{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,5]],"date-time":"2024-09-05T16:48:09Z","timestamp":1725554889981},"reference-count":54,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2016,11,1]],"date-time":"2016-11-01T00:00:00Z","timestamp":1477958400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2016,11]]},"DOI":"10.1016\/j.ins.2016.05.038","type":"journal-article","created":{"date-parts":[[2016,5,30]],"date-time":"2016-05-30T20:51:09Z","timestamp":1464641469000},"page":"41-57","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":84,"special_numbering":"C","title":["A novel forecasting method based on multi-order fuzzy time series and technical analysis"],"prefix":"10.1016","volume":"367-368","author":[{"given":"Furong","family":"Ye","sequence":"first","affiliation":[]},{"given":"Liming","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Defu","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Hamido","family":"Fujita","sequence":"additional","affiliation":[]},{"given":"Zhiguo","family":"Gong","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ins.2016.05.038_bib0001","doi-asserted-by":"crossref","first-page":"269","DOI":"10.1016\/0165-0114(93)90372-O","article-title":"Fuzzy time series and its models","volume":"54","author":"Song","year":"1993","journal-title":"Fuzzy Sets Syst."},{"key":"10.1016\/j.ins.2016.05.038_bib0002","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/0165-0114(93)90355-L","article-title":"Forecasting enrollments with fuzzy time series, Part I","volume":"54","author":"Song","year":"1993","journal-title":"Fuzzy Sets Syst."},{"key":"10.1016\/j.ins.2016.05.038_bib0003","doi-asserted-by":"crossref","first-page":"311","DOI":"10.1016\/0165-0114(95)00220-0","article-title":"Forecasting enrollments based on fuzzy time series","volume":"81","author":"Chen","year":"1996","journal-title":"Fuzzy Sets Syst."},{"key":"10.1016\/j.ins.2016.05.038_bib0004","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1016\/S0165-0114(97)00121-8","article-title":"Handling forecasting problems using fuzzy time series","volume":"100","author":"Hwang","year":"1998","journal-title":"Fuzzy Sets Syst."},{"key":"10.1016\/j.ins.2016.05.038_bib0005","first-page":"67","article-title":"Modified Weighted for Enrollment Forecasting Based on Fuzzy Time Series","volume":"25","author":"Lee","year":"2009","journal-title":"MATEMATIKA"},{"key":"10.1016\/j.ins.2016.05.038_bib0006","doi-asserted-by":"crossref","first-page":"328","DOI":"10.1109\/TSMCB.2005.857093","article-title":"Ratio-based lengths of intervals to improve fuzzy time series forecasting","volume":"36","author":"Huarng","year":"2006","journal-title":"IEEE Trans. Syst. Man. Cybern. Part B Cybern."},{"key":"10.1016\/j.ins.2016.05.038_bib0007","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1016\/j.datak.2008.06.002","article-title":"Fuzzy time series model based on probabilistic approach and rough set rule induction for empirical research in stock markets","volume":"67","author":"Teoh","year":"2008","journal-title":"Data Knowl. Eng."},{"key":"10.1016\/j.ins.2016.05.038_bib0008","doi-asserted-by":"crossref","first-page":"2857","DOI":"10.1016\/j.physa.2008.01.099","article-title":"A refined fuzzy time series model for stock market forecasting","volume":"387","author":"Jilani","year":"2008","journal-title":"Physica A"},{"key":"10.1016\/j.ins.2016.05.038_bib0009","doi-asserted-by":"crossref","first-page":"657","DOI":"10.1016\/j.physa.2004.07.024","article-title":"A refined fuzzy time-series model for forecasting","volume":"346","author":"Yu","year":"2005","journal-title":"Physica A, Stat. Theor. Phys."},{"key":"10.1016\/j.ins.2016.05.038_bib0010","doi-asserted-by":"crossref","first-page":"4228","DOI":"10.1016\/j.eswa.2008.04.001","article-title":"Forecasting in high order fuzzy time series by using neural networks to define fuzzy relations","volume":"36","author":"Aladag","year":"2009","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.ins.2016.05.038_bib0011","doi-asserted-by":"crossref","first-page":"875","DOI":"10.1016\/j.matcom.2010.09.011","article-title":"A high order fuzzy time series forecasting model based on adaptive expectation and artificial neural networks","volume":"81","author":"Aladag","year":"2010","journal-title":"Math. Comput. Simul"},{"key":"10.1016\/j.ins.2016.05.038_bib0012","doi-asserted-by":"crossref","first-page":"647","DOI":"10.1016\/j.asoc.2008.09.002","article-title":"A new approach for determining the length of intervals for fuzzy time series","volume":"9","author":"Yolcu","year":"2009","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.ins.2016.05.038_bib0013","doi-asserted-by":"crossref","first-page":"7424","DOI":"10.1016\/j.eswa.2008.09.040","article-title":"A new hybrid approach based on SARIMA and partial high order bivariate fuzzy time series forecasting model","volume":"36","author":"Egrioglu","year":"2009","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.ins.2016.05.038_bib0014","doi-asserted-by":"crossref","first-page":"10355","DOI":"10.1016\/j.eswa.2011.02.052","article-title":"Fuzzy time series forecasting method based on Gustafson-Kessel fuzzy clustering","volume":"38","author":"Egrioglu,C.H. Aladag","year":"2011","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.ins.2016.05.038_bib0015","doi-asserted-by":"crossref","first-page":"485","DOI":"10.1002\/int.20145","article-title":"Forecasting enrollments using high-order fuzzy time series and genetic algorithms","volume":"21","author":"Chen","year":"2006","journal-title":"Int. J. Intell. Syst."},{"key":"10.1016\/j.ins.2016.05.038_bib0016","doi-asserted-by":"crossref","first-page":"377","DOI":"10.1016\/j.physa.2007.02.084","article-title":"Fuzzy time-series based on Fibonacci sequence for stock price forecasting","volume":"380","author":"Chen","year":"2007","journal-title":"Physica A"},{"key":"10.1016\/j.ins.2016.05.038_bib0017","doi-asserted-by":"crossref","first-page":"1610","DOI":"10.1016\/j.ins.2010.01.014","article-title":"A hybrid model based on rough sets theory and genetic algorithms for stock price forecasting","volume":"180","author":"Cheng","year":"2010","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2016.05.038_bib0018","doi-asserted-by":"crossref","first-page":"11070","DOI":"10.1016\/j.eswa.2009.02.085","article-title":"Forecasting enrollments using automatic clustering techniques and fuzzy logic relationships","volume":"36","author":"Chen","year":"2009","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.ins.2016.05.038_bib0019","doi-asserted-by":"crossref","first-page":"10594","DOI":"10.1016\/j.eswa.2011.02.098","article-title":"Multivariate fuzzy forecasting based on fuzzy time series and automatic clustering techniques","volume":"38","author":"Chen","year":"2011","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.ins.2016.05.038_bib0020","doi-asserted-by":"crossref","first-page":"1235","DOI":"10.1016\/j.eswa.2006.12.013","article-title":"Multi-attribute fuzzy time series method based on fuzzy clustering","volume":"34","author":"Cheng","year":"2008","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.ins.2016.05.038_bib0021","doi-asserted-by":"crossref","first-page":"2143","DOI":"10.1016\/j.eswa.2007.12.013","article-title":"Temperature prediction and TAIFEX forecasting based on automatic clustering techniques and two-factor high-order fuzzy time series","volume":"36","author":"Wang","year":"2009","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.ins.2016.05.038_bib0022","doi-asserted-by":"crossref","first-page":"3052","DOI":"10.1016\/j.camwa.2008.07.033","article-title":"A FCM-based deterministic forecasting model for fuzzy time series","volume":"56","author":"Li","year":"2008","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.ins.2016.05.038_bib0023","series-title":"The Complete Resource for Financial Market Technicians","author":"Kirkpatrick","year":"2006"},{"key":"10.1016\/j.ins.2016.05.038_bib0024","first-page":"154","article-title":"Fuzzy time series forecasting using percentage change as the universe of discourse, world academy of science","volume":"55","author":"Stevenson","year":"2009","journal-title":"Eng. Technol."},{"key":"10.1016\/j.ins.2016.05.038_bib0025","doi-asserted-by":"crossref","first-page":"468","DOI":"10.1109\/TFUZZ.2006.876367","article-title":"Handling forecasting problem based on two-factors high-order fuzzy time series","volume":"14","author":"Lee","year":"1996","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.ins.2016.05.038_bib0026","doi-asserted-by":"crossref","first-page":"836","DOI":"10.1109\/TSMCB.2006.890303","article-title":"A multivariate heuristic model for fuzzy time-series forecasting","volume":"37","author":"Huarng","year":"2007","journal-title":"IEEE Trans. Syst. Man Cybern. Part B Cybern."},{"key":"10.1016\/j.ins.2016.05.038_bib0027","doi-asserted-by":"crossref","first-page":"2945","DOI":"10.1016\/j.eswa.2007.05.016","article-title":"A bivariate fuzzy time series model to forecast the TAIEX","volume":"34","author":"Yu","year":"2008","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.ins.2016.05.038_bib0028","doi-asserted-by":"crossref","first-page":"5529","DOI":"10.1016\/j.eswa.2010.03.063","article-title":"Corrigendum to A bivariate fuzzy time series model to forecast the TAIEX","volume":"37","author":"Yu","year":"2010","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.ins.2016.05.038_bib0029","doi-asserted-by":"crossref","first-page":"4772","DOI":"10.1016\/j.ins.2010.08.026","article-title":"Multi-variable fuzzy forecasting based on fuzzy clustering and fuzzy interpolation techniques","volume":"180","author":"Chen","year":"2010","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2016.05.038_bib0030","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TFUZZ.2010.2073712","article-title":"TAIEX forecasting based on fuzzy time series and fuzzy variation groups","volume":"19","author":"Chen","year":"2011","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.ins.2016.05.038_bib0031","series-title":"Proceedings of 2011 IEEE International Conference on Systems, Man, and Cybernetics","first-page":"2301","article-title":"A new method for fuzzy forecasting based on two-factors high-order fuzzy-trend logical relationship groups and particle swarm optimization techniques","author":"Chen","year":"2011"},{"key":"10.1016\/j.ins.2016.05.038_bib0032","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1016\/j.eswa.2005.09.020","article-title":"An evolutionary approach to the combination of multiple classifiers to predict a stock price index","volume":"32","author":"Kim","year":"2006","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.ins.2016.05.038_bib0033","doi-asserted-by":"crossref","first-page":"10589","DOI":"10.1016\/j.eswa.2009.02.057","article-title":"A new approach based on artificial neural networks for high order multivariate fuzzy time series","volume":"36","author":"Egrioglu","year":"2009","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.ins.2016.05.038_bib0034","doi-asserted-by":"crossref","first-page":"5630","DOI":"10.1016\/j.eswa.2010.02.049","article-title":"Choosing the appropriate order in fuzzy time series: a new N-factor fuzzy time series for prediction of the auto industry production","volume":"37","author":"Avazbeigi","year":"2010","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.ins.2016.05.038_bib0035","doi-asserted-by":"crossref","first-page":"959","DOI":"10.1016\/j.eswa.2009.05.081","article-title":"TAIFEX and KOSPI 200 forecasting based on two-factors high-order fuzzy time series and particle swarm optimization","volume":"37","author":"Park","year":"2010","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.ins.2016.05.038_bib0036","first-page":"106","article-title":"Application of neural networks in financial data mining","volume":"1","author":"Zhang","year":"2004","journal-title":"Int.J. Comput. Intell."},{"key":"10.1016\/j.ins.2016.05.038_bib0037","series-title":"Exponential Smoothing for Predicting Demand","first-page":"15","author":"Brown","year":"1956"},{"key":"10.1016\/j.ins.2016.05.038_bib0038","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1016\/S0169-2070(99)00048-5","article-title":"Forecasting stock indices: a comparison of classification and level estimation models","volume":"16","author":"Leung","year":"2000","journal-title":"Int. J. Forecast."},{"key":"10.1016\/j.ins.2016.05.038_bib0039","doi-asserted-by":"crossref","first-page":"481","DOI":"10.1016\/j.physa.2005.08.014","article-title":"The application of neural networks to forecast fuzzy time series","volume":"363","author":"Huarng","year":"2006","journal-title":"Physica A"},{"key":"10.1016\/j.ins.2016.05.038_bib0040","doi-asserted-by":"crossref","first-page":"279","DOI":"10.1016\/0165-0114(94)90152-X","article-title":"A comparison of fuzzy forecasting and Markov modeling","volume":"64","author":"Sullivan","year":"1994","journal-title":"Fuzzy Sets Syst."},{"key":"10.1016\/j.ins.2016.05.038_bib0041","first-page":"162","article-title":"Prediction of Stock Market Index Using Genetic Algorithm","volume":"3","author":"Lakshman Naik","year":"2012","journal-title":"Comput. Eng. Intell. Syst."},{"key":"10.1016\/j.ins.2016.05.038_bib0042","series-title":"Proceedings of the Twenty-Seventh Hawaii International Conference on System Sciences","first-page":"281","article-title":"A stock market forecasting support system based on fuzzy logic","volume":"3","author":"Hiemstra","year":"1994"},{"key":"10.1016\/j.ins.2016.05.038_bib0043","doi-asserted-by":"crossref","first-page":"947","DOI":"10.1016\/j.asoc.2012.09.024","article-title":"Support vector regression with chaos-based firefly algorithm for stock market price forecasting","volume":"13","author":"Kazem","year":"2013","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.ins.2016.05.038_bib0044","doi-asserted-by":"crossref","first-page":"758","DOI":"10.1016\/j.omega.2011.07.008","article-title":"Stock index forecasting based on a hybrid model","volume":"40","author":"Wang","year":"2012","journal-title":"Omega"},{"key":"10.1016\/j.ins.2016.05.038_bib0045","doi-asserted-by":"crossref","first-page":"609","DOI":"10.1016\/j.physa.2004.11.006","article-title":"Weighted fuzzy time-series models for TAIEX forecasting","volume":"349","author":"Yu","year":"2004","journal-title":"Physica A"},{"key":"10.1016\/j.ins.2016.05.038_bib0046","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1016\/j.ins.2013.06.005","article-title":"TAIEX forecasting based on fuzzy time series, particle swarm optimization techniques and support vector machines","volume":"247","author":"Chen","year":"2013","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2016.05.038_bib0047","doi-asserted-by":"crossref","first-page":"1155","DOI":"10.1016\/j.procs.2013.05.281","article-title":"A novel stock forecasting model based on fuzzy time series and genetic algorithm","volume":"18","author":"Cai","year":"2013","journal-title":"Proc. Comput. Sci."},{"key":"10.1016\/j.ins.2016.05.038_bib0048","doi-asserted-by":"crossref","first-page":"8107","DOI":"10.1016\/j.eswa.2008.10.034","article-title":"A distance-based fuzzy time series model for exchange rates forecasting","volume":"36","author":"Leu","year":"2009","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.ins.2016.05.038_bib0049","doi-asserted-by":"crossref","first-page":"1102","DOI":"10.1109\/TSMCB.2012.2223815","article-title":"Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and particle swarm optimization techniques","volume":"43","author":"Chen","year":"2013","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.ins.2016.05.038_bib0050","doi-asserted-by":"crossref","first-page":"86","DOI":"10.1016\/j.asoc.2014.01.022","article-title":"A hybrid ANFIS based on n-period moving average model to forecast TAIEX stock","volume":"19","author":"Wei","year":"2014","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.ins.2016.05.038_bib0051","doi-asserted-by":"crossref","first-page":"227","DOI":"10.1016\/j.ins.2014.09.038","article-title":"A hybrid fuzzy time series model based on granular computing for stock price forecasting","volume":"294","author":"Chen","year":"2015","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ins.2016.05.038_bib0052","first-page":"405","article-title":"Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and the probabilities of trends of fuzzy logical relationships","volume":"45","author":"Chen","year":"2015","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.ins.2016.05.038_bib0053","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1016\/j.knosys.2014.11.003","article-title":"A new fuzzy time series forecasting model combined with ant colony optimization and auto-regression","volume":"74","author":"Cai","year":"2015","journal-title":"Knowl. Based Syst."},{"key":"10.1016\/j.ins.2016.05.038_bib0054","series-title":"International Conference on Computational Science and Engineering","first-page":"217","article-title":"Evolutionary computation with multi-variates hybrid multi-order fuzzy time series for stock forecasting","author":"Wan","year":"2014"}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S002002551630370X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S002002551630370X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2018,9,11]],"date-time":"2018-09-11T11:21:55Z","timestamp":1536664915000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S002002551630370X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016,11]]},"references-count":54,"alternative-id":["S002002551630370X"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2016.05.038","relation":{},"ISSN":["0020-0255"],"issn-type":[{"value":"0020-0255","type":"print"}],"subject":[],"published":{"date-parts":[[2016,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A novel forecasting method based on multi-order fuzzy time series and technical analysis","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2016.05.038","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2016 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}