{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,14]],"date-time":"2024-09-14T19:50:01Z","timestamp":1726343401361},"reference-count":42,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,7,1]],"date-time":"2018-07-01T00:00:00Z","timestamp":1530403200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100004377","name":"Hong Kong Polytechnic University","doi-asserted-by":"publisher","award":["G-YN19","RUG7"],"id":[{"id":"10.13039\/501100004377","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2018,7]]},"DOI":"10.1016\/j.ins.2018.04.068","type":"journal-article","created":{"date-parts":[[2018,5,1]],"date-time":"2018-05-01T04:54:55Z","timestamp":1525150495000},"page":"161-177","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":46,"special_numbering":"C","title":["A hybrid evolutionary preprocessing method for imbalanced datasets"],"prefix":"10.1016","volume":"454-455","author":[{"given":"Ginny Y.","family":"Wong","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3921-7074","authenticated-orcid":false,"given":"Frank H.F.","family":"Leung","sequence":"additional","affiliation":[]},{"given":"Sai-Ho","family":"Ling","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"2\u20133","key":"10.1016\/j.ins.2018.04.068_bib0001","first-page":"255","article-title":"Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework","volume":"17","author":"Alcal\u00e1-Fdez","year":"2011","journal-title":"J. Mult. Valued Logic Soft Comput."},{"key":"10.1016\/j.ins.2018.04.068_bib0002","unstructured":"A. Asuncion, D. Newman, UCI machine learning repository, 2007, http:\/\/www.ics.uci.edu\/~mlearn\/MLRepository.html."},{"issue":"1","key":"10.1016\/j.ins.2018.04.068_bib0003","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1145\/1007730.1007735","article-title":"A study of the behavior of several methods for balancing machine learning training data","volume":"6","author":"Batista","year":"2004","journal-title":"SIGKDD Explor."},{"key":"10.1016\/j.ins.2018.04.068_bib0004","series-title":"Proceedings of the 13th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining","first-page":"475","article-title":"Safe-level-smote: safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem","author":"Bunkhumpornpat","year":"2009"},{"issue":"6","key":"10.1016\/j.ins.2018.04.068_bib0005","doi-asserted-by":"crossref","first-page":"561","DOI":"10.1109\/TEVC.2003.819265","article-title":"Using evolutionary algorithms as instance selection for data reduction in KDD: an experimental study","volume":"7","author":"Cano","year":"2003","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.ins.2018.04.068_bib0006","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1016\/j.neucom.2013.05.059","article-title":"A method for resampling imbalanced datasets in binary classification tasks for real-world problems","volume":"135","author":"Cateni","year":"2014","journal-title":"Neurocomputing"},{"issue":"27","key":"10.1016\/j.ins.2018.04.068_bib0007","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/1961189.1961199","article-title":"LIBSVM: a library for support vector machines","volume":"2","author":"Chang","year":"2011","journal-title":"ACM Trans. Intell. Syst. Technol."},{"key":"10.1016\/j.ins.2018.04.068_bib0008","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1613\/jair.953","article-title":"SMOTE: synthetic minority over-sampling technique","volume":"16","author":"Chawla","year":"2002","journal-title":"J. Artif. Intell. Res."},{"key":"10.1016\/j.ins.2018.04.068_bib0009","series-title":"Proocedings of the IEEE International Conference on Granular Computing","first-page":"732","article-title":"Combating imbalance in network intrusion datasets","author":"Chieslak","year":"2006"},{"key":"10.1016\/j.ins.2018.04.068_bib0010","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1016\/j.artmed.2005.03.002","article-title":"Learning from imbalanced data in surveillance of nosocomial infection","volume":"37","author":"Cohen","year":"2006","journal-title":"Artif. Intell. Med."},{"key":"10.1016\/j.ins.2018.04.068_bib0011","series-title":"Foundations of Genetic Algorithms","first-page":"265","article-title":"The CHC adaptive search algorithm: How to have safe search when engaging in nontraditional genetic recombination","author":"Eshelman","year":"1991"},{"issue":"18","key":"10.1016\/j.ins.2018.04.068_bib0012","doi-asserted-by":"crossref","first-page":"2378","DOI":"10.1016\/j.fss.2007.12.023","article-title":"A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets","volume":"159","author":"Fern\u00e1ndez","year":"2008","journal-title":"Fuzzy Sets Syst."},{"issue":"1","key":"10.1016\/j.ins.2018.04.068_bib0013","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1016\/j.knosys.2011.01.012","article-title":"Evolutionary-based selection of generalized instances for imbalanced classification","volume":"25","author":"Garc\u00eda","year":"2012","journal-title":"Knowl. Based Syst."},{"issue":"3","key":"10.1016\/j.ins.2018.04.068_bib0014","doi-asserted-by":"crossref","first-page":"275","DOI":"10.1162\/evco.2009.17.3.275","article-title":"Evolutionary undersampling for classification with imbalanced datasets: proposals and taxonomy","volume":"17","author":"Garc\u00eda","year":"2009","journal-title":"Evol. Comput."},{"key":"10.1016\/j.ins.2018.04.068_bib0015","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1016\/j.knosys.2011.06.013","article-title":"On the effectiveness of preprocessing methods when dealing with different levels of class imbalance","volume":"25","author":"Garc\u00eda","year":"2012","journal-title":"Knowl. Based Syst."},{"key":"10.1016\/j.ins.2018.04.068_bib0016","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1016\/j.knosys.2011.05.002","article-title":"Class imbalance methods for translation initiation site recognition in dna sequences","volume":"25","author":"Garc\u00eda-Pedrajas","year":"2012","journal-title":"Knowl. Based Syst."},{"key":"10.1016\/j.ins.2018.04.068_bib0017","series-title":"Proceedings of the International Conference on Advanced Computer Theory and Engineering","first-page":"1020","article-title":"Data mining on imbalanced data sets","author":"Gu","year":"2008"},{"issue":"1","key":"10.1016\/j.ins.2018.04.068_bib0018","doi-asserted-by":"crossref","first-page":"30","DOI":"10.1145\/1007730.1007736","article-title":"Learning from imbalanced data sets with boosting and data generation: the DataBoost-IM approach","volume":"6","author":"Guo","year":"2004","journal-title":"SIGKDD Explor."},{"key":"10.1016\/j.ins.2018.04.068_bib0019","series-title":"Proceedings of the International Conference on Intelligent Computing (ICIC05)","first-page":"878","article-title":"Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning","author":"Han","year":"2005"},{"key":"10.1016\/j.ins.2018.04.068_bib0020","doi-asserted-by":"crossref","first-page":"515","DOI":"10.1109\/TIT.1968.1054155","article-title":"The condensed nearest neighbor rule","volume":"14","author":"Hart","year":"1968","journal-title":"IEEE Trans. Inf. Theory"},{"key":"10.1016\/j.ins.2018.04.068_bib0021","series-title":"Proceedings of International Joint Conference on Neural Networks (IJCNN08)","first-page":"1322","article-title":"ADASYN: Adaptive synthetic sampling approach for imbalanced learning","author":"He","year":"2008"},{"issue":"9","key":"10.1016\/j.ins.2018.04.068_bib0022","doi-asserted-by":"crossref","first-page":"1263","DOI":"10.1109\/TKDE.2008.239","article-title":"Learning from imbalanced data","volume":"21","author":"He","year":"2009","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.ins.2018.04.068_bib0023","series-title":"Proceedings of the 14th International Conference on Machine Learning","first-page":"179","article-title":"Addressing the curse of imbalanced training sets: one-sided selection","author":"Kubat","year":"1997"},{"key":"10.1016\/j.ins.2018.04.068_bib0024","series-title":"Proceedings of the 8th Conference on AI in Medicine in Europe: Artificial Intelligence Medicine","first-page":"63","article-title":"Improving identification of difficult small classes by balancing class distribution","author":"Laurikkala","year":"2001"},{"issue":"1\u20133","key":"10.1016\/j.ins.2018.04.068_bib0025","doi-asserted-by":"crossref","first-page":"191","DOI":"10.1023\/A:1012406528296","article-title":"Support vector machines for classification in nonstandard situations","volume":"46","author":"Lin","year":"2002","journal-title":"Mach. Learn."},{"key":"10.1016\/j.ins.2018.04.068_bib0026","doi-asserted-by":"crossref","first-page":"468","DOI":"10.1016\/j.csl.2005.06.002","article-title":"A study in machine learning from imbalanced data for sentence boundary detection in speech","volume":"20","author":"Liu","year":"2006","journal-title":"Comput. Speech Lang."},{"key":"10.1016\/j.ins.2018.04.068_bib0027","doi-asserted-by":"crossref","first-page":"113","DOI":"10.1016\/j.ins.2013.07.007","article-title":"An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics","volume":"250","author":"L\u00f3pez","year":"2013","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2018.04.068_bib0028","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/j.knosys.2012.08.025","article-title":"A hierarchical genetic fuzzy system based on genetic programming for addressing classification with highly imbalanced and borderline data-sets","volume":"38","author":"L\u00f3pez","year":"2013","journal-title":"Knowl. Based Syst."},{"key":"10.1016\/j.ins.2018.04.068_bib0029","series-title":"Proceedings of the 7th International Conference on Rough Sets and Current Trends in Computing (RSCT2010)","first-page":"158","article-title":"Learning from imbalanced data in presence of noisy and borderline examples","author":"Napierala","year":"2010"},{"key":"10.1016\/j.ins.2018.04.068_bib0030","series-title":"Fuzzy Systems and Knowledge Discovery","article-title":"A hybrid re-sampling method for SVM learning from imbalanced data sets","volume":"2","author":"Peng","year":"2008"},{"key":"10.1016\/j.ins.2018.04.068_bib0031","series-title":"Proceedings of the AAAI\u20192000 Workshop on Imbalanced Data Sets","first-page":"1","article-title":"Machine learning from imbalanced data sets 101","author":"Provost","year":"2000"},{"issue":"3","key":"10.1016\/j.ins.2018.04.068_bib0032","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1023\/A:1007601015854","article-title":"Robust classification for imprecise environments","volume":"42","author":"Provost","year":"2001","journal-title":"Mach. Learn."},{"key":"10.1016\/j.ins.2018.04.068_bib0033","series-title":"C4.5: Programs for Machine Learning","author":"Quinlan","year":"1993"},{"key":"10.1016\/j.ins.2018.04.068_bib0034","doi-asserted-by":"crossref","first-page":"245","DOI":"10.1007\/s10115-011-0465-6","article-title":"SMOTE-RSB*: a hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data-sets using smote and rough sets theory","volume":"33","author":"Ramentol","year":"2012","journal-title":"Knowl Inf Syst"},{"issue":"1","key":"10.1016\/j.ins.2018.04.068_bib0035","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1145\/1007730.1007739","article-title":"Extreme rebalanceing for SVMs: a case study","volume":"6","author":"Raskutti","year":"2004","journal-title":"SIGKDD Explor."},{"key":"10.1016\/j.ins.2018.04.068_bib0036","series-title":"Handbook of Parametric and Nonparametric Statistical Procedures","author":"Sheskin","year":"2003"},{"key":"10.1016\/j.ins.2018.04.068_bib0037","first-page":"769","article-title":"Two modifications of CNN","volume":"6","author":"Tomek","year":"1976","journal-title":"IEEE Trans. Syst. Man Cybern."},{"key":"10.1016\/j.ins.2018.04.068_bib0038","doi-asserted-by":"crossref","first-page":"315","DOI":"10.1613\/jair.1199","article-title":"Learning when training data are costly: the effect of class distribution on tree induction","volume":"19","author":"Weiss","year":"2003","journal-title":"J. Artif. Intell. Res."},{"issue":"3","key":"10.1016\/j.ins.2018.04.068_bib0039","doi-asserted-by":"crossref","first-page":"408","DOI":"10.1109\/TSMC.1972.4309137","article-title":"Asymptotic properties of nearest neighbor rules using edited data","volume":"2","author":"Wilson","year":"1972","journal-title":"IEEE Trans. Syst. Man Cybern."},{"key":"10.1016\/j.ins.2018.04.068_bib0040","series-title":"Proceedings of the 39th Annual Conference of the IEEE Industrial Electronics Society (IECON 2013)","first-page":"2354\u20142359","article-title":"A novel evolutionary preprocessing method based on over-sampling and under-sampling for imbalanced datasets","author":"Wong","year":"2013"},{"issue":"1","key":"10.1016\/j.ins.2018.04.068_bib0041","doi-asserted-by":"crossref","first-page":"164","DOI":"10.1109\/TPWRS.2006.888990","article-title":"Power distribution fault cause identification with imbalanced data using the data mining-based fuzzy classification e-algorithm","volume":"22","author":"Xu","year":"2007","journal-title":"IEEE Trans. Power Syst."},{"key":"10.1016\/j.ins.2018.04.068_bib0042","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1016\/j.knosys.2012.12.007","article-title":"Performance of corporate bankruptcy prediction meodels on imbalanced dataset: the effect of sampling methods","volume":"41","author":"Zhou","year":"2013","journal-title":"Knowl. Based Syst."}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025518303256?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025518303256?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,4,3]],"date-time":"2021-04-03T19:39:54Z","timestamp":1617478794000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025518303256"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,7]]},"references-count":42,"alternative-id":["S0020025518303256"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2018.04.068","relation":{},"ISSN":["0020-0255"],"issn-type":[{"value":"0020-0255","type":"print"}],"subject":[],"published":{"date-parts":[[2018,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A hybrid evolutionary preprocessing method for imbalanced datasets","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2018.04.068","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Published by Elsevier Inc.","name":"copyright","label":"Copyright"}]}}