{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,29]],"date-time":"2024-08-29T15:08:38Z","timestamp":1724944118082},"reference-count":40,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61303094"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2020,1]]},"DOI":"10.1016\/j.ins.2019.08.059","type":"journal-article","created":{"date-parts":[[2019,8,26]],"date-time":"2019-08-26T11:14:20Z","timestamp":1566818060000},"page":"22-32","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":20,"special_numbering":"C","title":["The assessment of small bowel motility with attentive deformable neural network"],"prefix":"10.1016","volume":"508","author":[{"given":"Xing","family":"Wu","sequence":"first","affiliation":[]},{"given":"Mingyu","family":"Zhong","sequence":"additional","affiliation":[]},{"given":"Yike","family":"Guo","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5256-210X","authenticated-orcid":false,"given":"Hamido","family":"Fujita","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ins.2019.08.059_bib0001","series-title":"Proceedings of Neural Information Processing Systems","article-title":"Automatic differentiation in pytorch","author":"Adam","year":"2017"},{"key":"10.1016\/j.ins.2019.08.059_bib0002","series-title":"3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7\u20139, 2015, Conference Track Proceedings","article-title":"Neural machine translation by jointly learning to align and translate","author":"Bahdanau","year":"2015"},{"key":"10.1016\/j.ins.2019.08.059_bib0003","doi-asserted-by":"crossref","first-page":"S668","DOI":"10.14309\/00000434-201810001-01174","article-title":"Comparative quantitative analysis between a dyspeptic versus irritable bowel syndrome groups in relation to a positive hydrogen breath test-small intestinal bacterial overgrowth: 1174","volume":"113","author":"Baker","year":"2018","journal-title":"Am. J. Gastroenterol."},{"issue":"3","key":"10.1016\/j.ins.2019.08.059_bib0004","first-page":"259","article-title":"Chest pathology identification using deep feature selection with non-medical training","volume":"6","author":"Bar","year":"2018","journal-title":"Comput. Methods Biomech. Biomed. Eng."},{"key":"10.1016\/j.ins.2019.08.059_bib0005","series-title":"Proc. Interspeech 2018","first-page":"766","article-title":"Segmental encoder\u2013decoder models for large vocabulary automatic speech recognition","author":"Beck","year":"2018"},{"issue":"1","key":"10.1016\/j.ins.2019.08.059_bib0006","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1016\/j.clinimag.2014.10.003","article-title":"Automated small bowel motility measurements in MRI using 2D coronal slices \u2013 does the intrasegmental location matter? A pilot study","volume":"39","author":"Bickelhaupt","year":"2015","journal-title":"Clin. imaging"},{"issue":"5","key":"10.1016\/j.ins.2019.08.059_bib0007","doi-asserted-by":"crossref","first-page":"821","DOI":"10.1016\/j.rcl.2018.05.001","article-title":"Lower gastrointestinal tract applications of PET\/computed tomography and PET\/MR imaging","volume":"56","author":"Catalano","year":"2018","journal-title":"Radiol. Clin."},{"key":"10.1016\/j.ins.2019.08.059_bib0008","series-title":"Proceedings of the European Conference on Computer Vision (ECCV)","first-page":"801","article-title":"Encoder\u2013decoder with atrous separable convolution for semantic image segmentation","author":"Chen","year":"2018"},{"key":"10.1016\/j.ins.2019.08.059_bib0009","series-title":"2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)","first-page":"1737","article-title":"Automated assessment of small bowel motility function based on simple linear iterative clustering (slic)","author":"Chen","year":"2015"},{"issue":"99","key":"10.1016\/j.ins.2019.08.059_bib0010","first-page":"1","article-title":"Exploring hierarchical convolutional features for hyperspectral image classification","author":"Cheng","year":"2018","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.ins.2019.08.059_bib0011","doi-asserted-by":"crossref","first-page":"103","DOI":"10.3115\/v1\/W14-4012","article-title":"On the properties of neural machine translation: encoder\u2013decoder approaches","author":"Cho","year":"2014","journal-title":"Syntax Semant. Struct. Stat. Transl."},{"issue":"1","key":"10.1016\/j.ins.2019.08.059_bib0012","doi-asserted-by":"crossref","first-page":"e13257","DOI":"10.1111\/nmo.13257","article-title":"Evaluation of gastrointestinal motility with MRI: advances, challenges and opportunities","volume":"30","author":"CS de Jonge","year":"2018","journal-title":"Neurogastroenterol. Motil."},{"issue":"1088","key":"10.1016\/j.ins.2019.08.059_bib0013","doi-asserted-by":"crossref","first-page":"20170845","DOI":"10.1259\/bjr.20170845","article-title":"Dynamic MRI for bowel motility imaging-;;how fast and how long?","volume":"91","author":"de Jonge","year":"2018","journal-title":"Br. J. Radiol."},{"issue":"2","key":"10.1016\/j.ins.2019.08.059_sbref0014","first-page":"3","volume":"1","author":"Dai","year":"2017","journal-title":"Deformable convolutional networks"},{"issue":"4","key":"10.1016\/j.ins.2019.08.059_bib0015","doi-asserted-by":"crossref","first-page":"370","DOI":"10.1002\/jmri.20284","article-title":"Small bowel motility assessment with magnetic resonance imaging","volume":"21","author":"Froehlich","year":"2005","journal-title":"J. Magn. Reson. Imaging"},{"issue":"1","key":"10.1016\/j.ins.2019.08.059_bib0016","first-page":"1","article-title":"Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks","volume":"6","author":"Gao","year":"2018","journal-title":"Comput. Methods Biomech. Biomed.Eng."},{"key":"10.1016\/j.ins.2019.08.059_bib0017","series-title":"2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)","first-page":"281","article-title":"Radnet: radiologist level accuracy using deep learning for hemorrhage detection in ct scans","author":"Grewal","year":"2018"},{"issue":"22","key":"10.1016\/j.ins.2019.08.059_bib0018","doi-asserted-by":"crossref","first-page":"2402","DOI":"10.1001\/jama.2016.17216","article-title":"Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs","volume":"316","author":"Gulshan","year":"2016","journal-title":"JAMA"},{"key":"10.1016\/j.ins.2019.08.059_bib0019","doi-asserted-by":"crossref","first-page":"253","DOI":"10.1016\/j.media.2019.03.013","article-title":"Deeppet: a deep encoder\u2013decoder network for directly solving the pet image reconstruction inverse problem","volume":"54","author":"H\u00e4ggstr\u00f6m","year":"2019","journal-title":"Medical image analysis"},{"key":"10.1016\/j.ins.2019.08.059_bib0020","series-title":"Advances in Neural Information Processing Systems","first-page":"2017","article-title":"Spatial transformer networks","author":"Jaderberg","year":"2015"},{"key":"10.1016\/j.ins.2019.08.059_bib0021","doi-asserted-by":"crossref","first-page":"149","DOI":"10.1016\/j.knosys.2019.04.025","article-title":"Dunet: a deformable network for retinal vessel segmentation","volume":"178","author":"Jin","year":"2019","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.ins.2019.08.059_bib0022","doi-asserted-by":"crossref","unstructured":"I.T. Jolliffe, Principal component analysis and factor analysis, 1986.","DOI":"10.1007\/978-1-4757-1904-8"},{"issue":"5","key":"10.1016\/j.ins.2019.08.059_bib0023","doi-asserted-by":"crossref","first-page":"1122","DOI":"10.1016\/j.cell.2018.02.010","article-title":"Identifying medical diagnoses and treatable diseases by image-based deep learning","volume":"172","author":"Kermany","year":"2018","journal-title":"Cell"},{"key":"10.1016\/j.ins.2019.08.059_bib0024","series-title":"3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7\u20139, 2015, Conference Track Proceedings","article-title":"Adam: a method for stochastic optimization","author":"Kingma","year":"2015"},{"key":"10.1016\/j.ins.2019.08.059_bib0025","doi-asserted-by":"crossref","first-page":"301","DOI":"10.1016\/j.ins.2018.03.050","article-title":"A generative model for category text generation","volume":"450","author":"Li","year":"2018","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2019.08.059_bib0026","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1016\/j.media.2017.07.005","article-title":"A survey on deep learning in medical image analysis","volume":"42","author":"Litjens","year":"2017","journal-title":"Med. image Anal."},{"issue":"3","key":"10.1016\/j.ins.2019.08.059_bib0027","doi-asserted-by":"crossref","first-page":"783","DOI":"10.1002\/mrm.23298","article-title":"Quantitative assessment of small bowel motility by nonrigid registration of dynamic MR images","volume":"68","author":"Odille","year":"2012","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.ins.2019.08.059_bib0028","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"2403","article-title":"Deepid-net: deformable deep convolutional neural networks for object detection","author":"Ouyang","year":"2015"},{"issue":"7","key":"10.1016\/j.ins.2019.08.059_bib0029","doi-asserted-by":"crossref","first-page":"1023","DOI":"10.1136\/gut.2007.120816","article-title":"Non-invasive measurement of small-bowel motility by MRI after abdominal surgery","volume":"56","author":"Patak","year":"2007","journal-title":"Gut"},{"key":"10.1016\/j.ins.2019.08.059_bib0030","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1016\/j.knosys.2017.01.023","article-title":"Small bowel motility assessment based on fully convolutional networks and long short-term memory","volume":"121","author":"Pei","year":"2017","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.ins.2019.08.059_bib0031","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1016\/j.ins.2018.01.051","article-title":"Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images","volume":"441","author":"Raghavendra","year":"2018","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2019.08.059_bib0032","series-title":"CCF International Conference on Natural Language Processing and Chinese Computing","first-page":"383","article-title":"A normalized encoder\u2013decoder model for abstractive summarization using focal loss","author":"Shi","year":"2018"},{"key":"10.1016\/j.ins.2019.08.059_bib0033","series-title":"Advances in Neural Information Processing Systems","first-page":"3104","article-title":"Sequence to sequence learning with neural networks","author":"Sutskever","year":"2014"},{"issue":"5","key":"10.1016\/j.ins.2019.08.059_bib0034","doi-asserted-by":"crossref","first-page":"1299","DOI":"10.1109\/TMI.2016.2535302","article-title":"Convolutional neural networks for medical image analysis: full training or fine tuning?","volume":"35","author":"Tajbakhsh","year":"2016","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.ins.2019.08.059_bib0035","series-title":"International Conference on Innovation in Medicine and Healthcare","first-page":"173","article-title":"Quantitative assessment of small bowel motility using cine MR sequence images and superpixels","author":"Tateyama","year":"2017"},{"issue":"5","key":"10.1016\/j.ins.2019.08.059_bib0036","doi-asserted-by":"crossref","first-page":"1235","DOI":"10.1002\/jmri.22529","article-title":"Assessment of small bowel motility function with cine-MRI using balanced steady-state free precession sequence","volume":"33","author":"Wakamiya","year":"2011","journal-title":"J. Magn. Reson. Imaging"},{"key":"10.1016\/j.ins.2019.08.059_bib0037","series-title":"MRI in Practice","author":"Westbrook","year":"2018"},{"key":"10.1016\/j.ins.2019.08.059_bib0038","series-title":"International Symposium on Visual Computing","first-page":"11","article-title":"Automatic quantitative assessment of the small bowel motility with cine-MRI sequence analysis","author":"Wu","year":"2013"},{"key":"10.1016\/j.ins.2019.08.059_bib0039","series-title":"International Conference on Machine Learning","first-page":"2048","article-title":"Show, attend and tell: neural image caption generation with visual attention","author":"Xu","year":"2015"},{"key":"10.1016\/j.ins.2019.08.059_bib0040","doi-asserted-by":"crossref","first-page":"146","DOI":"10.1016\/j.ins.2016.01.039","article-title":"A survey of randomized algorithms for training neural networks","volume":"364","author":"Zhang","year":"2016","journal-title":"Inf. Sci."}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025519308084?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025519308084?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,10,1]],"date-time":"2019-10-01T22:37:04Z","timestamp":1569969424000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025519308084"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,1]]},"references-count":40,"alternative-id":["S0020025519308084"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2019.08.059","relation":{},"ISSN":["0020-0255"],"issn-type":[{"value":"0020-0255","type":"print"}],"subject":[],"published":{"date-parts":[[2020,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"The assessment of small bowel motility with attentive deformable neural network","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2019.08.059","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}