{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T18:31:52Z","timestamp":1726425112035},"reference-count":44,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2015,2,1]],"date-time":"2015-02-01T00:00:00Z","timestamp":1422748800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100006280","name":"Spanish Ministry of Science and Technology","doi-asserted-by":"crossref","award":["TIN2011-28488"],"id":[{"id":"10.13039\/501100006280","id-type":"DOI","asserted-by":"crossref"}]},{"name":"Spanish Ministry of Economy and Competitiveness","award":["TIN2011-24302"]},{"name":"Andalusian Government","award":["P10-TIC-6858"]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Sciences"],"published-print":{"date-parts":[[2015,2]]},"DOI":"10.1016\/j.ins.2014.10.027","type":"journal-article","created":{"date-parts":[[2014,10,22]],"date-time":"2014-10-22T15:02:41Z","timestamp":1413990161000},"page":"358-378","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":34,"special_numbering":"C","title":["Genetic learning of the membership functions for mining fuzzy association rules from low quality data"],"prefix":"10.1016","volume":"295","author":[{"given":"Ana Mar\u00eda","family":"Palacios","sequence":"first","affiliation":[]},{"given":"Jos\u00e9 Luis","family":"Palacios","sequence":"additional","affiliation":[]},{"given":"Luciano","family":"S\u00e1nchez","sequence":"additional","affiliation":[]},{"given":"Jes\u00fas","family":"Alcal\u00e1-Fdez","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"5","key":"10.1016\/j.ins.2014.10.027_b0005","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TKDE.2008.190","article-title":"A survey of uncertain data algorithms and applications","volume":"21","author":"Aggarwal","year":"2009","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.ins.2014.10.027_b0010","unstructured":"R. Agrawal, R. Srikant, Fast algorithms for mining association rules, in: International Conference on Very Large Data Bases, Santiago de Chile, 1994, pp. 487\u2013499."},{"issue":"5","key":"10.1016\/j.ins.2014.10.027_b0015","doi-asserted-by":"crossref","first-page":"401","DOI":"10.1007\/s00500-006-0106-2","article-title":"Rule base reduction and genetic tuning of fuzzy systems based on the linguistic 3-tuples representation","volume":"11","author":"Alcal\u00e1","year":"2007","journal-title":"Soft Comput."},{"issue":"4","key":"10.1016\/j.ins.2014.10.027_b0020","doi-asserted-by":"crossref","first-page":"666","DOI":"10.1109\/TFUZZ.2011.2131657","article-title":"A fast and scalable multi-objective genetic fuzzy system for linguistic fuzzy modeling in high-dimensional regression problems","volume":"19","author":"Alcal\u00e1","year":"2011","journal-title":"IEEE Trans. Fuzzy Syst."},{"issue":"5","key":"10.1016\/j.ins.2014.10.027_b0025","doi-asserted-by":"crossref","first-page":"857","DOI":"10.1109\/TFUZZ.2011.2147794","article-title":"A fuzzy association rule-based classification model for high-dimensional problems with genetic rule selection and lateral tuning","volume":"19","author":"Alcal\u00e1-Fdez","year":"2011","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.ins.2014.10.027_b0030","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1016\/j.knosys.2013.09.002","article-title":"Moga-based fuzzy data mining with taxonomy","volume":"54","author":"Chen","year":"2013","journal-title":"Knowl.-Based Syst."},{"issue":"2","key":"10.1016\/j.ins.2014.10.027_b0035","doi-asserted-by":"crossref","first-page":"343","DOI":"10.1080\/18756891.2012.685314","article-title":"Finding pareto-front membership functions in fuzzy data mining","volume":"5","author":"Chen","year":"2012","journal-title":"Int. J. Comput. Intell. Syst."},{"key":"10.1016\/j.ins.2014.10.027_b0040","series-title":"Genetic Fuzzy Systems: Evolutionary Tuning and Learning of Fuzzy Knowledge Bases","author":"Cord\u00f3n","year":"2001"},{"key":"10.1016\/j.ins.2014.10.027_b0045","article-title":"Genetic fuzzy systems: evolutionary tuning and learning of fuzzy knowledge bases","volume":"vol. 19","author":"Cord\u00f3n","year":"2001"},{"key":"10.1016\/j.ins.2014.10.027_b0050","series-title":"Random Sets and Random Fuzzy Sets as Ill-Perceived Random Variables, SpringerBriefs in Applied Sciences and Technology","author":"Couso","year":"2014"},{"issue":"3","key":"10.1016\/j.ins.2014.10.027_b0055","doi-asserted-by":"crossref","first-page":"237","DOI":"10.1016\/j.fss.2007.09.004","article-title":"Higher order models for fuzzy random variables","volume":"159","author":"Couso","year":"2008","journal-title":"Fuzzy Sets Syst."},{"issue":"2","key":"10.1016\/j.ins.2014.10.027_b0060","doi-asserted-by":"crossref","first-page":"214","DOI":"10.1109\/TFUZZ.2003.809896","article-title":"Fuzzy association rules: general model and applications","volume":"11","author":"Delgado","year":"2003","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.ins.2014.10.027_b0065","series-title":"An Introduction to Fuzzy Control","author":"Driankov","year":"1993"},{"issue":"3","key":"10.1016\/j.ins.2014.10.027_b0070","doi-asserted-by":"crossref","first-page":"279","DOI":"10.1016\/0165-0114(87)90028-5","article-title":"The mean value of a fuzzy number","volume":"24","author":"Dubois","year":"1987","journal-title":"Fuzzy Sets Syst."},{"issue":"1","key":"10.1016\/j.ins.2014.10.027_b0075","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1109\/91.273117","article-title":"Fuzzy sets \u2013 a convenient fiction for modeling vagueness and possibility","volume":"2","author":"Dubois","year":"1994","journal-title":"IEEE Trans. Fuzzy Syst."},{"issue":"2","key":"10.1016\/j.ins.2014.10.027_b0080","doi-asserted-by":"crossref","first-page":"250","DOI":"10.1109\/TFUZZ.2004.840130","article-title":"On the representation, measurement, and discovery of fuzzy associations","volume":"13","author":"Dubois","year":"2005","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.ins.2014.10.027_b0085","series-title":"Introduction to Evolutionary Computing","author":"Eiben","year":"2003"},{"key":"10.1016\/j.ins.2014.10.027_b0090","first-page":"265","article-title":"The chc adaptive search algorithm: how to have safe search when engaging in nontraditional genetic recombination","volume":"vol. 1","author":"Eshelman","year":"1991"},{"key":"10.1016\/j.ins.2014.10.027_b0095","first-page":"187","article-title":"Real-coded genetic algorithms and interval schemata","volume":"vol. 2","author":"Eshelman","year":"1993"},{"issue":"3","key":"10.1016\/j.ins.2014.10.027_b0100","doi-asserted-by":"crossref","first-page":"515","DOI":"10.1109\/TFUZZ.2010.2041008","article-title":"Integration of an index to preserve the semantic interpretability in the multiobjective evolutionary rule selection and tuning of linguistic fuzzy systems","volume":"18","author":"Gacto","year":"2010","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.ins.2014.10.027_b0105","series-title":"Genetic Algorithms in Search, Optimization, and Machine Learning","author":"Goldberg","year":"1989"},{"issue":"3","key":"10.1016\/j.ins.2014.10.027_b0110","doi-asserted-by":"crossref","first-page":"257","DOI":"10.1142\/S0218488599000192","article-title":"A study about the inclusion of linguistic hedges in a fuzzy rule learning algorithm","volume":"7","author":"Gonz\u00e1lez","year":"1999","journal-title":"Int. J. Uncertain. Fuzziness Knowl.-Based Syst."},{"key":"10.1016\/j.ins.2014.10.027_b0115","series-title":"Data Mining: Concepts and Techniques","author":"Han","year":"2006"},{"issue":"1","key":"10.1016\/j.ins.2014.10.027_b0120","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1007\/s12065-007-0001-5","article-title":"Genetic fuzzy systems: taxonomy, current search trends and prospects","volume":"1","author":"Herrera","year":"2008","journal-title":"Evol. Intell."},{"issue":"5","key":"10.1016\/j.ins.2014.10.027_b0125","doi-asserted-by":"crossref","first-page":"587","DOI":"10.1142\/S0218488501001071","article-title":"Trade-off between time complexity and number of rules for fuzzy mining from quantitative data","volume":"9","author":"Hong","year":"2001","journal-title":"Int. J. Uncertain Fuzziness Knowl.-Based Syst."},{"key":"10.1016\/j.ins.2014.10.027_b0130","first-page":"397","article-title":"An overview of mining fuzzy association rules","volume":"vol. 220","author":"Hong","year":"2008"},{"key":"10.1016\/j.ins.2014.10.027_b0135","volume":"vol. 1","author":"Ishibuchi","year":"2001"},{"key":"10.1016\/j.ins.2014.10.027_b0140","series-title":"Uncertainty and Vagueness in Knowledge Based Systems, Artificial Intelligence","author":"Kruse","year":"1991"},{"issue":"6","key":"10.1016\/j.ins.2014.10.027_b0145","doi-asserted-by":"crossref","first-page":"4560","DOI":"10.1016\/j.eswa.2009.12.052","article-title":"Linguistic data mining with fuzzy fp-trees","volume":"37","author":"Lin","year":"2010","journal-title":"Expert Syst. Appl."},{"issue":"1","key":"10.1016\/j.ins.2014.10.027_b0150","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1109\/3477.907563","article-title":"Design of adaptative fuzzy logic controller based on linguistic-hedge and genetic algorithms","volume":"31","author":"Liu","year":"2001","journal-title":"IEEE Trans. Syst. Man Cybernet. Part B: Cybernet."},{"issue":"3","key":"10.1016\/j.ins.2014.10.027_b0155","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1162\/1063656041774983","article-title":"Real-coded memetic algorithms with crossover hill-climbing","volume":"12","author":"Lozano","year":"2004","journal-title":"Evol. Comput."},{"key":"10.1016\/j.ins.2014.10.027_b0160","doi-asserted-by":"crossref","unstructured":"E.H. Mamdani, Application of fuzzy algorithms for control of simple dynamic plant, in: Proc. IEEE, vol. 121, 1974, pp. 1585\u20131588.","DOI":"10.1049\/piee.1974.0328"},{"issue":"1","key":"10.1016\/j.ins.2014.10.027_b0165","doi-asserted-by":"crossref","first-page":"54","DOI":"10.1109\/TEVC.2013.2285016","article-title":"A new multiobjective evolutionary algorithm for mining a reduced set of interesting positive and negative quantitative association rules","volume":"18","author":"Martin","year":"2014","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.ins.2014.10.027_b0170","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.ins.2013.09.009","article-title":"QAR-CIP-NSGA-II: a new multi-objective evolutionary algorithm to mine quantitative association rules","volume":"258","author":"Martin","year":"2014","journal-title":"Inform. Sci."},{"key":"10.1016\/j.ins.2014.10.027_b0175","doi-asserted-by":"crossref","unstructured":"C. Moraga, R. Salas, A new aspect for the optimization of fuzzy if-then rules, in: Proc. of the 35th International Symposium on Multiple-Valued Logic (ISMVL\u201905), 2005, pp. 160\u2013165.","DOI":"10.1109\/ISMVL.2005.3"},{"issue":"5","key":"10.1016\/j.ins.2014.10.027_b0180","doi-asserted-by":"crossref","first-page":"883","DOI":"10.1007\/s00500-011-0775-3","article-title":"Mining fuzzy association rules from low quality data","volume":"16","author":"Palacios","year":"2012","journal-title":"Soft Comput."},{"key":"10.1016\/j.ins.2014.10.027_b0185","doi-asserted-by":"crossref","first-page":"242","DOI":"10.1016\/j.ins.2013.02.010","article-title":"Farp: mining fuzzy association rules from a probabilistic quantitative database","volume":"237","author":"Peia","year":"2013","journal-title":"Inform. Sci."},{"issue":"3","key":"10.1016\/j.ins.2014.10.027_b0190","doi-asserted-by":"crossref","first-page":"607","DOI":"10.1016\/j.ijar.2008.06.005","article-title":"Mutual information-based feature selection and partition design in fuzzy rule-based classifiers from vague data","volume":"49","author":"Sanchez","year":"2008","journal-title":"Int. J. Approx. Reason."},{"key":"10.1016\/j.ins.2014.10.027_b0195","doi-asserted-by":"crossref","unstructured":"J. Shin, T. Bond, Results of an icing test on a naca 0012 airfoil in the nasa lewis icing research tunnel, Reno, NV, 1992, pp. 1\u20139.","DOI":"10.2514\/6.1992-647"},{"key":"10.1016\/j.ins.2014.10.027_b0200","doi-asserted-by":"crossref","unstructured":"L.S\u00e1nchez, I. Couso, J. Casillas, Modeling vague data with genetic fuzzy systems under a combination of crisp and imprecise criteria, Honolulu, Hawaii, USA, 2007, pp. 30\u201337.","DOI":"10.1109\/MCDM.2007.369413"},{"issue":"4","key":"10.1016\/j.ins.2014.10.027_b0205","doi-asserted-by":"crossref","first-page":"489","DOI":"10.1109\/TKDE.2007.190723","article-title":"Mining weighted association rules without preassigned weights","volume":"20","author":"Sun","year":"2008","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.ins.2014.10.027_b0210","first-page":"956","article-title":"Applying fuzzy fp-growth to mine fuzzy association rules","volume":"65","author":"Wang","year":"2010","journal-title":"World Acad. Sci. Eng. Technol."},{"issue":"2","key":"10.1016\/j.ins.2014.10.027_b0215","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1007\/s10115-009-0223-1","article-title":"Mining fuzzy association rules from uncertain data","volume":"23","author":"Weng","year":"2010","journal-title":"Knowl. Inform. Syst."},{"key":"10.1016\/j.ins.2014.10.027_b0220","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"crossref","DOI":"10.1007\/3-540-46027-6","article-title":"Association rule mining: models and algorithms series","author":"Zhang","year":"2002"}],"container-title":["Information Sciences"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S002002551401010X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S002002551401010X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,8,16]],"date-time":"2019-08-16T10:01:35Z","timestamp":1565949695000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S002002551401010X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,2]]},"references-count":44,"alternative-id":["S002002551401010X"],"URL":"https:\/\/doi.org\/10.1016\/j.ins.2014.10.027","relation":{},"ISSN":["0020-0255"],"issn-type":[{"value":"0020-0255","type":"print"}],"subject":[],"published":{"date-parts":[[2015,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Genetic learning of the membership functions for mining fuzzy association rules from low quality data","name":"articletitle","label":"Article Title"},{"value":"Information Sciences","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ins.2014.10.027","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2014 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}