{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,4]],"date-time":"2024-07-04T17:32:02Z","timestamp":1720114322924},"reference-count":29,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,7,1]],"date-time":"2018-07-01T00:00:00Z","timestamp":1530403200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2018,7]]},"DOI":"10.1016\/j.ins.2018.04.060","type":"journal-article","created":{"date-parts":[[2018,4,20]],"date-time":"2018-04-20T06:37:03Z","timestamp":1524206223000},"page":"1-15","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["Pareto-aware strategies for faster convergence in multi-objective multi-scale search optimization"],"prefix":"10.1016","volume":"454-455","author":[{"given":"C.S.Y.","family":"Wong","sequence":"first","affiliation":[]},{"given":"Abdullah","family":"Al-Dujaili","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6275-0921","authenticated-orcid":false,"given":"S.","family":"Suresh","sequence":"additional","affiliation":[]},{"given":"N.","family":"Sundararajan","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ins.2018.04.060_bib0001","unstructured":"A. Al-Dujaili, S. Suresh, BMOBench: black-box multi-objective optimization benchmarking platform, arXiv:1605.07009 (2016)."},{"key":"10.1016\/j.ins.2018.04.060_bib0002","series-title":"2016 IEEE Congress on Evolutionary Computation (CEC)","first-page":"3606","article-title":"Dividing rectangles attack multi-objective optimization","author":"Al-Dujaili","year":"2016"},{"key":"10.1016\/j.ins.2018.04.060_bib0003","doi-asserted-by":"crossref","first-page":"294","DOI":"10.1016\/j.ins.2016.07.054","article-title":"A naive multi-scale search algorithm for global optimization problems","volume":"372","author":"Al-Dujaili","year":"2016","journal-title":"Inf. Sci."},{"issue":"Supplement C","key":"10.1016\/j.ins.2018.04.060_bib0004","doi-asserted-by":"crossref","first-page":"159","DOI":"10.1016\/j.ins.2017.09.066","article-title":"Multi-objective simultaneous optimistic optimization","volume":"424","author":"Al-Dujaili","year":"2018","journal-title":"Inf. Sci."},{"issue":"4","key":"10.1016\/j.ins.2018.04.060_bib0005","doi-asserted-by":"crossref","first-page":"811","DOI":"10.1007\/s10898-016-0441-5","article-title":"MSO: a framework for bound-constrained black-box global optimization algorithms","volume":"66","author":"Al-Dujaili","year":"2016","journal-title":"J. Global Optim."},{"key":"10.1016\/j.ins.2018.04.060_bib0006","first-page":"2006","article-title":"Mesh adaptive direct search algorithms for constrained optimization","volume":"17","author":"Audet","year":"2004","journal-title":"SIAM J. Optim."},{"key":"10.1016\/j.ins.2018.04.060_bib0007","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1016\/j.tcs.2011.03.012","article-title":"Hypervolume-based multiobjective optimization: theoretical foundations and practical implications.","volume":"425","author":"Auger","year":"2012","journal-title":"Theor. Comput. Sci."},{"key":"10.1016\/j.ins.2018.04.060_bib0008","series-title":"Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion","first-page":"1225","article-title":"The impact of variation operators on the performance of sms-emoa on the bi-objective bbob-2016 test suite","author":"Auger","year":"2016"},{"issue":"3\u20134","key":"10.1016\/j.ins.2018.04.060_bib0009","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1016\/j.jhydrol.2007.05.014","article-title":"Multi-objective automatic calibration of {SWAT} using NSGA-II","volume":"341","author":"Bekele","year":"2007","journal-title":"J. Hydrol."},{"issue":"3","key":"10.1016\/j.ins.2018.04.060_bib0010","doi-asserted-by":"crossref","first-page":"1653","DOI":"10.1016\/j.ejor.2006.08.008","article-title":"SMS-EMOA: Multiobjective selection based on dominated hypervolume","volume":"181","author":"Beume","year":"2007","journal-title":"Eur. J. Oper. Res."},{"key":"10.1016\/j.ins.2018.04.060_bib0011","article-title":"Biobjective performance assessment with the COCO platform","volume":"abs\/1605.01746","author":"Brockhoff","year":"2016","journal-title":"CoRR"},{"key":"10.1016\/j.ins.2018.04.060_bib0012","series-title":"Evolutionary Computation, 2002. CEC \u201902. Proceedings of the 2002 Congress on","first-page":"1051","article-title":"Mopso: a proposal for multiple objective particle swarm optimization","volume":"2","author":"Coello","year":"2002"},{"key":"10.1016\/j.ins.2018.04.060_bib0013","series-title":"Multiglods: global and local multiobjective optimization using direct search","author":"Cust\u00f3dio","year":"2017"},{"issue":"3","key":"10.1016\/j.ins.2018.04.060_bib0014","doi-asserted-by":"crossref","first-page":"1109","DOI":"10.1137\/10079731X","article-title":"Direct multisearch for multiobjective optimization.","volume":"21","author":"Cust\u00f3dio","year":"2011","journal-title":"SIAM J. Optim."},{"issue":"2","key":"10.1016\/j.ins.2018.04.060_bib0015","doi-asserted-by":"crossref","first-page":"182","DOI":"10.1109\/4235.996017","article-title":"A fast and elitist multiobjective genetic algorithm: NSGA-II","volume":"6","author":"Deb","year":"2002","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.ins.2018.04.060_bib0016","doi-asserted-by":"crossref","first-page":"361","DOI":"10.1016\/j.protcy.2016.03.038","article-title":"Multi-objective optimization of vehicle passive suspension system using NSGA-II, SPEA2 and PESA-II","volume":"23","author":"Gadhvi","year":"2016","journal-title":"Procedia Technol."},{"issue":"Supplement C","key":"10.1016\/j.ins.2018.04.060_bib0017","doi-asserted-by":"crossref","first-page":"462","DOI":"10.1016\/j.ins.2017.09.028","article-title":"Pareto front feature selection based on artificial bee colony optimization","volume":"422","author":"Hancer","year":"2018","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2018.04.060_bib0018","article-title":"COCO: performance assessment","volume":"abs\/1605.03560","author":"Hansen","year":"2016","journal-title":"CoRR"},{"key":"10.1016\/j.ins.2018.04.060_bib0019","series-title":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","first-page":"1","article-title":"On the use of hypervolume for diversity measurement of pareto front approximations","author":"Jiang","year":"2016"},{"issue":"1","key":"10.1016\/j.ins.2018.04.060_bib0020","doi-asserted-by":"crossref","first-page":"157","DOI":"10.1007\/BF00941892","article-title":"Lipschitzian optimization without the lipschitz constant","volume":"79","author":"Jones","year":"1993","journal-title":"J. Optim. Theory Appl."},{"issue":"Supplement C","key":"10.1016\/j.ins.2018.04.060_bib0021","doi-asserted-by":"crossref","first-page":"332","DOI":"10.1016\/j.ins.2015.12.022","article-title":"Adaptive composite operator selection and parameter control for multiobjective evolutionary algorithm","volume":"339","author":"Lin","year":"2016","journal-title":"Inf. Sci."},{"issue":"Supplement C","key":"10.1016\/j.ins.2018.04.060_bib0022","doi-asserted-by":"crossref","first-page":"700","DOI":"10.1016\/j.ins.2016.07.025","article-title":"A stopping criterion for multi-objective optimization evolutionary algorithms","volume":"367\u2013368","author":"Mart\u00ed","year":"2016","journal-title":"Inf. Sci."},{"issue":"3","key":"10.1016\/j.ins.2018.04.060_bib0023","doi-asserted-by":"crossref","first-page":"1247","DOI":"10.1007\/s10898-012-9951-y","article-title":"Derivative-free optimization: a review of algorithms and comparison of software implementations","volume":"56","author":"Rios","year":"2013","journal-title":"J. Global Optim."},{"key":"10.1016\/j.ins.2018.04.060_bib0024","article-title":"COCO: The bi-objective black box optimization benchmarking (bbob-biobj) test suite","volume":"abs\/1604.00359","author":"Tusar","year":"2016","journal-title":"CoRR"},{"key":"10.1016\/j.ins.2018.04.060_bib0025","series-title":"Hypervolume-based DIRECT for multi-objective optimisation, in: GECCO 2016 (Companion)","author":"Wong","year":"2016"},{"key":"10.1016\/j.ins.2018.04.060_bib0026","series-title":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","first-page":"1","article-title":"Preliminary study: Qualitative indicators in multi-objective DIRECT framework","author":"Wong","year":"2016"},{"key":"10.1016\/j.ins.2018.04.060_bib0027","series-title":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","first-page":"1","article-title":"A multi-objective approach for 3D airspace sectorization: a study on Singapore regional airspace","author":"Wong","year":"2016"},{"issue":"6","key":"10.1016\/j.ins.2018.04.060_bib0028","first-page":"717","article-title":"A multi-objective evolutionary algorithm based on decomposition","volume":"11","author":"Zhang","year":"2007","journal-title":"IEEE Trans. Evolut. Comput. Accepted"},{"issue":"Supplement C","key":"10.1016\/j.ins.2018.04.060_bib0029","doi-asserted-by":"crossref","first-page":"177","DOI":"10.1016\/j.ins.2016.01.046","article-title":"A novel adaptive hybrid crossover operator for multiobjective evolutionary algorithm","volume":"345","author":"Zhu","year":"2016","journal-title":"Inf. Sci."}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025518303220?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025518303220?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2018,8,22]],"date-time":"2018-08-22T05:56:45Z","timestamp":1534917405000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025518303220"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,7]]},"references-count":29,"alternative-id":["S0020025518303220"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2018.04.060","relation":{},"ISSN":["0020-0255"],"issn-type":[{"value":"0020-0255","type":"print"}],"subject":[],"published":{"date-parts":[[2018,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Pareto-aware strategies for faster convergence in multi-objective multi-scale search optimization","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2018.04.060","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}