{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,4]],"date-time":"2024-07-04T17:37:55Z","timestamp":1720114675384},"reference-count":43,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2018,1]]},"DOI":"10.1016\/j.ins.2017.09.066","type":"journal-article","created":{"date-parts":[[2017,10,4]],"date-time":"2017-10-04T08:47:16Z","timestamp":1507106836000},"page":"159-174","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":8,"special_numbering":"C","title":["Multi-Objective Simultaneous Optimistic Optimization"],"prefix":"10.1016","volume":"424","author":[{"given":"Abdullah","family":"Al-Dujaili","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6275-0921","authenticated-orcid":false,"given":"S.","family":"Suresh","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ins.2017.09.066_sbref0001","first-page":"1","author":"Al-Dujaili","year":"2016","journal-title":"BMOBench: black-box multi-objective optimization benchmarking platform"},{"key":"10.1016\/j.ins.2017.09.066_bib0002","series-title":"Proceedings of the IEEE Congress on Evolutionary Computation (CEC)","first-page":"3606","article-title":"Dividing rectangles attack multi-objective optimization","author":"Al-Dujaili","year":"2016"},{"key":"10.1016\/j.ins.2017.09.066_bib0003","doi-asserted-by":"crossref","first-page":"294","DOI":"10.1016\/j.ins.2016.07.054","article-title":"A naive multi-scale search algorithm for global optimization problems","volume":"372","author":"Al-Dujaili","year":"2016","journal-title":"Inf. Sci. (NY)"},{"key":"10.1016\/j.ins.2017.09.066_bib0004","series-title":"Proceedings of the Conference on Genetic and Evolutionary Computation Conference Companion","first-page":"1209","article-title":"A matlab toolbox for surrogate-assisted multi-objective optimization: a preliminary study","author":"Al-Dujaili","year":"2016"},{"key":"10.1016\/j.ins.2017.09.066_bib0005","first-page":"397","article-title":"Using confidence bounds for exploitation-exploration trade-offs","volume":"3","author":"Auer","year":"2003","journal-title":"J. Mach. Learn. Res."},{"issue":"2\u20133","key":"10.1016\/j.ins.2017.09.066_bib0006","doi-asserted-by":"crossref","first-page":"235","DOI":"10.1023\/A:1013689704352","article-title":"Finite-time analysis of the multiarmed bandit problem","volume":"47","author":"Auer","year":"2002","journal-title":"Mach. Learn."},{"issue":"3","key":"10.1016\/j.ins.2017.09.066_bib0007","doi-asserted-by":"crossref","first-page":"1653","DOI":"10.1016\/j.ejor.2006.08.008","article-title":"SMS-EMOA: multiobjective selection based on dominated hypervolume","volume":"181","author":"Beume","year":"2007","journal-title":"Eur. J. Oper. Res."},{"key":"10.1016\/j.ins.2017.09.066_bib0008","series-title":"Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2015)","article-title":"Benchmarking numerical multiobjective optimizers revisited","author":"Brockhoff","year":"2015"},{"key":"10.1016\/j.ins.2017.09.066_bib0009","series-title":"Proceedings of the Advances in Neural Information Processing Systems","first-page":"201","article-title":"Online optimization in X-armed bandits","author":"Bubeck","year":"2009"},{"key":"10.1016\/j.ins.2017.09.066_bib0010","series-title":"Evolutionary Algorithms for Solving Multi-Objective Problems","volume":"242","author":"Coello","year":"2002"},{"issue":"1","key":"10.1016\/j.ins.2017.09.066_bib0011","doi-asserted-by":"crossref","first-page":"387","DOI":"10.1137\/060673424","article-title":"Global convergence of general derivative-free trust-region algorithms to first-and second-order critical points","volume":"20","author":"Conn","year":"2009","journal-title":"SIAM J. Optim."},{"issue":"3","key":"10.1016\/j.ins.2017.09.066_bib0012","doi-asserted-by":"crossref","first-page":"1109","DOI":"10.1137\/10079731X","article-title":"Direct multisearch for multiobjective optimization","volume":"21","author":"Cust\u00f3dio","year":"2011","journal-title":"SIAM J. Optim."},{"key":"10.1016\/j.ins.2017.09.066_bib0013","series-title":"Multi-Objective Optimization using Evolutionary Algorithms","volume":"16","author":"Deb","year":"2001"},{"issue":"2","key":"10.1016\/j.ins.2017.09.066_bib0014","doi-asserted-by":"crossref","first-page":"182","DOI":"10.1109\/4235.996017","article-title":"A fast and elitist multiobjective genetic algorithm: NSGA-II","volume":"6","author":"Deb","year":"2002","journal-title":"IEEE Transa. Evolut. Comput. (CEC)"},{"key":"10.1016\/j.ins.2017.09.066_bib0015","series-title":"Proceedings of the Eleventh IEEE International Workshop on Advanced Motion Control","first-page":"94","article-title":"Iterative optimization of the filling phase of wet clutches","author":"Depraetere","year":"2010"},{"key":"10.1016\/j.ins.2017.09.066_bib0016","series-title":"Proceedings of the International Joint Conference on Neural Networks (IJCNN)","first-page":"1","article-title":"Designing multi-objective multi-armed bandits algorithms: A study","author":"Drugan","year":"2013"},{"key":"10.1016\/j.ins.2017.09.066_bib0017","series-title":"Proceedings of the International Conference on Machine Learning","first-page":"197","article-title":"Multi-criteria reinforcement learning.","volume":"98","author":"G\u00e1bor","year":"1998"},{"issue":"3","key":"10.1016\/j.ins.2017.09.066_bib0018","doi-asserted-by":"crossref","first-page":"553","DOI":"10.1016\/S0377-2217(98)00262-8","article-title":"On the convergence of multiobjective evolutionary algorithms","volume":"117","author":"Hanne","year":"1999","journal-title":"Eur. J. Oper. Res."},{"issue":"24","key":"10.1016\/j.ins.2017.09.066_bib0019","doi-asserted-by":"crossref","first-page":"6349","DOI":"10.1088\/0031-9155\/51\/24\/005","article-title":"Derivative-free generation and interpolation of convex Pareto optimal IMRT plans","volume":"51","author":"Hoffmann","year":"2006","journal-title":"Phys. Med. Biol."},{"key":"10.1016\/j.ins.2017.09.066_bib0020","article-title":"Multiple objective decision making methods and applications: a state-of-the-art survey","volume":"164","author":"Hwang","year":"1979"},{"key":"10.1016\/j.ins.2017.09.066_sbref0021","series-title":"TIK-Report","article-title":"A Tutorial on the Performance Assessment of Stochastic Multi-Objective Optimizers","author":"Knowles","year":"2006"},{"key":"10.1016\/j.ins.2017.09.066_bib0022","series-title":"Proceedings of the European Conference on Machine Learning","first-page":"282","article-title":"Bandit based Monte-Carlo planning","author":"Kocsis","year":"2006"},{"key":"10.1016\/j.ins.2017.09.066_bib0023","series-title":"Foundations of Genetic Algorithms","first-page":"112","article-title":"Running time analysis of a multiobjective evolutionary algorithm on simple and hard problems","author":"Kumar","year":"2005"},{"issue":"1","key":"10.1016\/j.ins.2017.09.066_bib0024","doi-asserted-by":"crossref","first-page":"114","DOI":"10.1109\/TEVC.2013.2239648","article-title":"Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition","volume":"18","author":"Li","year":"2014","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.ins.2017.09.066_bib0025","series-title":"Surrogate-assisted evolutionary algorithms","author":"Loshchilov","year":"2013"},{"key":"10.1016\/j.ins.2017.09.066_bib0026","unstructured":"I. Loshchilov, T. Glasmachers, Black-box optimization competition (BBComp), (http:\/\/bbcomp.ini.rub.de\/)."},{"key":"10.1016\/j.ins.2017.09.066_bib0027","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1561\/2200000038","article-title":"From bandits to Monte-Carlo tree search: the optimistic principle applied to optimization and planning","volume":"7(1)","author":"Munos","year":"2014","journal-title":"Found. Trends Mach. Learn."},{"key":"10.1016\/j.ins.2017.09.066_bib0028","series-title":"Proceedings of the Advances in Neural Information Processing Systems","article-title":"Optimistic optimization of deterministic functions without the knowledge of its smoothness","author":"Munos","year":"2011"},{"key":"10.1016\/j.ins.2017.09.066_bib0029","series-title":"Proceedings of the Twenty-Second International Conference on Machine Learning","first-page":"601","article-title":"Dynamic preferences in multi-criteria reinforcement learning","author":"Natarajan","year":"2005"},{"key":"10.1016\/j.ins.2017.09.066_bib0030","series-title":"Manual of Political Economy","author":"Pareto","year":"1971"},{"key":"10.1016\/j.ins.2017.09.066_bib0031","series-title":"Global optimization in action: continuous and Lipschitz optimization: algorithms, implementations and applications","volume":"6","author":"Pint\u00e9r","year":"1995"},{"key":"10.1016\/j.ins.2017.09.066_bib0032","series-title":"Proceedings of the IEEE Congress on Evolutionary Computation (CEC)","first-page":"2245","article-title":"Bandits attack function optimization","author":"Preux","year":"2014"},{"key":"10.1016\/j.ins.2017.09.066_bib0033","series-title":"Evolutionary Programming VII","first-page":"345","article-title":"Evolutionary search for minimal elements in partially ordered finite sets","author":"Rudolph","year":"1998"},{"key":"10.1016\/j.ins.2017.09.066_bib0034","series-title":"Proceedings of the IEEE Symposium Series on Computational Intelligence (SSCI)","first-page":"1","article-title":"Multi-objective self regulating particle swarm optimization algorithm for BMOBench platform","author":"Tanweer","year":"2016"},{"key":"10.1016\/j.ins.2017.09.066_bib0035","doi-asserted-by":"crossref","first-page":"285","DOI":"10.1093\/biomet\/25.3-4.285","article-title":"On the likelihood that one unknown probability exceeds another in view of the evidence of two samples","author":"Thompson","year":"1933","journal-title":"Biometrika"},{"key":"10.1016\/j.ins.2017.09.066_bib0036","series-title":"Proceedings of the Thirtieth International Conference on Machine Learning (ICML-13)","first-page":"19","article-title":"Stochastic simultaneous optimistic optimization","author":"Valko","year":"2013"},{"key":"10.1016\/j.ins.2017.09.066_bib0037","series-title":"Proceedings of the Twelfth Annual Conference on Genetic and Evolutionary Computation","first-page":"487","article-title":"Improved step size adaptation for the MO-CMA-ES","author":"Vo\u00df","year":"2010"},{"key":"10.1016\/j.ins.2017.09.066_bib0038","first-page":"175","article-title":"Modifications of UCT and sequence-like simulations for Monte-Carlo go.","volume":"7","author":"Wang","year":"2007"},{"key":"10.1016\/j.ins.2017.09.066_sbref0038","author":"Wang","year":"2014","journal-title":"Bayesian multi-scale optimistic optimization"},{"key":"10.1016\/j.ins.2017.09.066_bib0040","series-title":"Proceedings of the Conference on Genetic and Evolutionary Computation Conference Companion","first-page":"1201","article-title":"Hypervolume-based direct for multi-objective optimisation","author":"Wong","year":"2016"},{"issue":"6","key":"10.1016\/j.ins.2017.09.066_bib0041","doi-asserted-by":"crossref","first-page":"712","DOI":"10.1109\/TEVC.2007.892759","article-title":"MOEA\/D: a multiobjective evolutionary algorithm based on decomposition","volume":"11","author":"Zhang","year":"2007","journal-title":"IEEE Trans. Evolut. Comput."},{"key":"10.1016\/j.ins.2017.09.066_bib0042","series-title":"Proceedings of the Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems (EUROGEN 2001)","first-page":"95","article-title":"SPEA2: improving the strength pareto evolutionary algorithm for multiobjective optimization","author":"Zitzler","year":"2002"},{"issue":"2","key":"10.1016\/j.ins.2017.09.066_bib0043","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1109\/TEVC.2003.810758","article-title":"Performance assessment of multiobjective optimizers: an analysis and review","volume":"7","author":"Zitzler","year":"2003","journal-title":"IEEE Trans. Evol. Comput."}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025517309854?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0020025517309854?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,11,5]],"date-time":"2020-11-05T23:21:57Z","timestamp":1604618517000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0020025517309854"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,1]]},"references-count":43,"alternative-id":["S0020025517309854"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2017.09.066","relation":{},"ISSN":["0020-0255"],"issn-type":[{"value":"0020-0255","type":"print"}],"subject":[],"published":{"date-parts":[[2018,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Multi-Objective Simultaneous Optimistic Optimization","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2017.09.066","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}