{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,14]],"date-time":"2024-09-14T19:50:46Z","timestamp":1726343446622},"reference-count":53,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,7,1]],"date-time":"2018-07-01T00:00:00Z","timestamp":1530403200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2018,7]]},"DOI":"10.1016\/j.ins.2018.05.008","type":"journal-article","created":{"date-parts":[[2018,5,3]],"date-time":"2018-05-03T21:26:07Z","timestamp":1525382767000},"page":"419-442","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":24,"special_numbering":"C","title":["An exponential-type kernel robust regression model for interval-valued variables"],"prefix":"10.1016","volume":"454-455","author":[{"given":"Eufr\u00e1sio de A.","family":"Lima Neto","sequence":"first","affiliation":[]},{"given":"Francisco de A.T.","family":"de Carvalho","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"4","key":"10.1016\/j.ins.2018.05.008_bib0001","doi-asserted-by":"crossref","first-page":"336","DOI":"10.1002\/sam.11150","article-title":"A resampling approach for interval-valued data regression","volume":"5","author":"Ahn","year":"2012","journal-title":"Stat. Anal. Data Min."},{"key":"10.1016\/j.ins.2018.05.008_bib0002","series-title":"Proceedings of the Seventh Conference of the International Federation of Classification Societies on Data Analysis, Classification and Related Methods","first-page":"369","article-title":"Regression analysis for interval-valued data","author":"Billard","year":"2000"},{"issue":"462","key":"10.1016\/j.ins.2018.05.008_bib0003","doi-asserted-by":"crossref","first-page":"470","DOI":"10.1198\/016214503000242","article-title":"From the statistics of data to the statistics of knowledge: symbolic data analysis","volume":"98","author":"Billard","year":"2003","journal-title":"J. Am. Stat. Assoc."},{"key":"10.1016\/j.ins.2018.05.008_bib0004","doi-asserted-by":"crossref","unstructured":"H.H. Bock, E. Diday, editors. Analysis of Symbolic Data, Exploratory Methods for Extracting Statistical Information from Complex Data. Springer-Verlag, Heidelberg, 2000.","DOI":"10.1007\/978-3-642-57155-8"},{"key":"10.1016\/j.ins.2018.05.008_bib0005","doi-asserted-by":"crossref","first-page":"157","DOI":"10.1080\/02664763.2011.575125","article-title":"Modeling interval data with normal and skew-normal distributions","volume":"39","author":"Brito","year":"2012","journal-title":"J. Appl. Stat."},{"key":"10.1016\/j.ins.2018.05.008_bib0006","series-title":"Proceedings of NIPS Workshop on Statistical Methods for Computational Experiments in Visual Processing and Computer Vision","article-title":"Appearance-based object recognition using svms: which kernel should I use?","author":"Caputo","year":"2002"},{"key":"10.1016\/j.ins.2018.05.008_bib0007","doi-asserted-by":"crossref","first-page":"58","DOI":"10.1016\/j.neucom.2016.12.035","article-title":"A robust regression method based on exponential-type kernel functions","volume":"234","author":"Carvalho","year":"2017","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2018.05.008_bib0008","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1016\/0165-0114(95)00284-7","article-title":"A generalized fuzzy weighted least-squares regression","volume":"82","author":"Chang","year":"1996","journal-title":"Fuzzy Sets Syst."},{"key":"10.1016\/j.ins.2018.05.008_bib0009","doi-asserted-by":"crossref","first-page":"257","DOI":"10.1007\/s00500-007-0198-3","article-title":"Least absolute deviation estimator in fuzzy regression","volume":"12","author":"Choi","year":"2008","journal-title":"Soft Comput."},{"key":"10.1016\/j.ins.2018.05.008_bib0010","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1016\/j.csda.2006.04.036","article-title":"Least squares estimation of a linear regression model with lr fuzzy response","volume":"51","author":"Coppi","year":"2006","journal-title":"Comput. Stat. Data Anal."},{"key":"10.1016\/j.ins.2018.05.008_bib0011","series-title":"Introduction to Support Vector Machines","author":"Cristianini","year":"2000"},{"key":"10.1016\/j.ins.2018.05.008_bib0012","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1016\/0020-0255(88)90047-3","article-title":"Fuzzy least squares","volume":"46","author":"Diamond","year":"1988","journal-title":"Inf. Sci."},{"issue":"3","key":"10.1016\/j.ins.2018.05.008_bib0013","doi-asserted-by":"crossref","first-page":"1118","DOI":"10.1016\/j.ejor.2016.09.006","article-title":"Off the beaten track: a new linear model for interval data","volume":"258","author":"Dias","year":"2017","journal-title":"Eur. J. Oper. Res."},{"key":"10.1016\/j.ins.2018.05.008_bib0014","doi-asserted-by":"crossref","first-page":"1991","DOI":"10.1016\/j.patrec.2010.06.008","article-title":"A robust method for linear regression of symbolic interval data","volume":"31","author":"Domingues","year":"2010","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.ins.2018.05.008_bib0015","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1016\/S0167-9473(02)00117-2","article-title":"Linear regression analysis for fuzzy\/crisp input and fuzzy\/crisp output data","volume":"42","author":"D\u2019Urso","year":"2003","journal-title":"Comput. Stat. Data Anal."},{"key":"10.1016\/j.ins.2018.05.008_bib0016","doi-asserted-by":"crossref","first-page":"427","DOI":"10.1016\/S0167-9473(99)00109-7","article-title":"A least-squares approach to fuzzy linear regression analysis","volume":"34","author":"D\u2019Urso","year":"2000","journal-title":"Comput. Stat. Data Anal."},{"key":"10.1016\/j.ins.2018.05.008_bib0017","doi-asserted-by":"crossref","first-page":"279","DOI":"10.1007\/s40300-013-0025-9","article-title":"Weighted least squares and least median squares estimation for the fuzzy linear regression analysis","volume":"71","author":"D\u2019Urso","year":"2013","journal-title":"Metron"},{"key":"10.1016\/j.ins.2018.05.008_bib0018","doi-asserted-by":"crossref","first-page":"4154","DOI":"10.1016\/j.ins.2011.04.031","article-title":"Robust fuzzy regression analysis","volume":"181","author":"D\u2019Urso","year":"2011","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2018.05.008_bib0019","doi-asserted-by":"crossref","first-page":"563","DOI":"10.1016\/j.engappai.2012.05.004","article-title":"Robust regression with application to symbolic interval data","volume":"26","author":"Fagundes","year":"2013","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.ins.2018.05.008_bib0020","doi-asserted-by":"crossref","first-page":"371","DOI":"10.1016\/j.neucom.2013.08.029","article-title":"Interval kernel regression","volume":"128","author":"Fagundes","year":"2014","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2018.05.008_bib0021","series-title":"Proceedings of 23rd International Conference on Pattern Recognition","article-title":"Quantile regression of interval-valued data","author":"Fagundes","year":"2016"},{"key":"10.1016\/j.ins.2018.05.008_bib0022","doi-asserted-by":"crossref","first-page":"2189","DOI":"10.1016\/j.fss.2007.03.011","article-title":"Dependency between degree of fit and input noise in fuzzy linear regression using non-symmetric fuzzy triangular coefficients","volume":"158","author":"Ge","year":"2007","journal-title":"Fuzzy Sets Syst."},{"issue":"1","key":"10.1016\/j.ins.2018.05.008_bib0023","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1007\/s11634-014-0164-8","article-title":"Lasso-constrained regression analysis for interval-valued data","volume":"9","author":"Giordani","year":"2015","journal-title":"Adv. Data Anal. Classif."},{"issue":"4","key":"10.1016\/j.ins.2018.05.008_bib0024","doi-asserted-by":"crossref","first-page":"473","DOI":"10.1080\/07350015.2013.818004","article-title":"Constrained regression for interval-valued data","volume":"31","author":"Gonz\u00e1lez-Rivera","year":"2013","journal-title":"J. Bus. Econ. Stat."},{"key":"10.1016\/j.ins.2018.05.008_bib0025","doi-asserted-by":"crossref","first-page":"106","DOI":"10.1016\/j.csda.2017.06.005","article-title":"Constrained center and range joint model for interval-valued symbolic data regression","volume":"116","author":"Hao","year":"2017","journal-title":"Comput. Stat. Data Anal."},{"key":"10.1016\/j.ins.2018.05.008_bib0026","doi-asserted-by":"crossref","first-page":"799","DOI":"10.1214\/aos\/1176342503","article-title":"Robust regression: asymptotic, conjectures and monte carlo","volume":"1","author":"Huber","year":"1973","journal-title":"Ann. Stat."},{"key":"10.1016\/j.ins.2018.05.008_bib0027","series-title":"Robust Statistics","author":"Huber","year":"1981"},{"key":"10.1016\/j.ins.2018.05.008_bib0028","doi-asserted-by":"crossref","first-page":"271","DOI":"10.1111\/1467-9868.00125","article-title":"Smoothing parameter selection in nonparametric regression using an improved akaike information criterion","volume":"60","author":"Hurvich","year":"1998","journal-title":"J. R. Stat. Soc. B"},{"issue":"4","key":"10.1016\/j.ins.2018.05.008_bib0029","doi-asserted-by":"crossref","first-page":"566","DOI":"10.1080\/00401706.2014.965346","article-title":"A nonparametric kernel approach to interval-valued data analysis","volume":"57","author":"Jeon","year":"2015","journal-title":"Technometrics"},{"issue":"3","key":"10.1016\/j.ins.2018.05.008_bib0030","doi-asserted-by":"crossref","first-page":"358","DOI":"10.1016\/j.jkss.2015.12.003","article-title":"Interval-valued data regression using nonparametric additive models","volume":"45","author":"Lim","year":"2017","journal-title":"J. Korean Stat. Soc."},{"key":"10.1016\/j.ins.2018.05.008_bib0031","series-title":"Robust Statistics: Theory and Methods","author":"Maronna","year":"2006"},{"key":"10.1016\/j.ins.2018.05.008_bib0032","doi-asserted-by":"crossref","first-page":"441","DOI":"10.1098\/rsta.1909.0016","article-title":"Functions of positive and negative type and their connection with the theory of integral equations","volume":"209","author":"Mercer","year":"1909","journal-title":"Philos. Trans. R. Soc. A"},{"key":"10.1016\/j.ins.2018.05.008_bib0033","doi-asserted-by":"crossref","first-page":"389","DOI":"10.1016\/S0165-0114(01)00066-5","article-title":"Fuzzy least-squares linear regression analysis for fuzzy input-output data","volume":"126","author":"Miin-Shen","year":"2002","journal-title":"Fuzzy Sets Syst."},{"key":"10.1016\/j.ins.2018.05.008_bib0034","doi-asserted-by":"crossref","first-page":"977","DOI":"10.1016\/j.amc.2004.05.004","article-title":"Fuzzy linear regression models with least square errors","volume":"163","author":"Modarres","year":"2005","journal-title":"Appl. Math. Comput."},{"key":"10.1016\/j.ins.2018.05.008_bib0035","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1109\/72.914517","article-title":"An introduction to kernel-based learning algorithms","volume":"12","author":"Mueller","year":"2001","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.ins.2018.05.008_bib0036","doi-asserted-by":"crossref","first-page":"441","DOI":"10.1142\/S0218488507004789","article-title":"An lp-based approach to outliers detection in fuzzy regression analysis","volume":"15","author":"Nasrabadi","year":"2007","journal-title":"Int. J. Unc. Fuzz. Knowl. Based Syst."},{"key":"10.1016\/j.ins.2018.05.008_bib0037","doi-asserted-by":"crossref","first-page":"2010","DOI":"10.1080\/02664763.2015.1015114","article-title":"Regression model for interval-valued variables based on copulas","volume":"42","author":"Neto","year":"2015","journal-title":"J. Appl. Stat."},{"issue":"3","key":"10.1016\/j.ins.2018.05.008_bib0038","doi-asserted-by":"crossref","first-page":"1500","DOI":"10.1016\/j.csda.2007.04.014","article-title":"Centre and range method for fitting a linear regression model to symbolic interval data","volume":"52","author":"Neto","year":"2008","journal-title":"Comput. Stat. Data Anal."},{"key":"10.1016\/j.ins.2018.05.008_bib0039","doi-asserted-by":"crossref","first-page":"333","DOI":"10.1016\/j.csda.2009.08.010","article-title":"Constrained linear regression models for symbolic interval-valued variable","volume":"54","author":"Neto","year":"2010","journal-title":"Comput. Stat. Data Anal."},{"key":"10.1016\/j.ins.2018.05.008_bib0040","doi-asserted-by":"crossref","first-page":"1727","DOI":"10.1080\/00949655.2010.500470","article-title":"Bivariate symbolic regression models for interval-valued variables","volume":"81","author":"Neto","year":"2011","journal-title":"J. Stat. Comput. Simul."},{"key":"10.1016\/j.ins.2018.05.008_bib0041","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1016\/0165-0114(94)90144-9","article-title":"Fuzzy linear regression with fuzzy intervals","volume":"63","author":"Peters","year":"1994","journal-title":"Fuzzy Sets Syst."},{"key":"10.1016\/j.ins.2018.05.008_bib0042","doi-asserted-by":"crossref","first-page":"3223","DOI":"10.1016\/j.eswa.2013.11.013","article-title":"A weighted multivariate fuzzy c-means method in interval-valued scientific production data","volume":"41","author":"Pimentel","year":"2014","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.ins.2018.05.008_bib0043","unstructured":"R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2016."},{"key":"10.1016\/j.ins.2018.05.008_bib0044","doi-asserted-by":"crossref","unstructured":"P. Rousseeuw, V. Yohai, Robust Regression by Means of S-Estimators, Springer US, New York, NY, pp. 256\u2013272.","DOI":"10.1007\/978-1-4615-7821-5_15"},{"key":"10.1016\/j.ins.2018.05.008_bib0045","series-title":"Robust Regression and Outlier Detection","author":"Rousseeuw","year":"1987"},{"key":"10.1016\/j.ins.2018.05.008_bib0046","first-page":"215","article-title":"Multidimensional least-squares fitting with a fuzzy model","volume":"119","author":"Ruoning","year":"2001","journal-title":"Comput. Stat. Data Anal."},{"key":"10.1016\/j.ins.2018.05.008_bib0047","series-title":"Learning with Kernels","author":"Scholkoepf","year":"2002"},{"key":"10.1016\/j.ins.2018.05.008_bib0048","series-title":"Kernel Methods for Pattern Analysis","author":"Shawe-Taylor","year":"2004"},{"key":"10.1016\/j.ins.2018.05.008_bib0049","first-page":"320","article-title":"Parameter estimation from interval-valued data using the expectation-maximization algorithm","volume":"85","author":"Su","year":"2015","journal-title":"J. Appl. Stat."},{"key":"10.1016\/j.ins.2018.05.008_bib0050","doi-asserted-by":"crossref","first-page":"903","DOI":"10.1109\/TSMC.1982.4308925","article-title":"Linear regression analysis with fuzzy model","volume":"12","author":"Tanaka","year":"1982","journal-title":"IEEE Trans. Syst. Man Cybern."},{"issue":"16","key":"10.1016\/j.ins.2018.05.008_bib0051","first-page":"3175","article-title":"Interval-valued data regression using partial linear model","volume":"87","author":"Wei","year":"2017","journal-title":"J. Stat. Comput. Simul."},{"key":"10.1016\/j.ins.2018.05.008_bib0052","series-title":"Symbolic Data Analysis: Interval-valued Data Regression","author":"Xu","year":"2010"},{"key":"10.1016\/j.ins.2018.05.008_bib0053","doi-asserted-by":"crossref","first-page":"642","DOI":"10.1214\/aos\/1176350366","article-title":"High breakdown point and high efficiency robust estimates for regression","volume":"15","author":"Yohai","year":"1973","journal-title":"Ann. Stat."}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025518303633?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025518303633?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,7,6]],"date-time":"2024-07-06T13:50:41Z","timestamp":1720273841000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025518303633"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,7]]},"references-count":53,"alternative-id":["S0020025518303633"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2018.05.008","relation":{},"ISSN":["0020-0255"],"issn-type":[{"value":"0020-0255","type":"print"}],"subject":[],"published":{"date-parts":[[2018,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"An exponential-type kernel robust regression model for interval-valued variables","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2018.05.008","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}