{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,4]],"date-time":"2024-07-04T17:32:15Z","timestamp":1720114335735},"reference-count":50,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,7,1]],"date-time":"2018-07-01T00:00:00Z","timestamp":1530403200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["41371426","41611530696","61701218"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100008860","name":"Wuhan Science and Technology","doi-asserted-by":"publisher","award":["2016060101010056"],"id":[{"id":"10.13039\/501100008860","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2018,7]]},"DOI":"10.1016\/j.ins.2018.04.075","type":"journal-article","created":{"date-parts":[[2018,4,30]],"date-time":"2018-04-30T13:14:11Z","timestamp":1525094051000},"page":"328-343","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":13,"special_numbering":"C","title":["Gradient boosting for single image super-resolution"],"prefix":"10.1016","volume":"454-455","author":[{"given":"Dongping","family":"Xiong","sequence":"first","affiliation":[]},{"given":"Qiuling","family":"Gui","sequence":"additional","affiliation":[]},{"given":"Wenguang","family":"Hou","sequence":"additional","affiliation":[]},{"given":"Mingyue","family":"Ding","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"5","key":"10.1016\/j.ins.2018.04.075_bib0001","doi-asserted-by":"crossref","first-page":"898","DOI":"10.1109\/TPAMI.2010.161","article-title":"Contour detection and hierarchical image segmentation","volume":"33","author":"Arbelaez","year":"2011","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.ins.2018.04.075_bib0002","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"1","article-title":"Fast human pose estimation using appearance and motion via multi-dimensional boosting regression","author":"Bissacco","year":"2007"},{"key":"10.1016\/j.ins.2018.04.075_bib0003","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR)","first-page":"1","article-title":"Super-resolution through neighbor embedding","author":"Chang","year":"2004"},{"issue":"8","key":"10.1016\/j.ins.2018.04.075_bib0004","doi-asserted-by":"crossref","first-page":"1702","DOI":"10.1109\/TMM.2017.2688920","article-title":"Single image super-resolution via adaptive transform-based nonlocal self-similarity modeling and learning-based gradient regularization","volume":"19","author":"Chen","year":"2017","journal-title":"IEEE Trans. Multimedia"},{"key":"10.1016\/j.ins.2018.04.075_bib0005","series-title":"Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining","article-title":"Xgboost: a scalable tree boosting system","author":"Chen","year":"2016"},{"key":"10.1016\/j.ins.2018.04.075_bib0006","series-title":"Decision Forests For Computer Vision and Medical Image Analysis","author":"Criminisi","year":"2013"},{"key":"10.1016\/j.ins.2018.04.075_bib0007","doi-asserted-by":"crossref","first-page":"107","DOI":"10.1016\/j.ins.2016.02.015","article-title":"Single image super-resolution by approximated Heaviside functions","volume":"348","author":"Deng","year":"2016","journal-title":"Inf. Sci."},{"issue":"2","key":"10.1016\/j.ins.2018.04.075_bib0008","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1109\/TPAMI.2015.2439281","article-title":"Image super-resolution using deep convolutional networks","volume":"38","author":"Dong","year":"2016","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.ins.2018.04.075_bib0009","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"1709","article-title":"Filter forests for learning data-dependent convolutional kernels","author":"Fanello","year":"2014"},{"key":"10.1016\/j.ins.2018.04.075_bib0010","series-title":"Proceedings of the International Conference on Computer Vision (ICCV)","first-page":"3336","article-title":"Super-resolution via transform-invariant group-sparse regularization","author":"Fernandez-Granda","year":"2013"},{"issue":"1","key":"10.1016\/j.ins.2018.04.075_bib0011","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1023\/A:1026501619075","article-title":"Learning low-level vision","volume":"40","author":"Freeman","year":"2000","journal-title":"Int. J. Comput. Vision"},{"key":"10.1016\/j.ins.2018.04.075_bib0012","doi-asserted-by":"crossref","first-page":"1189","DOI":"10.1214\/aos\/1013203451","article-title":"Greedy function approximation: a gradient boosting machine","author":"Friedman","year":"2001","journal-title":"Annals of statistics"},{"issue":"4","key":"10.1016\/j.ins.2018.04.075_bib0013","doi-asserted-by":"crossref","first-page":"367","DOI":"10.1016\/S0167-9473(01)00065-2","article-title":"Stochastic gradient boosting","volume":"38","author":"Friedman","year":"2002","journal-title":"Comput. Stat. Data Anal."},{"key":"10.1016\/j.ins.2018.04.075_bib0014","volume":"vol. 1","author":"Friedman","year":"2001"},{"key":"10.1016\/j.ins.2018.04.075_bib0015","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"1022","article-title":"Class-specific Hough forests for object detection","author":"Gall","year":"2009"},{"issue":"7","key":"10.1016\/j.ins.2018.04.075_bib0016","doi-asserted-by":"crossref","first-page":"3194","DOI":"10.1109\/TIP.2012.2190080","article-title":"Image super-resolution with sparse neighbor embedding","volume":"21","author":"Gao","year":"2012","journal-title":"IEEE Trans. Image Process."},{"issue":"6","key":"10.1016\/j.ins.2018.04.075_bib0017","doi-asserted-by":"crossref","first-page":"508","DOI":"10.1109\/TASSP.1978.1163154","article-title":"Cubic splines for image interpolation and digital filtering","volume":"26","author":"Hou","year":"1978","journal-title":"IEEE Trans. Acoust. Speech Signal Process."},{"issue":"5","key":"10.1016\/j.ins.2018.04.075_bib0018","doi-asserted-by":"crossref","first-page":"937","DOI":"10.1109\/TCSVT.2015.2513661","article-title":"Learning hierarchical decision trees for single-image super-resolution","volume":"27","author":"Huang","year":"2017","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"10.1016\/j.ins.2018.04.075_bib0019","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"1637","article-title":"Deeply-recursive convolutional network for image super-resolution","author":"Kim","year":"2016"},{"key":"10.1016\/j.ins.2018.04.075_bib0020","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"1646","article-title":"Accurate image super-resolution using very deep convolutional networks","author":"Kim","year":"2016"},{"issue":"6","key":"10.1016\/j.ins.2018.04.075_bib0021","doi-asserted-by":"crossref","first-page":"1127","DOI":"10.1109\/TPAMI.2010.25","article-title":"Single-image super-resolution using sparse regression and natural image prior","volume":"32","author":"Kim","year":"2010","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"10","key":"10.1016\/j.ins.2018.04.075_bib0022","doi-asserted-by":"crossref","first-page":"1521","DOI":"10.1109\/83.951537","article-title":"New edge-directed interpolation","volume":"10","author":"Li","year":"2001","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.ins.2018.04.075_bib0023","doi-asserted-by":"crossref","unstructured":"J.T. Liu, C.H. Sui, D.W. Deng, J.W. Wang, B. Feng, W.Y. Liu, C.H. Wu, Representing conditional preference by boosted regression trees for recommendation, Inf. Sci., 327(2016) 1\u201320.","DOI":"10.1016\/j.ins.2015.08.001"},{"issue":"3","key":"10.1016\/j.ins.2018.04.075_bib0024","doi-asserted-by":"crossref","first-page":"367","DOI":"10.1007\/s10915-008-9214-8","article-title":"Image super-resolution by TV-regularization and Bregman iteration","volume":"37","author":"Marquina","year":"2008","journal-title":"J. Sci. Comput."},{"issue":"6","key":"10.1016\/j.ins.2018.04.075_bib0025","doi-asserted-by":"crossref","first-page":"1596","DOI":"10.1109\/TIP.2007.896644","article-title":"Image super resolution using support vector regression","volume":"16","author":"Ni","year":"2007","journal-title":"IEEE Trans. Image Process."},{"issue":"3\u20134","key":"10.1016\/j.ins.2018.04.075_bib0026","first-page":"185","article-title":"Structured learning and prediction in computer vision","volume":"6","author":"Nowozin","year":"2011","journal-title":"Found. Trends Comput. Graphics Vis."},{"issue":"1","key":"10.1016\/j.ins.2018.04.075_bib0027","doi-asserted-by":"crossref","first-page":"36","DOI":"10.1109\/TIP.2008.2008067","article-title":"Generalizing the nonlocal-means to super-resolution reconstruction","volume":"18","author":"Protter","year":"2009","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.ins.2018.04.075_bib0028","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"3791","article-title":"Fast and accurate image upscaling with super-resolution forests","author":"Schulter","year":"2015"},{"key":"10.1016\/j.ins.2018.04.075_bib0029","author":"Sheikh"},{"issue":"10","key":"10.1016\/j.ins.2018.04.075_bib0030","doi-asserted-by":"crossref","first-page":"2089","DOI":"10.1109\/TPAMI.2014.2315792","article-title":"Structboost: boosting methods for predicting structured output variables","volume":"36","author":"Shen","year":"2014","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"6","key":"10.1016\/j.ins.2018.04.075_bib0031","doi-asserted-by":"crossref","first-page":"1388","DOI":"10.1109\/TCYB.2015.2446755","article-title":"Adaptive norm selection for regularized image restoration and super-resolution","volume":"46","author":"Shen","year":"2016","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.ins.2018.04.075_bib0032","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"1","article-title":"Image super-resolution using gradient profile prior","author":"Sun","year":"2008"},{"key":"10.1016\/j.ins.2018.04.075_bib0033","doi-asserted-by":"crossref","first-page":"577","DOI":"10.1016\/j.ins.2017.12.001","article-title":"Combining sparse coding with structured output regression machine for single image super-resolution","volume":"430","author":"Tang","year":"2018","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2018.04.075_bib0034","series-title":"Proceedings of the Asian Conference on Computer Vision (ACCV), Springer","first-page":"111","article-title":"A+: adjusted anchored neighborhood regression for fast super-resolution","author":"Timofte","year":"2014"},{"key":"10.1016\/j.ins.2018.04.075_bib0035","series-title":"Proceedings of the International Conference on Computer Vision (ICCV)","first-page":"1920","article-title":"Anchored neighborhood regression for fast example-based super-resolution","author":"Timofte","year":"2013"},{"key":"10.1016\/j.ins.2018.04.075_bib0036","unstructured":"L.F. Wang, Z.H. Huang, Y.C. Gong, C.H. Pan, Ensemble based deep networks for image super-resolution, Pattern Recognit. 68(2017) 191\u2013198."},{"issue":"4","key":"10.1016\/j.ins.2018.04.075_bib0037","doi-asserted-by":"crossref","first-page":"600","DOI":"10.1109\/TIP.2003.819861","article-title":"Image quality assessment: from error visibility to structural similarity","volume":"13","author":"Wang","year":"2004","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.ins.2018.04.075_bib0038","series-title":"Proceedings of the IEEE International Conference on Computer Vision (ICCV)","first-page":"370","article-title":"Deep networks for image super-resolution with sparse prior","author":"Wang","year":"2015"},{"issue":"11","key":"10.1016\/j.ins.2018.04.075_bib0039","doi-asserted-by":"crossref","first-page":"4359","DOI":"10.1109\/TIP.2015.2462113","article-title":"Learning super-resolution jointly from external and internal examples","volume":"24","author":"Wang","year":"2015","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.ins.2018.04.075_bib0040","series-title":"Proceeding of the European Conference on Computer Vision, Springer (ECCV)","first-page":"372","article-title":"Single-image super-resolution: a benchmark","author":"Yang","year":"2014"},{"key":"10.1016\/j.ins.2018.04.075_bib0041","series-title":"Proceedings of the IEEE International Conference on Computer Vision (ICCV)","first-page":"561","article-title":"Fast direct super-resolution by simple functions","author":"Yang","year":"2013"},{"issue":"11","key":"10.1016\/j.ins.2018.04.075_bib0042","doi-asserted-by":"crossref","first-page":"2861","DOI":"10.1109\/TIP.2010.2050625","article-title":"Image super-resolution via sparse representation","volume":"19","author":"Yang","year":"2010","journal-title":"IEEE Trans. Image Process."},{"issue":"1","key":"10.1016\/j.ins.2018.04.075_bib0043","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1109\/TCYB.2015.2501373","article-title":"Coupled deep autoencoder for single image super-resolution","volume":"47","author":"Zeng","year":"2017","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.ins.2018.04.075_bib0044","series-title":"International Conference on Curves and Surfaces, Springer","first-page":"711","article-title":"On single image scale-up using sparse-representations","author":"Zeyde","year":"2010"},{"issue":"11","key":"10.1016\/j.ins.2018.04.075_bib0045","doi-asserted-by":"crossref","first-page":"4544","DOI":"10.1109\/TIP.2012.2208977","article-title":"Single image super-resolution with non-local means and steering kernel regression","volume":"21","author":"Zhang","year":"2012","journal-title":"IEEE Trans. Image Process."},{"issue":"10","key":"10.1016\/j.ins.2018.04.075_bib0046","doi-asserted-by":"crossref","first-page":"3102","DOI":"10.1016\/j.patcog.2014.12.016","article-title":"Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding","volume":"48","author":"Zhang","year":"2015","journal-title":"Pattern Recognit."},{"issue":"6","key":"10.1016\/j.ins.2018.04.075_bib0047","doi-asserted-by":"crossref","first-page":"887","DOI":"10.1109\/TIP.2008.924279","article-title":"Image interpolation by adaptive 2-d autoregressive modeling and soft-decision estimation","volume":"17","author":"Zhang","year":"2008","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.ins.2018.04.075_bib0048","unstructured":"Y. Zhao, R.G. Wang, W. Jia, J.C. Yang, W.M. Wang, W. Gao, Local patch encoding-based method for single image super-resolution. Inf. Sci. 433(2018) 292\u2013305"},{"key":"10.1016\/j.ins.2018.04.075_bib0049","series-title":"Proceedings of the Tenth International Conference on Computer Vision (ICCV)","first-page":"541","article-title":"Image based regression using boosting method","author":"Zhou","year":"2005"},{"key":"10.1016\/j.ins.2018.04.075_bib0050","doi-asserted-by":"crossref","unstructured":"Y. Zhou, S. Kwong, W. Gao, X. Wang, A phase congruency based patch evaluator for complexity reduction in multi-dictionary based single-image super-resolution, Inf. Sci., 367(2016) 337\u2013353.","DOI":"10.1016\/j.ins.2016.05.024"}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025516316401?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025516316401?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,10,17]],"date-time":"2019-10-17T07:17:35Z","timestamp":1571296655000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025516316401"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,7]]},"references-count":50,"alternative-id":["S0020025516316401"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2018.04.075","relation":{},"ISSN":["0020-0255"],"issn-type":[{"value":"0020-0255","type":"print"}],"subject":[],"published":{"date-parts":[[2018,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Gradient boosting for single image super-resolution","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2018.04.075","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}