"Deep networks for image super-resolution with sparse prior","author":"Wang","year":"2015"},{"key":"10.1016\/j.ins.2019.10.040_bib0029","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"2790","article-title":"Image super-resolution via deep recursive residual network","author":"Tai","year":"2017"},{"key":"10.1016\/j.ins.2019.10.040_bib0030","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"4681","article-title":"Photo-realistic single image super-resolution using a generative adversarial network","author":"Ledig","year":"2017"},{"key":"10.1016\/j.ins.2019.10.040_bib0031","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops","first-page":"136","article-title":"Enhanced deep residual networks for single image super-resolution","author":"Lim","year":"2017"},{"issue":"7","key":"10.1016\/j.ins.2019.10.040_bib0032","doi-asserted-by":"crossref","first-page":"946","DOI":"10.1109\/LSP.2018.2820057","article-title":"A novel multiconnected convolutional network for super-resolution","volume":"25","author":"Chu","year":"2018","journal-title":"IEEE Signal Process. Lett."},{"issue":"10","key":"10.1016\/j.ins.2019.10.040_bib0033","doi-asserted-by":"crossref","first-page":"1565","DOI":"10.1109\/LSP.2018.2861989","article-title":"Image superresolution using densely connected residual networks","volume":"25","author":"Wen","year":"2018","journal-title":"IEEE Signal Process. Lett."},{"key":"10.1016\/j.ins.2019.10.040_bib0034","series-title":"Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on","first-page":"II","article-title":"Image hallucination with primal sketch priors","volume":"vol. 2","author":"Sun","year":"2003"},{"issue":"8","key":"10.1016\/j.ins.2019.10.040_bib0035","first-page":"1","article-title":"Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit","volume":"40","author":"Rubinstein","year":"2008","journal-title":"Technical Report - CS Technion"},{"issue":"Jan","key":"10.1016\/j.ins.2019.10.040_bib0036","first-page":"19","article-title":"Online learning for matrix factorization and sparse coding","volume":"11","author":"Mairal","year":"2010","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.ins.2019.10.040_bib0037","series-title":"Advances in Neural Information Processing Systems","first-page":"556","article-title":"Algorithms for non-negative matrix factorization","author":"Lee","year":"2001"},{"issue":"5","key":"10.1016\/j.ins.2019.10.040_bib0038","doi-asserted-by":"crossref","first-page":"1947","DOI":"10.1109\/TNNLS.2017.2691725","article-title":"Robust structured nonnegative matrix factorization for image representation","volume":"29","author":"Li","year":"2018","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"9","key":"10.1016\/j.ins.2019.10.040_bib0039","doi-asserted-by":"crossref","first-page":"2070","DOI":"10.1109\/TPAMI.2018.2852750","article-title":"Deep collaborative embedding for social image understanding","volume":"41","author":"Li","year":"2018","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"Jul","key":"10.1016\/j.ins.2019.10.040_bib0040","first-page":"1269","article-title":"Optimal solutions for sparse principal component analysis","volume":"9","author":"d\u00e2Aspremont","year":"2008","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.ins.2019.10.040_bib0041","series-title":"Advances in Neural Information Processing Systems","first-page":"41","article-title":"A direct formulation for sparse PCA using semidefinite programming","author":"d\u2019Aspremont","year":"2005"},{"issue":"2","key":"10.1016\/j.ins.2019.10.040_bib0042","doi-asserted-by":"crossref","first-page":"265","DOI":"10.1198\/106186006X113430","article-title":"Sparse principal component analysis","volume":"15","author":"Zou","year":"2006","journal-title":"J. Comput. Graph. Stat."},{"key":"10.1016\/j.ins.2019.10.040_bib0043","series-title":"2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541)","first-page":"2529","article-title":"Sparse coding and NMF","volume":"vol. 4","author":"Eggert","year":"2004"},{"issue":"1","key":"10.1016\/j.ins.2019.10.040_bib0044","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1109\/TIP.2007.911828","article-title":"Sparse representation for color image restoration","volume":"17","author":"Mairal","year":"2008","journal-title":"IEEE Trans. Image Process."},{"issue":"6","key":"10.1016\/j.ins.2019.10.040_bib0045","doi-asserted-by":"crossref","first-page":"1031","DOI":"10.1109\/JPROC.2010.2044470","article-title":"Sparse representation for computer vision and pattern recognition","volume":"98","author":"Wright","year":"2010","journal-title":"Proc. IEEE"},{"issue":"6","key":"10.1016\/j.ins.2019.10.040_bib0046","doi-asserted-by":"crossref","first-page":"797","DOI":"10.1002\/cpa.20132","article-title":"For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution","volume":"59","author":"Donoho","year":"2006","journal-title":"Commun. Pure Appl. Math."},{"issue":"26","key":"10.1016\/j.ins.2019.10.040_bib0047","first-page":"429","article-title":"Theory of communication. Part 1: The analysis of information","volume":"93","author":"Gabor","year":"1946","journal-title":"J. Inst. Electr. Eng. -Part III"},{"issue":"10","key":"10.1016\/j.ins.2019.10.040_bib0048","doi-asserted-by":"crossref","first-page":"959","DOI":"10.1109\/34.541406","article-title":"Image representation using 2D Gabor wavelets","volume":"18","author":"Lee","year":"1996","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"5","key":"10.1016\/j.ins.2019.10.040_bib0049","doi-asserted-by":"crossref","first-page":"1088","DOI":"10.1109\/TIP.2005.864174","article-title":"Invariance properties of Gabor filter-based features-overview and applications","volume":"15","author":"Kamarainen","year":"2006","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.ins.2019.10.040_bib0050","series-title":"Proceedings of the British Machine Vision Conference","first-page":"135.1","article-title":"Low-complexity single-image super-resolution based on nonnegative neighbor embedding","author":"Bevilacqua","year":"2012"}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025519310084?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025519310084?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,11,12]],"date-time":"2020-11-12T00:10:04Z","timestamp":1605139804000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025519310084"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,2]]},"references-count":50,"alternative-id":["S0020025519310084"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2019.10.040","relation":{},"ISSN":["0020-0255"],"issn-type":[{"type":"print","value":"0020-0255"}],"subject":[],"published":{"date-parts":[[2020,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Single image super resolution using dictionary learning and sparse coding with multi-scale and multi-directional Gabor feature representation","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2019.10.040","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}