{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,6]],"date-time":"2024-09-06T08:47:06Z","timestamp":1725612426109},"reference-count":34,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,2,1]],"date-time":"2020-02-01T00:00:00Z","timestamp":1580515200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61573127","71471060"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100007845","name":"North China Electric Power University","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100007845","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2020,2]]},"DOI":"10.1016\/j.ins.2019.10.022","type":"journal-article","created":{"date-parts":[[2019,10,14]],"date-time":"2019-10-14T15:20:27Z","timestamp":1571066427000},"page":"795-812","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":51,"special_numbering":"C","title":["A novel approach for learning label correlation with application to feature selection of multi-label data"],"prefix":"10.1016","volume":"512","author":[{"given":"Xiaoya","family":"Che","sequence":"first","affiliation":[]},{"given":"Degang","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Jusheng","family":"Mi","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ins.2019.10.022_bib0001","doi-asserted-by":"crossref","first-page":"370","DOI":"10.1016\/j.ins.2015.10.032","article-title":"LAIM discretization for multi-label data","volume":"330","author":"Cano","year":"2016","journal-title":"Inf. Sci."},{"issue":"1","key":"10.1016\/j.ins.2019.10.022_bib0002","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1007\/s13042-013-0180-6","article-title":"Online neural network model for non-stationary and imbalanced data stream classification","volume":"5","author":"Ghazikhani","year":"2014","journal-title":"Int. J. Mach. Learn. Cybern."},{"key":"10.1016\/j.ins.2019.10.022_bib0003","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1016\/j.asoc.2016.04.003","article-title":"An incremental algorithm for attribute reduction with variable precision rough sets","volume":"45","author":"Chen","year":"2016","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.ins.2019.10.022_bib0004","doi-asserted-by":"crossref","first-page":"90","DOI":"10.1016\/j.neucom.2018.08.035","article-title":"Local positive and negative correlation-based k-labelsets for multi-label classification","volume":"318","author":"Nan","year":"2018","journal-title":"Neurocomputing"},{"issue":"7","key":"10.1016\/j.ins.2019.10.022_bib0005","first-page":"2411","article-title":"MULAN: a java library for multi-label learning","volume":"12","author":"Tsoumakas","year":"2011","journal-title":"J. Mach. Learn. Res."},{"issue":"3","key":"10.1016\/j.ins.2019.10.022_bib0006","doi-asserted-by":"crossref","first-page":"1","DOI":"10.4018\/jdwm.2007070101","article-title":"Multi label classification: an overview","volume":"3","author":"Tsoumakas","year":"2007","journal-title":"Int. J. Data Warehousing Min."},{"key":"10.1016\/j.ins.2019.10.022_bib0007","doi-asserted-by":"crossref","first-page":"827","DOI":"10.1016\/j.ins.2016.07.008","article-title":"A novel attribute reduction approach for multi-label data based on rough set theory","volume":"367\u2013368","author":"Li","year":"2016","journal-title":"Inf. Sci."},{"issue":"4","key":"10.1016\/j.ins.2019.10.022_bib0008","doi-asserted-by":"crossref","first-page":"2174","DOI":"10.1109\/TFUZZ.2017.2768044","article-title":"Maximal-discernibility-pair-based approach to attribute reduction in fuzzy rough sets","volume":"26","author":"Dai","year":"2018","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.ins.2019.10.022_bib0009","doi-asserted-by":"crossref","first-page":"164","DOI":"10.1016\/j.neucom.2016.12.073","article-title":"Multi-label classification by exploiting local positive and negative pairwise label correlation","volume":"257","author":"Huang","year":"2017","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2019.10.022_bib0010","doi-asserted-by":"crossref","first-page":"349","DOI":"10.1016\/j.patrec.2012.10.005","article-title":"Feature selection for multi-label classification using multivariate mutual information","volume":"34","author":"Lee","year":"2013","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.ins.2019.10.022_bib0011","doi-asserted-by":"crossref","first-page":"2013","DOI":"10.1016\/j.eswa.2014.09.063","article-title":"Mutual information-based multi-label feature selection using interaction information","volume":"42","author":"Lee","year":"2015","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.ins.2019.10.022_bib0012","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1016\/j.ins.2014.09.020","article-title":"Memetic feature selection algorithm for multi-label classification","volume":"293","author":"Lee","year":"2015","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2019.10.022_bib0013","doi-asserted-by":"crossref","first-page":"342","DOI":"10.1016\/j.patcog.2017.01.014","article-title":"SCLS: Multi-label feature selection based on scalable criterion for large label set","volume":"66","author":"Lee","year":"2017","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.ins.2019.10.022_bib0014","doi-asserted-by":"crossref","first-page":"101","DOI":"10.1016\/j.ins.2016.02.037","article-title":"An approach for multi-label classification by directed acyclic graph with label correlation maximization","volume":"351","author":"Lee","year":"2016","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2019.10.022_bib0015","doi-asserted-by":"crossref","first-page":"305","DOI":"10.1016\/j.neucom.2014.11.062","article-title":"Multi-label learning with discriminative features for each label","volume":"154","author":"Zhang","year":"2015","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2019.10.022_bib0016","article-title":"Alignment based kernel selection for multi-label learning","author":"Chen","year":"2018","journal-title":"Neural Process. Lett."},{"key":"10.1016\/j.ins.2019.10.022_bib0017","doi-asserted-by":"crossref","first-page":"1757","DOI":"10.1016\/j.patcog.2004.03.009","article-title":"Learning multi-label scene classification","volume":"37","author":"Boutell","year":"2004","journal-title":"Pattern Recognit."},{"issue":"3","key":"10.1016\/j.ins.2019.10.022_bib0018","doi-asserted-by":"crossref","first-page":"311","DOI":"10.1016\/j.knosys.2013.12.005","article-title":"FIMUS: a framework for imputing missing values using co-appearance, correlation and similarity analysis","volume":"56","author":"Rahman","year":"2014","journal-title":"Knowl.-Based Syst."},{"issue":"7","key":"10.1016\/j.ins.2019.10.022_bib0019","doi-asserted-by":"crossref","first-page":"2038","DOI":"10.1016\/j.patcog.2006.12.019","article-title":"ML-KNN: A lazy learning approach to multi-label learning","volume":"40","author":"Zhang","year":"2007","journal-title":"Pattern Recognit."},{"issue":"8","key":"10.1016\/j.ins.2019.10.022_bib0020","doi-asserted-by":"crossref","first-page":"1819","DOI":"10.1109\/TKDE.2013.39","article-title":"A review on multi-label learning algorithms","volume":"26","author":"Zhang","year":"2014","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"1","key":"10.1016\/j.ins.2019.10.022_bib0021","doi-asserted-by":"crossref","first-page":"1609","DOI":"10.1109\/TPAMI.2014.2339815","article-title":"LIFT: multi-label learning with label-specific features","volume":"37","author":"Zhang","year":"2015","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"2\u20133","key":"10.1016\/j.ins.2019.10.022_bib0022","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1023\/A:1007649029923","article-title":"Boostexter: a boosting-based system for text categorization","volume":"39","author":"Schapire","year":"2000","journal-title":"Mach. Learn."},{"key":"10.1016\/j.ins.2019.10.022_bib0023","series-title":"Proceedings of the 26th AAAI Conference on Artificial Intelligence","first-page":"949","article-title":"Multi-label learning by exploiting label correlations locally","author":"Huang","year":"2012"},{"key":"10.1016\/j.ins.2019.10.022_bib0024","doi-asserted-by":"crossref","first-page":"385","DOI":"10.1016\/j.neucom.2017.07.044","article-title":"Multi-label learning based on label-specific features and local pairwise label correlation","volume":"273","author":"Weng","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2019.10.022_bib0025","doi-asserted-by":"crossref","first-page":"162","DOI":"10.1016\/j.knosys.2014.05.019","article-title":"Feature selection via neighborhood multi-granulation fusion","volume":"67","author":"Lin","year":"2014","journal-title":"Knowl. Based Syst."},{"key":"10.1016\/j.ins.2019.10.022_bib0026","doi-asserted-by":"crossref","first-page":"244","DOI":"10.1016\/j.asoc.2015.10.009","article-title":"Multi-label feature selection based on neighborhood mutual information","volume":"38","author":"Lin","year":"2016","journal-title":"Appl. Soft Comput."},{"issue":"6","key":"10.1016\/j.ins.2019.10.022_bib0027","doi-asserted-by":"crossref","first-page":"1491","DOI":"10.1109\/TFUZZ.2017.2735947","article-title":"Streaming feature selection for multi-label learning based on fuzzy mutual information","volume":"25","author":"Lin","year":"2017","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.ins.2019.10.022_bib0028","doi-asserted-by":"crossref","first-page":"256","DOI":"10.1016\/j.ins.2016.08.039","article-title":"Multi-label feature selection with streaming labels","volume":"372","author":"Lin","year":"2016","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2019.10.022_bib0029","doi-asserted-by":"crossref","first-page":"92","DOI":"10.1016\/j.neucom.2015.06.010","article-title":"Multi-label feature selection based on max-dependency and min-redundancy","volume":"168","author":"Lin","year":"2015","journal-title":"Neurocomputing"},{"issue":"6","key":"10.1016\/j.ins.2019.10.022_bib0030","doi-asserted-by":"crossref","first-page":"2989","DOI":"10.1016\/j.eswa.2013.10.030","article-title":"Multi-label classification by exploiting label correlations","volume":"41","author":"Yu","year":"2014","journal-title":"Expert Syst. Appl."},{"issue":"9","key":"10.1016\/j.ins.2019.10.022_bib0031","doi-asserted-by":"crossref","first-page":"1373","DOI":"10.1016\/j.ijar.2013.06.003","article-title":"Neighborhood rough sets based multi-label classification for automatic image annotation","volume":"54","author":"Yu","year":"2013","journal-title":"Int. J. Approx. Reason."},{"key":"10.1016\/j.ins.2019.10.022_bib0032","doi-asserted-by":"crossref","first-page":"1081","DOI":"10.1109\/TKDE.2017.2785795","article-title":"Multi-label learning with global and local label correlation","volume":"30","author":"Zhu","year":"2017","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"7","key":"10.1016\/j.ins.2019.10.022_sbref0033","doi-asserted-by":"crossref","first-page":"830","DOI":"10.1093\/bioinformatics\/btk048","article-title":"Hierarchical multi-labelpredictionof gene function","volume":"22","author":"Barutcuoglu","year":"2006","journal-title":"Bioinformatics"},{"issue":"5","key":"10.1016\/j.ins.2019.10.022_bib0034","doi-asserted-by":"crossref","first-page":"341","DOI":"10.1007\/BF01001956","article-title":"Rough sets","volume":"11","author":"Pawlak","year":"1982","journal-title":"Int. J. Comput. Inf. Sci."}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025519309788?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025519309788?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,11,12]],"date-time":"2020-11-12T05:08:26Z","timestamp":1605157706000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025519309788"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,2]]},"references-count":34,"alternative-id":["S0020025519309788"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2019.10.022","relation":{},"ISSN":["0020-0255"],"issn-type":[{"value":"0020-0255","type":"print"}],"subject":[],"published":{"date-parts":[[2020,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A novel approach for learning label correlation with application to feature selection of multi-label data","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2019.10.022","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}