{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,23]],"date-time":"2024-09-23T04:47:35Z","timestamp":1727066855112},"reference-count":48,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61773251","61873335","61833011"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2020,1]]},"DOI":"10.1016\/j.ins.2019.08.028","type":"journal-article","created":{"date-parts":[[2019,8,13]],"date-time":"2019-08-13T15:51:22Z","timestamp":1565711482000},"page":"220-239","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":14,"special_numbering":"C","title":["A just-in-time-learning based two-dimensional control strategy for nonlinear batch processes"],"prefix":"10.1016","volume":"507","author":[{"given":"Liuming","family":"Zhou","sequence":"first","affiliation":[]},{"given":"Li","family":"Jia","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6508-0051","authenticated-orcid":false,"given":"Yu-Long","family":"Wang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ins.2019.08.028_bib0001","doi-asserted-by":"crossref","first-page":"881","DOI":"10.1016\/S0005-1098(01)00030-9","article-title":"Incorporation of experience in iterative learning controllers using locally weighted learning","volume":"37","author":"Arif","year":"2001","journal-title":"Automatica"},{"key":"10.1016\/j.ins.2019.08.028_bib0002","doi-asserted-by":"crossref","first-page":"34","DOI":"10.1109\/MCS.2006.252831","article-title":"Control and optimization of batch processes","volume":"26","author":"Bonvin","year":"2006","journal-title":"IEEE Control Syst."},{"key":"10.1016\/j.ins.2019.08.028_bib0003","doi-asserted-by":"crossref","first-page":"762","DOI":"10.1016\/j.cjche.2014.05.008","article-title":"Design and analysis of integrated predictive iterative learning control for batch process based on two-dimensional system theory","volume":"22","author":"Chen","year":"2014","journal-title":"Chin. J. Chem. Eng."},{"key":"10.1016\/j.ins.2019.08.028_bib0004","doi-asserted-by":"crossref","first-page":"2801","DOI":"10.1016\/j.ces.2004.04.020","article-title":"A new data-based methodology for nonlinear process modeling","volume":"59","author":"Cheng","year":"2004","journal-title":"Chem. Eng. Sci."},{"key":"10.1016\/j.ins.2019.08.028_bib0005","doi-asserted-by":"crossref","first-page":"1023","DOI":"10.1016\/j.conengprac.2007.11.003","article-title":"Iterative nonlinear model predictive control. stability, robustness and applications","volume":"16","author":"Cueli","year":"2008","journal-title":"Control Eng. Pract."},{"key":"10.1016\/j.ins.2019.08.028_bib0006","doi-asserted-by":"crossref","first-page":"2483","DOI":"10.1109\/TII.2019.2905295","article-title":"A survey on model-based distributed control and filtering for industrial cyber-physical systems","volume":"15","author":"Ding","year":"2019","journal-title":"IEEE Trans. Ind. Inf."},{"key":"10.1016\/j.ins.2019.08.028_bib0007","doi-asserted-by":"crossref","first-page":"3910","DOI":"10.1109\/TII.2018.2884494","article-title":"Distributed secondary control for active power sharing and frequency regulation in islanded microgrids using an event-triggered communication mechanism","volume":"15","author":"Ding","year":"2019","journal-title":"IEEE Trans. Ind. Inf."},{"key":"10.1016\/j.ins.2019.08.028_bib0008","doi-asserted-by":"crossref","first-page":"1684","DOI":"10.1016\/j.neucom.2017.10.008","article-title":"A survey on recent advances in distributed sampled-data cooperative control of multi-agent systems","volume":"275","author":"Ge","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2019.08.028_bib0009","doi-asserted-by":"crossref","first-page":"3417","DOI":"10.1109\/TIE.2017.2752148","article-title":"Achieving cluster formation of multi-agent systems under aperiodic sampling and communication delays","volume":"65","author":"Ge","year":"2018","journal-title":"IEEE Trans. Ind. Electron."},{"key":"10.1016\/j.ins.2019.08.028_bib0010","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1016\/j.nahs.2017.11.002","article-title":"Model predictive control of batch processes based on two-dimensional integration frame","volume":"28","author":"Han","year":"2018","journal-title":"Nonlinear Anal. Hybrid Syst."},{"key":"10.1016\/j.ins.2019.08.028_bib0011","doi-asserted-by":"crossref","first-page":"369","DOI":"10.1016\/j.ins.2019.03.082","article-title":"Observer-based adaptive fuzzy tracking control of mimo switched nonlinear systems preceded by unknown backlash-like hysteresis","volume":"490","author":"Huo","year":"2019","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2019.08.028_bib0012","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.neucom.2011.05.046","article-title":"Integrated neuro-fuzzy model and dynamic r-parameter based quadratic criterion-iterative learning control for batch process control technique","volume":"98","author":"Jia","year":"2012","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2019.08.028_bib0013","doi-asserted-by":"crossref","first-page":"1713","DOI":"10.1016\/j.cjche.2018.06.006","article-title":"Just-in-time learning based integrated MPC-ILC control for batch processes","volume":"26","author":"Jia","year":"2018","journal-title":"Chin. J. Chem. Eng."},{"key":"10.1016\/j.ins.2019.08.028_bib0014","doi-asserted-by":"crossref","first-page":"1332","DOI":"10.1016\/j.jprocont.2013.09.011","article-title":"An integrated iterative learning control strategy with model identification and dynamic R-parameter for batch processes","volume":"23","author":"Jia","year":"2013","journal-title":"J. Process Control"},{"key":"10.1016\/j.ins.2019.08.028_bib0015","doi-asserted-by":"crossref","first-page":"2013","DOI":"10.1016\/j.cjche.2015.11.010","article-title":"Auxiliary error and probability density function based neuro-fuzzy model and its application in batch processes","volume":"23","author":"Jia","year":"2015","journal-title":"Chin. J. Chem. Eng."},{"key":"10.1016\/j.ins.2019.08.028_bib0016","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1016\/j.compchemeng.2014.07.014","article-title":"Adaptive soft sensor modeling framework based on just-in-time learning and kernel partial least squares regression for nonlinear multiphase batch processes","volume":"71","author":"Jin","year":"2014","journal-title":"Comput. Chem. Eng."},{"key":"10.1016\/j.ins.2019.08.028_bib0017","doi-asserted-by":"crossref","first-page":"1158","DOI":"10.1002\/aic.690210616","article-title":"A coordinate transformation method for the numerical solution of nonlinear minimum-time control problems","volume":"21","author":"Kwon","year":"1975","journal-title":"AIChE J."},{"key":"10.1016\/j.ins.2019.08.028_bib0018","doi-asserted-by":"crossref","first-page":"1306","DOI":"10.1016\/j.conengprac.2006.11.013","article-title":"Iterative learning control applied to batch processes: an overview","volume":"15","author":"Lee","year":"2007","journal-title":"Control Eng. Pract."},{"key":"10.1016\/j.ins.2019.08.028_bib0019","doi-asserted-by":"crossref","first-page":"641","DOI":"10.1016\/S0005-1098(99)00194-6","article-title":"Model based iterative learning control with a quadratic criterion for time varying linear systems","volume":"36","author":"Lee","year":"2000","journal-title":"Automatica"},{"key":"10.1016\/j.ins.2019.08.028_bib0020","doi-asserted-by":"crossref","first-page":"607","DOI":"10.1016\/S0959-1524(02)00096-3","article-title":"Iterative learning control-based batch process control technique for integrated control of end product properties and transient profiles of process variables","volume":"13","author":"Lee","year":"2003","journal-title":"J. Process Control"},{"key":"10.1016\/j.ins.2019.08.028_bib0021","doi-asserted-by":"crossref","first-page":"30","DOI":"10.1016\/j.neucom.2018.08.090","article-title":"Further results on sampled-data synchronization control for chaotic neural networks with actuator saturation","volume":"346","author":"Lian","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2019.08.028_bib0022","doi-asserted-by":"crossref","first-page":"1628","DOI":"10.1021\/ie00095a010","article-title":"Accurate solution of differential-algebraic optimization problems","volume":"28","author":"Logsdon","year":"1989","journal-title":"Ind. Eng. Chem. Res."},{"key":"10.1016\/j.ins.2019.08.028_bib0023","doi-asserted-by":"crossref","first-page":"5826","DOI":"10.1109\/TIE.2017.2782201","article-title":"Nonlinear monotonically convergent iterative learning control for batch processes","volume":"65","author":"Lu","year":"2018","journal-title":"IEEE Trans. Ind. Electron."},{"key":"10.1016\/j.ins.2019.08.028_bib0024","doi-asserted-by":"crossref","first-page":"2039","DOI":"10.1016\/j.automatica.2011.05.022","article-title":"A convex optimization approach to robust iterative learning control for linear systems with time-varying parametric uncertainties","volume":"47","author":"Nguyen","year":"2011","journal-title":"Automatica"},{"key":"10.1016\/j.ins.2019.08.028_bib0025","doi-asserted-by":"crossref","first-page":"284","DOI":"10.1016\/j.compchemeng.2016.07.011","article-title":"Iterative learning model predictive control for constrained multivariable control of batch processes","volume":"93","author":"Oh","year":"2016","journal-title":"Comput. Chem. Eng."},{"key":"10.1016\/j.ins.2019.08.028_bib0026","doi-asserted-by":"crossref","first-page":"907","DOI":"10.1016\/j.jprocont.2005.02.005","article-title":"Robust design of integrated feedback and iterative learning control of a batch process based on a 2D Roesser system","volume":"15","author":"Shi","year":"2005","journal-title":"J. Process Control"},{"key":"10.1016\/j.ins.2019.08.028_bib0027","doi-asserted-by":"crossref","first-page":"1435","DOI":"10.1109\/TII.2015.2490039","article-title":"Survey on run-to-run control algorithms in high-mix semiconductor manufacturing processes","volume":"11","author":"Tan","year":"2015","journal-title":"IEEE Trans. Ind. Inf."},{"key":"10.1016\/j.ins.2019.08.028_bib0028","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.ins.2019.05.067","article-title":"Observer-based finite time control of nonlinear systems with actuator failures","volume":"500","author":"Wang","year":"2019","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2019.08.028_bib0029","doi-asserted-by":"crossref","first-page":"416","DOI":"10.1109\/TNNLS.2015.2411671","article-title":"A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control","volume":"27","author":"Wang","year":"2016","journal-title":"IEEE Trans. Neural Netw. Learn.Syst."},{"key":"10.1016\/j.ins.2019.08.028_bib0030","doi-asserted-by":"crossref","first-page":"1589","DOI":"10.1016\/j.jprocont.2009.09.006","article-title":"Survey on iterative learning control, repetitive control, and run-to-run control","volume":"19","author":"Wang","year":"2009","journal-title":"J. Process Control"},{"key":"10.1016\/j.ins.2019.08.028_bib0031","doi-asserted-by":"crossref","first-page":"543","DOI":"10.1016\/j.jprocont.2007.10.014","article-title":"Iterative learning model predictive control for multi-phase batch processes","volume":"18","author":"Wang","year":"2008","journal-title":"J. Process Control"},{"key":"10.1016\/j.ins.2019.08.028_bib0032","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1016\/j.automatica.2018.01.026","article-title":"Network-based modelling and dynamic output feedback control for unmanned marine vehicles in network environments","volume":"91","author":"Wang","year":"2018","journal-title":"Automatica"},{"key":"10.1016\/j.ins.2019.08.028_bib0033","doi-asserted-by":"crossref","first-page":"2750","DOI":"10.1109\/TCYB.2018.2829730","article-title":"Network-based T-S fuzzy dynamic positioning controller design for unmanned marine vehicles","volume":"48","author":"Wang","year":"2018","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.ins.2019.08.028_bib0034","doi-asserted-by":"crossref","first-page":"2299","DOI":"10.1109\/TCYB.2016.2631903","article-title":"Adaptively adjusted event-triggering mechanism on fault detection for networked control systems","volume":"47","author":"Wang","year":"2017","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.ins.2019.08.028_bib0035","doi-asserted-by":"crossref","first-page":"6802","DOI":"10.1021\/ie034006j","article-title":"Product quality trajectory tracking in batch processes using iterative learning control based on time-varying perturbation models","volume":"42","author":"Xiong","year":"2003","journal-title":"Ind. Eng. Chem. Res."},{"key":"10.1016\/j.ins.2019.08.028_bib0036","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1007\/978-3-540-28648-6_15","article-title":"Run-to-run iterative optimization control of batch processes based on recurrent neural networks","volume":"3174","author":"Xiong","year":"2004","journal-title":"Lect. Notes Comput. Sci."},{"key":"10.1016\/j.ins.2019.08.028_bib0037","doi-asserted-by":"crossref","first-page":"6182","DOI":"10.1021\/ie302561t","article-title":"Optimal iterative learning control based on a time-parametrized linear time-varying model for batch processes","volume":"52","author":"Xu","year":"2013","journal-title":"Ind. Eng. Chem. Res."},{"key":"10.1016\/j.ins.2019.08.028_bib0038","doi-asserted-by":"crossref","first-page":"128","DOI":"10.1016\/j.ins.2018.12.075","article-title":"A novel robust model predictive control approach with pseudo terminal designs","volume":"481","author":"Yang","year":"2019","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2019.08.028_bib0039","doi-asserted-by":"crossref","first-page":"755","DOI":"10.1007\/s11071-017-3503-4","article-title":"Recent advances in vibration control of offshore platforms","volume":"89","author":"Zhang","year":"2017","journal-title":"Nonlinear Dyn."},{"key":"10.1016\/j.ins.2019.08.028_bib0040","doi-asserted-by":"crossref","first-page":"1769","DOI":"10.1109\/TCST.2013.2293401","article-title":"Sliding mode control with mixed current and delayed states for offshore steel jacket platforms","volume":"22","author":"Zhang","year":"2014","journal-title":"IEEE Trans. Control Syst. Technol."},{"key":"10.1016\/j.ins.2019.08.028_bib0041","doi-asserted-by":"crossref","first-page":"2741","DOI":"10.1002\/rnc.3021","article-title":"Observer-based H\u221e output tracking control for networked control systems,","volume":"24","author":"Zhang","year":"2014","journal-title":"Int. J. Robust Nonlinear Control"},{"key":"10.1016\/j.ins.2019.08.028_bib0042","doi-asserted-by":"crossref","first-page":"26","DOI":"10.1016\/j.fss.2014.12.015","article-title":"Network-based output tracking control for TS fuzzy systems using an event-triggered communication scheme","volume":"273","author":"Zhang","year":"2015","journal-title":"Fuzzy Sets Syst."},{"key":"10.1016\/j.ins.2019.08.028_bib0043","doi-asserted-by":"crossref","first-page":"1273","DOI":"10.1016\/j.ces.2007.07.047","article-title":"Batch-to-batch optimal control of a batch polymerisation process based on stacked neural network models","volume":"63","author":"Zhang","year":"2008","journal-title":"Chem. Eng. Sci."},{"key":"10.1016\/j.ins.2019.08.028_bib0044","doi-asserted-by":"crossref","first-page":"102","DOI":"10.1016\/j.jprocont.2014.11.008","article-title":"Design of state space linear quadratic tracking control using ga optimization for batch processes with partial actuator failure","volume":"26","author":"Zhang","year":"2015","journal-title":"J. Process Control"},{"key":"10.1016\/j.ins.2019.08.028_bib0045","article-title":"Performance enhancement of repetitive-control systems and application to tracking control of chuck-workpiece systems","author":"Zhou","year":"2019","journal-title":"IEEE Trans. Ind. Electron."},{"key":"10.1016\/j.ins.2019.08.028_bib0046","doi-asserted-by":"crossref","first-page":"4952","DOI":"10.1016\/j.jfranklin.2018.05.024","article-title":"Robust H\u221e control of an observer-based repetitive-control system","volume":"355","author":"Zhou","year":"2018","journal-title":"J. Franklin Inst."},{"key":"10.1016\/j.ins.2019.08.028_bib0047","doi-asserted-by":"crossref","first-page":"213","DOI":"10.1002\/rnc.3865","article-title":"Compensation for state-dependent nonlinearity in a modified repetitive-control system","volume":"28","author":"Zhou","year":"2018","journal-title":"Int. J. Robust Nonlinear Control"},{"key":"10.1016\/j.ins.2019.08.028_bib0048","doi-asserted-by":"crossref","first-page":"170","DOI":"10.1016\/j.ins.2019.01.078","article-title":"Neuro-adaptive tracking control of non-integer order systems with input nonlinearities and time-varying output constraints","volume":"485","author":"Zouari","year":"2019","journal-title":"Inf. Sci."}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025519307637?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025519307637?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,10,2]],"date-time":"2019-10-02T02:36:47Z","timestamp":1569983807000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025519307637"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,1]]},"references-count":48,"alternative-id":["S0020025519307637"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2019.08.028","relation":{},"ISSN":["0020-0255"],"issn-type":[{"value":"0020-0255","type":"print"}],"subject":[],"published":{"date-parts":[[2020,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A just-in-time-learning based two-dimensional control strategy for nonlinear batch processes","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2019.08.028","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}