{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,24]],"date-time":"2025-03-24T08:13:17Z","timestamp":1742803997104},"reference-count":49,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,7,1]],"date-time":"2019-07-01T00:00:00Z","timestamp":1561939200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2019,7]]},"DOI":"10.1016\/j.ins.2019.03.064","type":"journal-article","created":{"date-parts":[[2019,3,26]],"date-time":"2019-03-26T13:03:20Z","timestamp":1553605400000},"page":"126-145","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":37,"special_numbering":"C","title":["Modeling Side Information in Preference Relation based Restricted Boltzmann Machine for recommender systems"],"prefix":"10.1016","volume":"490","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5393-3782","authenticated-orcid":false,"given":"Abinash","family":"Pujahari","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9845-290X","authenticated-orcid":false,"given":"Dilip Singh","family":"Sisodia","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"5","key":"10.1016\/j.ins.2019.03.064_bib0001","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1002\/(SICI)1098-111X(199605)11:5<267::AID-INT2>3.0.CO;2-M","article-title":"Deleting inconsistencies in nontransitive preference relations","volume":"11","author":"Basile","year":"1996","journal-title":"Int. J. Intell. Syst."},{"key":"10.1016\/j.ins.2019.03.064_bib0002","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1016\/j.knosys.2013.03.012","article-title":"Recommender systems survey","volume":"46","author":"Bobadilla","year":"2013","journal-title":"Knowl. Based Syst."},{"key":"10.1016\/j.ins.2019.03.064_bib0003","series-title":"Proceedings of the Preference Learning (PL 2010) ECML\/PKDD Workshop","article-title":"Towards preference relations in recommender systems","author":"Brun","year":"2010"},{"key":"10.1016\/j.ins.2019.03.064_bib0004","series-title":"Proceedings of the 18th ACM Conference on Information and Knowledge Management","first-page":"621","article-title":"Expected reciprocal rank for graded relevance","author":"Chapelle","year":"2009"},{"key":"10.1016\/j.ins.2019.03.064_bib0005","doi-asserted-by":"crossref","first-page":"124","DOI":"10.1016\/j.ins.2018.01.001","article-title":"A disease diagnosis and treatment recommendation system based on big data mining and cloud computing","volume":"435","author":"Chen","year":"2018","journal-title":"Inf. Sci. (Ny)"},{"key":"10.1016\/j.ins.2019.03.064_bib0006","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1016\/j.knosys.2018.05.040","article-title":"Matrix factorization for recommendation with explicit and implicit feedback","volume":"158","author":"Chen","year":"2018","journal-title":"Knowl. Based Syst."},{"key":"10.1016\/j.ins.2019.03.064_bib0007","series-title":"Proceedings of the 1st Workshop on Deep Learning for Recommender Systems","first-page":"7","article-title":"Wide & deep learning for recommender systems","author":"Cheng","year":"2016"},{"key":"10.1016\/j.ins.2019.03.064_bib0008","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1613\/jair.587","article-title":"Learning to order things","volume":"10","author":"Cohen","year":"1999","journal-title":"J. Artif. Intell. Res."},{"key":"10.1016\/j.ins.2019.03.064_bib0009","series-title":"Proceedings of the International Conference on user Modeling, Adaptation, and Personalization","first-page":"63","article-title":"Preference relation based matrix factorization for recommender systems","author":"Desarkar","year":"2012"},{"key":"10.1016\/j.ins.2019.03.064_bib0010","series-title":"Proceedings of the 2nd International Workshop on Information Heterogeneity and Fusion in Recommender Systems, HetRec \u201911","first-page":"65","article-title":"Matrix co-factorization for recommendation with rich side information and implicit feedback","author":"Fang","year":"2011"},{"issue":"10","key":"10.1016\/j.ins.2019.03.064_bib0011","doi-asserted-by":"crossref","first-page":"959","DOI":"10.1007\/s00500-008-0392-y","article-title":"A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability","volume":"13","author":"Garc\u00eda","year":"2008","journal-title":"Soft Comput."},{"key":"10.1016\/j.ins.2019.03.064_bib0012","series-title":"Proceedings of the 30th International Conference on International Conference on Machine Learning, ICML\u201913","article-title":"A non-iid framework for collaborative filtering with restricted Boltzmann machines","volume":"28","author":"Georgiev","year":"2013"},{"key":"10.1016\/j.ins.2019.03.064_bib0013","series-title":"Recommender Systems Handbook","first-page":"265","article-title":"Evaluating recommender systems","author":"Gunawardana","year":"2015"},{"issue":"4","key":"10.1016\/j.ins.2019.03.064_bib0014","first-page":"19","article-title":"The movielens datasets: history and context","volume":"5","author":"Harper","year":"2016","journal-title":"ACM Trans. Interact. Intell. Syst. (TiiS)"},{"key":"10.1016\/j.ins.2019.03.064_bib0015","series-title":"Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR \u201917","first-page":"355","article-title":"Neural factorization machines for sparse predictive analytics","author":"He","year":"2017"},{"issue":"12","key":"10.1016\/j.ins.2019.03.064_bib0016","doi-asserted-by":"crossref","first-page":"2354","DOI":"10.1109\/TKDE.2018.2831682","article-title":"Nais: neural attentive item similarity model for recommendation","volume":"30","author":"He","year":"2018","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.ins.2019.03.064_bib0017","series-title":"Proceedings of the 26th International Conference on World Wide Web, WWW \u201917","first-page":"173","article-title":"Neural collaborative filtering","author":"He","year":"2017"},{"key":"10.1016\/j.ins.2019.03.064_bib0018","doi-asserted-by":"crossref","first-page":"685","DOI":"10.1016\/j.ins.2018.04.004","article-title":"Conformal matrix factorization based recommender system","volume":"467","author":"Himabindu","year":"2018","journal-title":"Inf. Sci. (Ny)"},{"issue":"8","key":"10.1016\/j.ins.2019.03.064_bib0019","doi-asserted-by":"crossref","first-page":"1771","DOI":"10.1162\/089976602760128018","article-title":"Training products of experts by minimizing contrastive divergence","volume":"14","author":"Hinton","year":"2002","journal-title":"Neural Comput."},{"key":"10.1016\/j.ins.2019.03.064_bib0020","doi-asserted-by":"crossref","unstructured":"G.E. Hinton, A Practical Guide to Training Restricted Boltzmann Machines, Springer, Berlin, Heidelberg, pp. 599\u2013619.","DOI":"10.1007\/978-3-642-35289-8_32"},{"issue":"7","key":"10.1016\/j.ins.2019.03.064_bib0021","doi-asserted-by":"crossref","first-page":"1527","DOI":"10.1162\/neco.2006.18.7.1527","article-title":"A fast learning algorithm for deep belief nets","volume":"18","author":"Hinton","year":"2006","journal-title":"Neural Comput."},{"key":"10.1016\/j.ins.2019.03.064_bib0022","series-title":"Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence","first-page":"289","article-title":"Probabilistic latent semantic analysis","author":"Hofmann","year":"1999"},{"issue":"4","key":"10.1016\/j.ins.2019.03.064_bib0023","doi-asserted-by":"crossref","first-page":"422","DOI":"10.1145\/582415.582418","article-title":"Cumulated gain-based evaluation of ir techniques","volume":"20","author":"J\u00e4rvelin","year":"2002","journal-title":"ACM Trans. Inf. Syst. (TOIS)"},{"issue":"1","key":"10.1016\/j.ins.2019.03.064_bib0024","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s10115-008-0142-6","article-title":"Data discretization unification","volume":"19","author":"Jin","year":"2008","journal-title":"Knowl. Inf. Syst."},{"key":"10.1016\/j.ins.2019.03.064_bib0025","series-title":"Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD \u201913","first-page":"659","article-title":"Fism: Factored item similarity models for top-n recommender systems","author":"Kabbur","year":"2013"},{"key":"10.1016\/j.ins.2019.03.064_bib0026","series-title":"Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD \u201908","first-page":"426","article-title":"Factorization meets the neighborhood: a multifaceted collaborative filtering model","author":"Koren","year":"2008"},{"issue":"8","key":"10.1016\/j.ins.2019.03.064_bib0027","first-page":"30","article-title":"Matrix factorization techniques for recommender systems","volume":"42","author":"Koren","year":"2009","journal-title":"Computer (Long Beach Calif)"},{"key":"10.1016\/j.ins.2019.03.064_bib0028","series-title":"Proceedings of the Fifth ACM Conference on Recommender systems","first-page":"117","article-title":"Ordrec: an ordinal model for predicting personalized item rating distributions","author":"Koren","year":"2011"},{"issue":"4","key":"10.1016\/j.ins.2019.03.064_bib0029","doi-asserted-by":"crossref","first-page":"523","DOI":"10.1007\/s10994-016-5603-7","article-title":"Preference relation-based Markov random fields for recommender systems","volume":"106","author":"Liu","year":"2017","journal-title":"Mach. Learn."},{"key":"10.1016\/j.ins.2019.03.064_bib0030","series-title":"Recommender Systems Handbook","first-page":"73","article-title":"Content-based recommender systems: state of the art and trends","author":"Lops","year":"2011"},{"issue":"5","key":"10.1016\/j.ins.2019.03.064_bib0031","doi-asserted-by":"crossref","first-page":"2011","DOI":"10.1109\/TII.2017.2766528","article-title":"An inherently nonnegative latent factor model for high-dimensional and sparse matrices from industrial applications","volume":"14","author":"Luo","year":"2018","journal-title":"IEEE Trans. Ind. Inf."},{"issue":"3","key":"10.1016\/j.ins.2019.03.064_bib0032","doi-asserted-by":"crossref","first-page":"579","DOI":"10.1109\/TNNLS.2015.2415257","article-title":"A nonnegative latent factor model for large-scale sparse matrices in recommender systems via alternating direction method","volume":"27","author":"Luo","year":"2016","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"2","key":"10.1016\/j.ins.2019.03.064_bib0033","doi-asserted-by":"crossref","first-page":"1273","DOI":"10.1109\/TII.2014.2308433","article-title":"An efficient non-negative matrix-factorization-based approach to collaborative filtering for recommender systems","volume":"10","author":"Luo","year":"2014","journal-title":"IEEE Trans. Ind. Inf."},{"key":"10.1016\/j.ins.2019.03.064_bib0034","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1016\/j.ins.2016.09.022","article-title":"Concept-based item representations for a cross-lingual content-based recommendation process","volume":"374","author":"Narducci","year":"2016","journal-title":"Inf. Sci. (Ny)"},{"key":"10.1016\/j.ins.2019.03.064_bib0035","doi-asserted-by":"crossref","first-page":"399","DOI":"10.1016\/j.neunet.2018.08.018","article-title":"Lcd: a fast contrastive divergence based algorithm for restricted Boltzmann machine","volume":"108","author":"Ning","year":"2018","journal-title":"Neural Netw."},{"key":"10.1016\/j.ins.2019.03.064_bib0036","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1016\/j.ins.2014.05.003","article-title":"When to recommend: a new issue on tv show recommendation","volume":"280","author":"Oh","year":"2014","journal-title":"Inf. Sci. (Ny)"},{"issue":"3","key":"10.1016\/j.ins.2019.03.064_bib0037","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1145\/245108.245121","article-title":"Recommender systems","volume":"40","author":"Resnick","year":"1997","journal-title":"Commun. ACM"},{"key":"10.1016\/j.ins.2019.03.064_bib0038","series-title":"Proceedings of the 24th International Conference on Machine Learning","first-page":"791","article-title":"Restricted boltzmann machines for collaborative filtering","author":"Salakhutdinov","year":"2007"},{"key":"10.1016\/j.ins.2019.03.064_bib0039","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1155\/2009\/421425","article-title":"A survey of collaborative filtering techniques","volume":"2009","author":"Su","year":"2009","journal-title":"Adv. Artif. Intell."},{"key":"10.1016\/j.ins.2019.03.064_bib0040","series-title":"Proceedings of the 25th International Conference on Machine Learning, ICML \u201908","first-page":"1064","article-title":"Training restricted Boltzmann machines using approximations to the likelihood gradient","author":"Tieleman","year":"2008"},{"key":"10.1016\/j.ins.2019.03.064_bib0041","series-title":"Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI \u201909","first-page":"548","article-title":"Ordinal boltzmann machines for collaborative filtering","author":"Truyen","year":"2009"},{"key":"10.1016\/j.ins.2019.03.064_bib0042","series-title":"Proceedings of the 25th International Conference on Machine Learning, ICML \u201908","first-page":"1096","article-title":"Extracting and composing robust features with denoising autoencoders","author":"Vincent","year":"2008"},{"key":"10.1016\/j.ins.2019.03.064_bib0043","doi-asserted-by":"crossref","first-page":"102","DOI":"10.1016\/j.ins.2017.08.008","article-title":"A hybrid user similarity model for collaborative filtering","volume":"418\u2013419","author":"Wang","year":"2017","journal-title":"Inf. Sci. (Ny)"},{"key":"10.1016\/j.ins.2019.03.064_bib0044","series-title":"Proceedings of the Conference on Learning Theory","first-page":"25","article-title":"A theoretical analysis of NDCG type ranking measures","author":"Wang","year":"2013"},{"key":"10.1016\/j.ins.2019.03.064_bib0045","series-title":"Proceedings of the Advances in Neural Information Processing Systems","first-page":"1481","article-title":"Exponential family harmoniums with an application to information retrieval","author":"Welling","year":"2005"},{"key":"10.1016\/j.ins.2019.03.064_bib0046","series-title":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining, WSDM \u201916","first-page":"153","article-title":"Collaborative denoising auto-encoders for top-n recommender systems","author":"Wu","year":"2016"},{"key":"10.1016\/j.ins.2019.03.064_bib0047","series-title":"Proceedings of the International Conference on Control, Automation and Information Sciences (ICCAIS)","first-page":"113","article-title":"An incremental learning approach for restricted Boltzmann machines","author":"Yu","year":"2015"},{"key":"10.1016\/j.ins.2019.03.064_bib0048","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.ins.2011.10.020","article-title":"The dynamic competitive recommendation algorithm in social network services","volume":"187","author":"Yu","year":"2012","journal-title":"Inf. Sci. (Ny)"},{"key":"10.1016\/j.ins.2019.03.064_bib0049","series-title":"Proceedings of the 14th International Conference on World Wide Web, WWW \u201905","first-page":"22","article-title":"Improving recommendation lists through topic diversification","author":"Ziegler","year":"2005"}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025519302774?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025519302774?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,11,22]],"date-time":"2019-11-22T03:36:09Z","timestamp":1574393769000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025519302774"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,7]]},"references-count":49,"alternative-id":["S0020025519302774"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2019.03.064","relation":{},"ISSN":["0020-0255"],"issn-type":[{"value":"0020-0255","type":"print"}],"subject":[],"published":{"date-parts":[[2019,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Modeling Side Information in Preference Relation based Restricted Boltzmann Machine for recommender systems","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2019.03.064","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}