{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,13]],"date-time":"2024-08-13T07:15:00Z","timestamp":1723533300979},"reference-count":35,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,7,1]],"date-time":"2018-07-01T00:00:00Z","timestamp":1530403200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61601162","61501154","61671197"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004731","name":"Zhejiang Provincial Natural Science Foundation of China","doi-asserted-by":"publisher","award":["Y201328513","LY17F030021"],"id":[{"id":"10.13039\/501100004731","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2018,7]]},"DOI":"10.1016\/j.ins.2018.04.080","type":"journal-article","created":{"date-parts":[[2018,5,1]],"date-time":"2018-05-01T15:12:00Z","timestamp":1525187520000},"page":"216-228","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":11,"special_numbering":"C","title":["On using supervised clustering analysis to improve classification performance"],"prefix":"10.1016","volume":"454-455","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-6103-1797","authenticated-orcid":false,"given":"Haitao","family":"Gan","sequence":"first","affiliation":[]},{"given":"Rui","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Zhizeng","family":"Luo","sequence":"additional","affiliation":[]},{"given":"Xugang","family":"Xi","sequence":"additional","affiliation":[]},{"given":"Yunyuan","family":"Gao","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ins.2018.04.080_bib0001","series-title":"Advances in Neural Information Processing Systems 16","first-page":"305","article-title":"Learning spectral clustering","author":"Bach","year":"2003"},{"key":"10.1016\/j.ins.2018.04.080_bib0002","series-title":"Proceedings of the Nineteenth International Conference on Machine Learning","first-page":"27","article-title":"Semi-supervised clustering by seeding","author":"Basu","year":"2002"},{"key":"10.1016\/j.ins.2018.04.080_bib0003","first-page":"2399","article-title":"Manifold regularization: a geometric framework for learning from labeled and unlabeled examples","volume":"7","author":"Belkin","year":"2006","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.ins.2018.04.080_bib0004","series-title":"Proceedings of the 12th IAPR International Conference on Pattern Recognition. Vol.\u00a02","first-page":"77","article-title":"Comparison of classifier methods: a case study in handwritten digit recognition","author":"Bottou","year":"1994"},{"key":"10.1016\/j.ins.2018.04.080_sbref0005","series-title":"Technical Report","article-title":"Using Graph Model for Face Analysis","author":"Cai","year":"2005"},{"key":"10.1016\/j.ins.2018.04.080_bib0006","series-title":"Proceeding of the IEEE 11th International Conference on Computer Vision","first-page":"1","article-title":"Semi-supervised discriminant analysis","author":"Cai","year":"2007"},{"key":"10.1016\/j.ins.2018.04.080_bib0007","doi-asserted-by":"crossref","first-page":"1548","DOI":"10.1109\/TPAMI.2010.231","article-title":"Graph regularized nonnegative matrix factorization for data representation","volume":"33","author":"Cai","year":"2011","journal-title":"IEEE Trans. Pattern Anal.Mach. Intell."},{"key":"10.1016\/j.ins.2018.04.080_sbref0008","doi-asserted-by":"crossref","DOI":"10.1109\/TNN.2009.2015974","article-title":"Semi-supervised learning (Chapelle, O. et\u00a0al., eds.; 2006) [book reviews]","volume":"20","author":"Chapelle","year":"2009","journal-title":"IEEE Trans. Neural Netw."},{"issue":"January","key":"10.1016\/j.ins.2018.04.080_bib0009","first-page":"1","article-title":"Statistical comparisons of classifiers over multiple data sets","volume":"7","author":"Dem\u0161ar","year":"2006","journal-title":"J. Mach.Learn.Res."},{"key":"10.1016\/j.ins.2018.04.080_bib0010","series-title":"The 16th IEEE International Conference on Tools with Artificial Intelligence","first-page":"774","article-title":"Supervised clustering - algorithms and benefits","author":"Eick","year":"2004"},{"key":"10.1016\/j.ins.2018.04.080_bib0011","series-title":"Proceedings of the 22Nd International Conference on Machine Learning. ICML \u201905","first-page":"217","article-title":"Supervised clustering with support vector machines","author":"Finley","year":"2005"},{"issue":"6","key":"10.1016\/j.ins.2018.04.080_bib0012","doi-asserted-by":"crossref","first-page":"1207","DOI":"10.1364\/JOSAA.33.001207","article-title":"Enhanced manifold regularization for semi-supervised classification","volume":"33","author":"Gan","year":"2016","journal-title":"J. Opt. Soc. Am. A"},{"issue":"4","key":"10.1016\/j.ins.2018.04.080_bib0013","doi-asserted-by":"crossref","first-page":"566","DOI":"10.1364\/JOSAA.32.000566","article-title":"Manifold regularized semi-supervised Gaussian mixture model","volume":"32","author":"Gan","year":"2015","journal-title":"J. Opt. Soc. Am. A"},{"key":"10.1016\/j.ins.2018.04.080_bib0014","doi-asserted-by":"crossref","first-page":"290","DOI":"10.1016\/j.neucom.2012.08.020","article-title":"Using clustering analysis to improve semi-supervised classification","volume":"101","author":"Gan","year":"2013","journal-title":"Neurocomputing"},{"issue":"10","key":"10.1016\/j.ins.2018.04.080_sbref0015","doi-asserted-by":"crossref","first-page":"2044","DOI":"10.1016\/j.ins.2009.12.010","article-title":"Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power","volume":"180","author":"Garcia","year":"2010","journal-title":"Inf. Sci."},{"issue":"10","key":"10.1016\/j.ins.2018.04.080_bib0016","doi-asserted-by":"crossref","first-page":"2261","DOI":"10.1109\/TNNLS.2014.2376936","article-title":"Deformed graph Laplacian for semisupervised learning","volume":"26","author":"Gong","year":"2015","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"9","key":"10.1016\/j.ins.2018.04.080_bib0017","doi-asserted-by":"crossref","first-page":"1406","DOI":"10.1109\/TKDE.2010.259","article-title":"Laplacian regularized gaussian mixture model for data clustering","volume":"23","author":"He","year":"2011","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.ins.2018.04.080_bib0018","series-title":"Neurocomputing. Vol.\u00a068 of NATO ASI Series","first-page":"41","article-title":"Single-layer learning revisited: a stepwise procedure for building and training a neural network","author":"Knerr","year":"1990"},{"issue":"7553","key":"10.1016\/j.ins.2018.04.080_bib0019","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"LeCun","year":"2015","journal-title":"Nature"},{"issue":"9","key":"10.1016\/j.ins.2018.04.080_bib0020","first-page":"1","article-title":"A novel locally linear KNN method with applications to visual recognition","volume":"28","author":"Liu","year":"2016","journal-title":"IEEE Trans. Neural Netw.Learn. Syst."},{"issue":"5","key":"10.1016\/j.ins.2018.04.080_bib0021","doi-asserted-by":"crossref","first-page":"787","DOI":"10.1109\/3477.623232","article-title":"Fuzzy clustering with partial supervision","volume":"27","author":"Pedrycz","year":"1997","journal-title":"IEEE Trans. Syst. Man Cybern.Part B"},{"issue":"Part A","key":"10.1016\/j.ins.2018.04.080_bib0022","doi-asserted-by":"crossref","first-page":"340","DOI":"10.1016\/j.neucom.2013.12.065","article-title":"Discriminative graph regularized extreme learning machine and its application to face recognition","volume":"149","author":"Peng","year":"2015","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2018.04.080_bib0023","series-title":"Nato Science Series Sub Series III Computer and Systems Sciences","first-page":"131","article-title":"Regularized least-squares classification","volume":"190","author":"Rifkin","year":"2003"},{"issue":"4","key":"10.1016\/j.ins.2018.04.080_bib0024","doi-asserted-by":"crossref","first-page":"416","DOI":"10.1109\/91.868948","article-title":"Supervised fuzzy clustering for rule extraction","volume":"8","author":"Setnes","year":"2000","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.ins.2018.04.080_bib0025","series-title":"Statistical Learning Theory","author":"Vapnik","year":"1998"},{"key":"10.1016\/j.ins.2018.04.080_bib0026","doi-asserted-by":"crossref","first-page":"299","DOI":"10.1016\/j.neucom.2014.06.059","article-title":"Semi-supervised classification learning by discrimination-aware manifold regularization","volume":"147","author":"Wang","year":"2015","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ins.2018.04.080_bib0027","series-title":"Advances in Neural Information Processing Systems 15","first-page":"521","article-title":"Distance metric learning with application to clustering with side-information","author":"Xing","year":"2003"},{"key":"10.1016\/j.ins.2018.04.080_bib0028","series-title":"Proceedings of International Joint Conference on Neural Networks","first-page":"1486","article-title":"Kernel MSE algorithm: a unified framework for KFD, LS-SVM and KRR","author":"Xu","year":"2001"},{"issue":"1","key":"10.1016\/j.ins.2018.04.080_bib0029","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1016\/j.patcog.2008.07.010","article-title":"Discriminatively regularized least-squares classification","volume":"42","author":"Xue","year":"2009","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.ins.2018.04.080_bib0030","series-title":"The 2012 International Joint Conference on Neural Networks (IJCNN)","first-page":"1","article-title":"Semi-supervised clustering with multi-viewpoint based similarity measure","author":"Yan","year":"2012"},{"key":"10.1016\/j.ins.2018.04.080_bib0031","series-title":"The 12th Asian Conference on Computer Vision","first-page":"476","article-title":"Coupling semi-supervised learning and example selection for online object tracking","author":"Yang","year":"2014"},{"issue":"4","key":"10.1016\/j.ins.2018.04.080_bib0032","doi-asserted-by":"crossref","first-page":"1320","DOI":"10.1016\/j.patcog.2009.11.005","article-title":"Semi-supervised clustering with metric learning: an adaptive kernel method","volume":"43","author":"Yin","year":"2010","journal-title":"Pattern Recognit."},{"issue":"10","key":"10.1016\/j.ins.2018.04.080_bib0033","doi-asserted-by":"crossref","first-page":"2222","DOI":"10.1109\/TNNLS.2014.2359471","article-title":"Scene recognition by manifold regularized deep learning architecture","volume":"26","author":"Yuan","year":"2015","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"9","key":"10.1016\/j.ins.2018.04.080_bib0034","doi-asserted-by":"crossref","first-page":"1979","DOI":"10.1109\/TNNLS.2014.2363679","article-title":"MTC: a fast and robust graph-based transductive learning method","volume":"26","author":"Zhang","year":"2015","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.ins.2018.04.080_bib0035","series-title":"Proceedings of the 20th International Conference on Machine Learning","first-page":"912","article-title":"Semi-supervised learning using Gaussian fields and harmonic functions","author":"Zhu","year":"2003"}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025518303505?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025518303505?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2018,8,22]],"date-time":"2018-08-22T03:59:43Z","timestamp":1534910383000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025518303505"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,7]]},"references-count":35,"alternative-id":["S0020025518303505"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2018.04.080","relation":{},"ISSN":["0020-0255"],"issn-type":[{"value":"0020-0255","type":"print"}],"subject":[],"published":{"date-parts":[[2018,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"On using supervised clustering analysis to improve classification performance","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2018.04.080","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}