{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T18:49:56Z","timestamp":1726253396485},"reference-count":51,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["11471001"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2020,1]]},"DOI":"10.1016\/j.ins.2019.08.060","type":"journal-article","created":{"date-parts":[[2019,8,26]],"date-time":"2019-08-26T23:17:05Z","timestamp":1566861425000},"page":"1-21","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":96,"special_numbering":"C","title":["Low-rank local tangent space embedding for subspace clustering"],"prefix":"10.1016","volume":"508","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-0168-5414","authenticated-orcid":false,"given":"Tingquan","family":"Deng","sequence":"first","affiliation":[]},{"given":"Dongsheng","family":"Ye","sequence":"additional","affiliation":[]},{"given":"Rong","family":"Ma","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5256-210X","authenticated-orcid":false,"given":"Hamido","family":"Fujita","sequence":"additional","affiliation":[]},{"given":"Lvnan","family":"Xiong","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ins.2019.08.060_bib0001","doi-asserted-by":"crossref","first-page":"177","DOI":"10.1016\/j.neucom.2018.01.006","article-title":"Discriminative and coherent subspace clustering","volume":"284","author":"Chen","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2019.08.060_bib0002","doi-asserted-by":"crossref","first-page":"46","DOI":"10.1016\/j.knosys.2017.02.031","article-title":"Subspace clustering using a symmetric low-rank representation","volume":"127","author":"Chen","year":"2017","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.ins.2019.08.060_bib0003","doi-asserted-by":"crossref","first-page":"174","DOI":"10.1016\/j.neucom.2015.12.123","article-title":"A Laplacian structured representation model in subspace clustering for enhanced motion segmentation","volume":"208","author":"Chen","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2019.08.060_bib0004","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1016\/j.knosys.2018.08.014","article-title":"Locality-constrained least squares regression for subspace clustering","volume":"163","author":"Chen","year":"2019","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.ins.2019.08.060_bib0005","doi-asserted-by":"crossref","first-page":"357","DOI":"10.1016\/j.neucom.2018.09.052","article-title":"Towards a sparse low-rank regression model for memorability prediction of images","volume":"321","author":"Chu","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2019.08.060_bib0006","doi-asserted-by":"crossref","first-page":"38","DOI":"10.1016\/j.neucom.2018.02.067","article-title":"Subspace clustering guided convex nonnegative matrix factorization","volume":"292","author":"Cui","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2019.08.060_bib0007","doi-asserted-by":"crossref","first-page":"215","DOI":"10.1016\/j.ins.2017.11.016","article-title":"A semi-supervised approximate spectral clustering algorithm based on HMRF model","volume":"429","author":"Ding","year":"2018","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2019.08.060_bib0008","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1016\/j.knosys.2018.04.026","article-title":"Low-rank subspace learning based network community detection","volume":"155","author":"Ding","year":"2018","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.ins.2019.08.060_bib0009","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1016\/j.knosys.2016.11.013","article-title":"Graph regularized compact low rank representation for subspace clustering","volume":"118","author":"Du","year":"2017","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.ins.2019.08.060_bib0010","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1016\/j.knosys.2019.01.027","article-title":"Enhancements of rule-based models through refinements of Fuzzy C-Means","volume":"170","author":"Hanyu","year":"2019","journal-title":"Knowl.-Based Syst."},{"issue":"11","key":"10.1016\/j.ins.2019.08.060_bib0011","doi-asserted-by":"crossref","first-page":"2765","DOI":"10.1109\/TPAMI.2013.57","article-title":"Sparse subspace clustering: algorithm, theory, and applications","volume":"35","author":"Elhamifar","year":"2013","journal-title":"IEEE Trans. Pattern Anal. Mach.Intell."},{"key":"10.1016\/j.ins.2019.08.060_bib0012","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1016\/j.neucom.2019.02.055","article-title":"Robust subspace clustering via symmetry constrained latent low rank representation with converted nuclear norm","volume":"340","author":"Fang","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2019.08.060_bib0013","doi-asserted-by":"crossref","first-page":"324","DOI":"10.1016\/j.asoc.2019.02.038","article-title":"New Fuzzy C-Means clustering method based on feature-weight and cluster-weight learning","volume":"78","author":"Hashemzadeh","year":"2019","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.ins.2019.08.060_bib0014","series-title":"Advances in Neural Information Processing Systems","first-page":"153","article-title":"Locality preserving projections","volume":"volume\u00a016","author":"He","year":"2004"},{"issue":"11","key":"10.1016\/j.ins.2019.08.060_bib0015","doi-asserted-by":"crossref","first-page":"3179","DOI":"10.1162\/neco.2009.02-08-706","article-title":"Robust kernal principal component analysis","volume":"21","author":"Huang","year":"2009","journal-title":"Neural Comput."},{"key":"10.1016\/j.ins.2019.08.060_bib0016","doi-asserted-by":"crossref","first-page":"124","DOI":"10.1016\/j.neucom.2018.12.043","article-title":"A sharing multi-view feature selection method via alternating direction method of multipliers","volume":"333","author":"Lin","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2019.08.060_bib0017","first-page":"614","article-title":"Reference vector-based multi-objective clustering for high-dimensional data","volume":"78","author":"Liu","year":"2019","journal-title":"Neurocomputing"},{"issue":"1","key":"10.1016\/j.ins.2019.08.060_bib0018","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1109\/TPAMI.2012.88","article-title":"Robust recovery of subspace structures by low-rank representation","volume":"35","author":"Liu","year":"2013","journal-title":"IEEE Trans. Pattern Anal. Mach.Intell."},{"key":"10.1016\/j.ins.2019.08.060_bib0019","doi-asserted-by":"crossref","first-page":"164","DOI":"10.1016\/j.neucom.2016.03.112","article-title":"Distributed extreme learning machine with alternating direction method of multiplier","volume":"261","author":"Luo","year":"2017","journal-title":"Neurocomputing"},{"issue":"2","key":"10.1016\/j.ins.2019.08.060_bib0020","doi-asserted-by":"crossref","first-page":"397","DOI":"10.1007\/s13042-018-0784-y","article-title":"Semi-supervised rough fuzzy laplician eigenmaps for dimensionality reduction","volume":"10","author":"Ma","year":"2019","journal-title":"Int. J. Mach. Learn.Cybern."},{"key":"10.1016\/j.ins.2019.08.060_bib0021","doi-asserted-by":"crossref","first-page":"106","DOI":"10.1016\/j.neucom.2017.03.071","article-title":"Integrating feature and graph learning with low-rank representation","volume":"249","author":"Peng","year":"2017","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2019.08.060_bib0022","doi-asserted-by":"crossref","first-page":"417","DOI":"10.1016\/j.ins.2019.07.042","article-title":"Efficient k-anonymous microaggregation of multivariate numerical data via principal component analysis","volume":"503","author":"Rebollo-Monedero","year":"2019","journal-title":"Inf. Sci."},{"issue":"5500","key":"10.1016\/j.ins.2019.08.060_bib0023","doi-asserted-by":"crossref","first-page":"2323","DOI":"10.1126\/science.290.5500.2323","article-title":"Nonlinear dimensionality reduction by locally linear embedding","volume":"290","author":"Roweis","year":"2000","journal-title":"Science"},{"key":"10.1016\/j.ins.2019.08.060_bib0024","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2019.07.001","article-title":"Sparse and low-redundant subspace learning-based dual-graph regularized robust feature selection","author":"Shang","year":"2019","journal-title":"Knowl.-Based Syst."},{"issue":"1","key":"10.1016\/j.ins.2019.08.060_bib0025","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1016\/j.patrec.2016.12.023","article-title":"A global-local affinity matrix model via EigenGap for graph-based subspace clustering","volume":"89","author":"Shi","year":"2017","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.ins.2019.08.060_bib0026","doi-asserted-by":"crossref","first-page":"2479","DOI":"10.1016\/j.neucom.2017.11.021","article-title":"Subspace clustering based on latent low rank representation with Frobenius norm minimization","volume":"275","author":"Song","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2019.08.060_bib0027","doi-asserted-by":"crossref","first-page":"144","DOI":"10.1016\/j.neucom.2012.03.039","article-title":"Low-n-rank tensor recovery based on multi-linear augmented Lagrange multiplier method","volume":"119","author":"Tan","year":"2013","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2019.08.060_bib0028","doi-asserted-by":"crossref","first-page":"210","DOI":"10.1016\/j.neucom.2018.10.052","article-title":"Density-sensitive robust fuzzy kernel principal component analysis technique","volume":"329","author":"Tao","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2019.08.060_bib0029","doi-asserted-by":"crossref","first-page":"26","DOI":"10.1016\/j.knosys.2019.01.026","article-title":"Spectral clustering algorithm using density-sensitive distance measure with global and local consistencies","volume":"170","author":"Tao","year":"2019","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.ins.2019.08.060_bib0030","series-title":"IEEE International Conference on Cognitive Informatics","first-page":"154","article-title":"Dimension reduction of microarray data based on local tangent space alignment","author":"Teng","year":"2005"},{"key":"10.1016\/j.ins.2019.08.060_bib0031","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1016\/j.patrec.2013.08.006","article-title":"Low rank subspace clustering (LRSC)","volume":"43","author":"Vidal","year":"2014","journal-title":"Pattern Recognit. Lett."},{"issue":"17","key":"10.1016\/j.ins.2019.08.060_bib0032","first-page":"141","article-title":"Local tangent space alignment via nuclear norm regularization for incomplete data","volume":"273","author":"Wang","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2019.08.060_bib0033","doi-asserted-by":"crossref","first-page":"290","DOI":"10.1016\/j.knosys.2014.08.003","article-title":"Robust non-convex least squares loss function for regression with outliers","volume":"71","author":"Wang","year":"2014","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.ins.2019.08.060_bib0034","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1016\/j.knosys.2019.04.007","article-title":"Latent graph-regularized inductive robust principal component analysis","volume":"177","author":"Wei","year":"2019","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.ins.2019.08.060_bib0035","doi-asserted-by":"crossref","first-page":"210","DOI":"10.1016\/j.ins.2019.01.018","article-title":"Deep low-rank subspace ensemble for multi-view clustering","volume":"482","author":"Xue","year":"2019","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2019.08.060_bib0036","doi-asserted-by":"crossref","first-page":"48","DOI":"10.1016\/j.ins.2019.05.063","article-title":"Joint correntropy metric weighting and block diagonal regularizer for robust multiple kernel subspace clustering","volume":"500","author":"Yang","year":"2019","journal-title":"Inf. Sci."},{"issue":"3","key":"10.1016\/j.ins.2019.08.060_bib0037","doi-asserted-by":"crossref","first-page":"504","DOI":"10.1109\/TPAMI.2015.2462360","article-title":"Laplacian regularized low-rank representation and its applications","volume":"38","author":"Yin","year":"2016","journal-title":"IEEE Trans. Pattern Anal. Mach.Intell."},{"issue":"12","key":"10.1016\/j.ins.2019.08.060_bib0038","doi-asserted-by":"crossref","first-page":"4918","DOI":"10.1109\/TIP.2015.2472277","article-title":"Dual graph regularized latent low-rank representation for subspace clustering","volume":"24","author":"Yin","year":"2015","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.ins.2019.08.060_bib0039","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1016\/j.neucom.2018.05.016","article-title":"Locally adaptive sparse representation on Riemannian manifolds for robust classification","volume":"310","author":"Yin","year":"2018","journal-title":"Neurocomputing"},{"issue":"9","key":"10.1016\/j.ins.2019.08.060_bib0040","doi-asserted-by":"crossref","first-page":"1196","DOI":"10.1016\/j.patrec.2012.02.002","article-title":"Image classification by multimodal subspace learning","volume":"33","author":"Yu","year":"2012","journal-title":"Pattern Recognit. Lett."},{"issue":"13","key":"10.1016\/j.ins.2019.08.060_bib0041","doi-asserted-by":"crossref","first-page":"936","DOI":"10.1049\/el.2014.1396","article-title":"fLRR: fast low-rank representation using Frobenius-norm","volume":"50","author":"Zhang","year":"2014","journal-title":"Electron. Lett."},{"key":"10.1016\/j.ins.2019.08.060_bib0042","doi-asserted-by":"crossref","first-page":"430","DOI":"10.1016\/j.ins.2018.10.049","article-title":"Robust low-rank kernel multi-view subspace clustering based on the Schatten p-norm and correntropy","volume":"477","author":"Zhang","year":"2019","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2019.08.060_bib0043","doi-asserted-by":"crossref","first-page":"463","DOI":"10.1016\/j.ins.2017.11.038","article-title":"Multi-view clustering based on graph-regularized nonnegative matrix factorization for object recognition","volume":"432","author":"Zhang","year":"2018","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2019.08.060_bib0044","doi-asserted-by":"crossref","first-page":"776","DOI":"10.1016\/j.knosys.2018.10.001","article-title":"A multitask multiview clustering algorithm in heterogeneous situations based on LLE and LE","volume":"163","author":"Zhang","year":"2019","journal-title":"Knowl.-Based Syst."},{"issue":"28","key":"10.1016\/j.ins.2019.08.060_bib0045","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.neucom.2018.03.035","article-title":"Kernel group sparse representation classifier via structural and non-convex constraints","volume":"296","author":"Zheng","year":"2018","journal-title":"Neurocomputing"},{"issue":"21","key":"10.1016\/j.ins.2019.08.060_bib0046","doi-asserted-by":"crossref","first-page":"156","DOI":"10.1016\/j.neucom.2019.01.015","article-title":"Robust unsupervised feature selection by nonnegative sparse subspace learning","volume":"334","author":"Zheng","year":"2019","journal-title":"Neurocomputing"},{"issue":"10","key":"10.1016\/j.ins.2019.08.060_bib0047","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.ins.2015.01.004","article-title":"Regression analysis of locality preserving projections via sparse penalty","volume":"303","author":"Zheng","year":"2015","journal-title":"Inf. Sci."},{"issue":"15","key":"10.1016\/j.ins.2019.08.060_bib0048","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1016\/j.knosys.2019.02.036","article-title":"Incremental multi-view spectral clustering","volume":"174","author":"Zhou","year":"2019","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.ins.2019.08.060_bib0049","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1016\/j.ins.2019.03.024","article-title":"Efficient registration of multi-view point sets by K-means clustering","volume":"488","author":"Zhu","year":"2019","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2019.08.060_bib0050","doi-asserted-by":"crossref","first-page":"131","DOI":"10.1016\/j.patrec.2017.08.023","article-title":"Nonlinear subspace clustering for image clustering","volume":"107","author":"Zhu","year":"2018","journal-title":"Pattern Recognit. Lett."},{"issue":"23","key":"10.1016\/j.ins.2019.08.060_bib0051","first-page":"95","article-title":"Unsupervised segmentation of natural images based on statistical modeling","volume":"252","author":"Zhu","year":"2017","journal-title":"Knowl.-Based Syst."}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025519308096?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025519308096?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,9,20]],"date-time":"2019-09-20T04:47:24Z","timestamp":1568954844000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025519308096"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,1]]},"references-count":51,"alternative-id":["S0020025519308096"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2019.08.060","relation":{},"ISSN":["0020-0255"],"issn-type":[{"value":"0020-0255","type":"print"}],"subject":[],"published":{"date-parts":[[2020,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Low-rank local tangent space embedding for subspace clustering","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2019.08.060","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}