{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,2]],"date-time":"2024-09-02T21:52:41Z","timestamp":1725313961837},"reference-count":40,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,7,1]],"date-time":"2018-07-01T00:00:00Z","timestamp":1530403200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100003725","name":"National Research Foundation of Korea","doi-asserted-by":"publisher","award":["NRF- 2015S1A3A2046711"],"id":[{"id":"10.13039\/501100003725","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002701","name":"Ministry of Education","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100002701","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2018,7]]},"DOI":"10.1016\/j.ins.2018.04.079","type":"journal-article","created":{"date-parts":[[2018,5,1]],"date-time":"2018-05-01T01:55:44Z","timestamp":1525139744000},"page":"200-215","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":48,"special_numbering":"C","title":["Incorporating product description to sentiment topic models for improved aspect-based sentiment analysis"],"prefix":"10.1016","volume":"454-455","author":[{"given":"Reinald Kim","family":"Amplayo","sequence":"first","affiliation":[]},{"given":"Seanie","family":"Lee","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3255-1600","authenticated-orcid":false,"given":"Min","family":"Song","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.ins.2018.04.079_bib0001","doi-asserted-by":"crossref","first-page":"18002","DOI":"10.1209\/0295-5075\/98\/18002","article-title":"Unveiling the relationship between complex networks metrics and word senses","volume":"98","author":"Amancio","year":"2012","journal-title":"EPL (Eur. Lett.)"},{"key":"10.1016\/j.ins.2018.04.079_bib0002","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1016\/j.knosys.2013.08.011","article-title":"Care more about customers: unsupervised domain-independent aspect detection for sentiment analysis of customer reviews","volume":"52","author":"Bagheri","year":"2013","journal-title":"Knowl. Based Syst."},{"issue":"5","key":"10.1016\/j.ins.2018.04.079_bib0003","doi-asserted-by":"crossref","first-page":"621","DOI":"10.1177\/0165551514538744","article-title":"ADM-LDA: an aspect detection model based on topic modelling using the structure of review sentences","volume":"40","author":"Bagheri","year":"2014","journal-title":"J. Inf. Sci."},{"issue":"Jan","key":"10.1016\/j.ins.2018.04.079_bib0004","first-page":"993","article-title":"Latent Dirichlet allocation","volume":"3","author":"Blei","year":"2003","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.ins.2018.04.079_bib0005","series-title":"Proceedings of the Annual Conference of the North American Chapter of the Association for Computational Linguistics (Human Language Technologies)","first-page":"804","article-title":"An unsupervised aspect-sentiment model for online reviews","author":"Brody","year":"2010"},{"key":"10.1016\/j.ins.2018.04.079_bib0006","series-title":"Proceedings of the Conference on Empirical Methods in Natural Language Processing","first-page":"1655","article-title":"Exploiting domain knowledge in aspect extraction.","author":"Chen","year":"2013"},{"key":"10.1016\/j.ins.2018.04.079_bib0007","series-title":"Proceedings of the International Joint Conference on Artificial Intelligence","article-title":"Leveraging multi-domain prior knowledge in topic models.","author":"Chen","year":"2013"},{"key":"10.1016\/j.ins.2018.04.079_bib0008","series-title":"Proceedings of the Ninth International Workshop on Semantic Evaluation (SemEval 2015)","first-page":"714","article-title":"V3: Unsupervised aspect based sentiment analysis for semeval-2015 task 12","author":"Garc\u0131a-Pablos","year":"2015"},{"key":"10.1016\/j.ins.2018.04.079_bib0009","series-title":"Proceedings of the Twenty Eighth International Conference on Machine Learning (ICML-11)","first-page":"513","article-title":"Domain adaptation for large-scale sentiment classification: A deep learning approach","author":"Glorot","year":"2011"},{"issue":"suppl 1","key":"10.1016\/j.ins.2018.04.079_bib0010","doi-asserted-by":"crossref","first-page":"5228","DOI":"10.1073\/pnas.0307752101","article-title":"Finding scientific topics","volume":"101","author":"Griffiths","year":"2004","journal-title":"Proceedings of the National academy of Sciences"},{"key":"10.1016\/j.ins.2018.04.079_bib0011","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"},{"key":"10.1016\/j.ins.2018.04.079_bib0012","series-title":"Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"168","article-title":"Mining and summarizing customer reviews","author":"Hu","year":"2004"},{"issue":"2","key":"10.1016\/j.ins.2018.04.079_bib0013","doi-asserted-by":"crossref","first-page":"213","DOI":"10.1177\/0165551515593686","article-title":"Combining resources to improve unsupervised sentiment analysis at aspect-level","volume":"42","author":"Jim\u00e9nez-Zafra","year":"2015","journal-title":"J. Inf. Sci."},{"key":"10.1016\/j.ins.2018.04.079_bib0014","series-title":"Proceedings of the Fourth ACM International Conference on Web Search and Data Mining","first-page":"815","article-title":"Aspect and sentiment unification model for online review analysis","author":"Jo","year":"2011"},{"issue":"2","key":"10.1016\/j.ins.2018.04.079_bib0015","doi-asserted-by":"crossref","first-page":"207","DOI":"10.2307\/2529972","article-title":"Extension of the kappa coefficient","volume":"36","author":"Kraemer","year":"1980","journal-title":"Biometrics"},{"issue":"23","key":"10.1016\/j.ins.2018.04.079_bib0016","doi-asserted-by":"crossref","first-page":"10177","DOI":"10.1007\/s11042-014-2158-0","article-title":"A holistic model of mining product aspects and associated sentiments from online reviews","volume":"74","author":"Li","year":"2015","journal-title":"Multimed. Tools Appl."},{"key":"10.1016\/j.ins.2018.04.079_bib0017","series-title":"Proceedings of the Eighteenth ACM Conference on Information and Knowledge management","first-page":"375","article-title":"Joint sentiment\/topic model for sentiment analysis","author":"Lin","year":"2009"},{"key":"10.1016\/j.ins.2018.04.079_bib0018","series-title":"Proceedings of the Annual Meeting of the Association for Computational Linguistics (System Demonstrations)","first-page":"55","article-title":"The stanford CoreNLP natural language processing toolkit","author":"Manning","year":"2014"},{"key":"10.1016\/j.ins.2018.04.079_bib0019","series-title":"Proceedings of the Sixteenth International conference on World Wide Web","first-page":"171","article-title":"Topic sentiment mixture: modeling facets and opinions in weblogs","author":"Mei","year":"2007"},{"key":"10.1016\/j.ins.2018.04.079_bib0020","series-title":"Proceedings of the ACL on Interactive Poster and Demonstration Sessions","first-page":"25","article-title":"Incorporating topic information into sentiment analysis models","author":"Mullen","year":"2004"},{"key":"10.1016\/j.ins.2018.04.079_bib0021","series-title":"Proceedings of the Conference on Empirical Methods in Natural Language Processing","first-page":"2509","article-title":"Phrasernn: Phrase recursive neural network for aspect-based sentiment analysis.","author":"Nguyen","year":"2015"},{"key":"10.1016\/j.ins.2018.04.079_bib0022","series-title":"Proceedings of the SIAM International Conference on Data Mining. SIAM","article-title":"Speclda: Modeling product reviews and specifications to generate augmented specifications","author":"Park","year":"2015"},{"key":"10.1016\/j.ins.2018.04.079_bib0023","unstructured":"I. Pavlopoulos, I. \u03a0\u03b1\u03c5\u03bb\u00f3\u03c0o\u03c5\u03bbo\u03c2, Aspect Based Sentiment Analysis, Athens University of Economics and Business, 2014."},{"key":"10.1016\/j.ins.2018.04.079_bib0024","series-title":"Proceedings of the Ninth International Workshop on Semantic Evaluation (SemEval 2015)","first-page":"486","article-title":"Semeval-2015 task 12: Aspect based sentiment analysis","author":"Pontiki","year":"2015"},{"key":"10.1016\/j.ins.2018.04.079_bib0025","series-title":"Proceedings of the Eighth International Workshop on Semantic Evaluation (SemEval 2014)","first-page":"27","article-title":"Semeval-2014 task 4: aspect based sentiment analysis","author":"Pontiki","year":"2014"},{"key":"10.1016\/j.ins.2018.04.079_bib0026","series-title":"Proceedings of the Twenty Fifth International Conference on World Wide Web","first-page":"155","article-title":"Hidden topic sentiment model","author":"Rahman","year":"2016"},{"key":"10.1016\/j.ins.2018.04.079_bib0027","doi-asserted-by":"crossref","unstructured":"S. Ruder, P. Ghaffari, J.G. Breslin, A hierarchical model of reviews for aspect-based sentiment analysis, arXiv:1609.02745 (2016).","DOI":"10.18653\/v1\/D16-1103"},{"issue":"2","key":"10.1016\/j.ins.2018.04.079_bib0028","first-page":"142","article-title":"Exploring linguistic structure for aspect-based sentiment analysis","volume":"10","author":"Sanglerdsinlapachai","year":"2016","journal-title":"Maejo Int. J. Sci. Technol."},{"key":"10.1016\/j.ins.2018.04.079_bib0029","unstructured":"K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv:1409.1556 (2014)."},{"key":"10.1016\/j.ins.2018.04.079_bib0030","series-title":"Proceedings of the International Multi-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s)","first-page":"712","article-title":"Sentiment analysis of movie reviews: a new feature-based heuristic for aspect-level sentiment classification","author":"Singh","year":"2013"},{"key":"10.1016\/j.ins.2018.04.079_bib0031","series-title":"Proceedings of the Annual Meeting of the Association for Computational Linguistics","first-page":"308","article-title":"A joint model of text and aspect ratings for sentiment summarization.","volume":"8","author":"Titov","year":"2008"},{"issue":"4","key":"10.1016\/j.ins.2018.04.079_bib0032","doi-asserted-by":"crossref","first-page":"315","DOI":"10.1145\/944012.944013","article-title":"Measuring praise and criticism: inference of semantic orientation from association","volume":"21","author":"Turney","year":"2003","journal-title":"ACM Trans. Inf. Syst. (TOIS)"},{"key":"10.1016\/j.ins.2018.04.079_bib0033","series-title":"Proceedings of the Annual Meeting of the Association for Computational Linguistics","first-page":"616","article-title":"Sentiment-aspect extraction based on restricted Boltzmann machines.","author":"Wang","year":"2015"},{"key":"10.1016\/j.ins.2018.04.079_bib0034","series-title":"Proceedings of the Twenty Fifth International Conference on World Wide Web","first-page":"167","article-title":"Mining aspect-specific opinion using a holistic lifelong topic model","author":"Wang","year":"2016"},{"key":"10.1016\/j.ins.2018.04.079_bib0035","series-title":"Proceedings of the Seventh International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)","first-page":"2385","article-title":"Sentiment analysis of online product reviews with semi-supervised topic sentiment mixture model","volume":"5","author":"Wang","year":"2010"},{"key":"10.1016\/j.ins.2018.04.079_bib0036","doi-asserted-by":"crossref","unstructured":"W. Wang, S.J. Pan, D. Dahlmeier, X. Xiao, Recursive neural conditional random fields for aspect-based sentiment analysis, arXiv:1603.06679 (2016b).","DOI":"10.18653\/v1\/D16-1059"},{"key":"10.1016\/j.ins.2018.04.079_bib0037","series-title":"Proceedings of the Conference on Empirical Methods in Natural Language Processing","article-title":"Attention-based LSTM for aspect-level sentiment classification","author":"Wang","year":"2016"},{"key":"10.1016\/j.ins.2018.04.079_bib0038","series-title":"Proceedings of the Twenty Second ACM International Conference on Multimedia","first-page":"47","article-title":"Exploring principles-of-art features for image emotion recognition","author":"Zhao","year":"2014"},{"issue":"3","key":"10.1016\/j.ins.2018.04.079_bib0039","doi-asserted-by":"crossref","first-page":"632","DOI":"10.1109\/TMM.2016.2617741","article-title":"Continuous probability distribution prediction of image emotions via multitask shared sparse regression","volume":"19","author":"Zhao","year":"2017","journal-title":"IEEE Trans. Multimed."},{"key":"10.1016\/j.ins.2018.04.079_bib0040","series-title":"Proceedings of the First International CIKM Workshop on Topic-Sentiment Analysis for Mass Opinion","first-page":"65","article-title":"Aspect-based sentence segmentation for sentiment summarization","author":"Zhu","year":"2009"}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025518303499?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025518303499?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,6,23]],"date-time":"2022-06-23T03:35:09Z","timestamp":1655955309000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025518303499"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,7]]},"references-count":40,"alternative-id":["S0020025518303499"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2018.04.079","relation":{},"ISSN":["0020-0255"],"issn-type":[{"value":"0020-0255","type":"print"}],"subject":[],"published":{"date-parts":[[2018,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Incorporating product description to sentiment topic models for improved aspect-based sentiment analysis","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2018.04.079","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}