{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,25]],"date-time":"2024-10-25T16:10:06Z","timestamp":1729872606064,"version":"3.28.0"},"reference-count":75,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Fusion"],"published-print":{"date-parts":[[2025,2]]},"DOI":"10.1016\/j.inffus.2024.102713","type":"journal-article","created":{"date-parts":[[2024,9,24]],"date-time":"2024-09-24T16:38:26Z","timestamp":1727195906000},"page":"102713","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Cross-attention guided loss-based deep dual-branch fusion network for liver tumor classification"],"prefix":"10.1016","volume":"114","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-0499-9451","authenticated-orcid":false,"given":"Rui","family":"Wang","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4934-0850","authenticated-orcid":false,"given":"Xiaoshuang","family":"Shi","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0009-0007-9195-8853","authenticated-orcid":false,"given":"Shuting","family":"Pang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6293-4624","authenticated-orcid":false,"given":"Yidi","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Xiaofeng","family":"Zhu","sequence":"additional","affiliation":[]},{"given":"Wentao","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Jiabin","family":"Cai","sequence":"additional","affiliation":[]},{"given":"Danjun","family":"Song","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8136-9816","authenticated-orcid":false,"given":"Kang","family":"Li","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"3","key":"10.1016\/j.inffus.2024.102713_b1","doi-asserted-by":"crossref","first-page":"209","DOI":"10.3322\/caac.21660","article-title":"Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries","volume":"71","author":"Sung","year":"2021","journal-title":"CA Cancer J. Clin."},{"key":"10.1016\/j.inffus.2024.102713_b2","doi-asserted-by":"crossref","DOI":"10.1155\/2016\/8356294","article-title":"Multiscale CNNs for brain tumor segmentation and diagnosis","author":"Zhao","year":"2016","journal-title":"Comput. Math. Methods Med."},{"issue":"1","key":"10.1016\/j.inffus.2024.102713_b3","first-page":"1","article-title":"Two-phase multi-model automatic brain tumour diagnosis system from magnetic resonance images using convolutional neural networks","author":"Abd-Ellah","year":"2018","journal-title":"EURASIP J. Image Video Process."},{"key":"10.1016\/j.inffus.2024.102713_b4","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2023.104988","article-title":"Brain tumor classification utilizing deep features derived from high-quality regions in MRI images","volume":"85","author":"Aamir","year":"2023","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.inffus.2024.102713_b5","doi-asserted-by":"crossref","first-page":"821","DOI":"10.1007\/s00432-020-03366-9","article-title":"Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning","volume":"147","author":"Jiang","year":"2021","journal-title":"J. Cancer Res. Clin. Oncol."},{"key":"10.1016\/j.inffus.2024.102713_b6","doi-asserted-by":"crossref","unstructured":"S.T. Deokate, S. Pede, K. Dhotre, et al., Liver Tumor Detection Using Deep Learning Techniques, in: International Conference on Computing, Communication, Control and Automation, 2023, pp. 1\u20135.","DOI":"10.1109\/ICCUBEA58933.2023.10391975"},{"issue":"1","key":"10.1016\/j.inffus.2024.102713_b7","doi-asserted-by":"crossref","DOI":"10.1080\/08839514.2022.2055395","article-title":"Computer vision approach for liver tumor classification using CT dataset","volume":"36","author":"Hussain","year":"2022","journal-title":"Appl. Artif. Intell."},{"key":"10.1016\/j.inffus.2024.102713_b8","doi-asserted-by":"crossref","DOI":"10.3390\/cancers16020300","article-title":"Advances in the use of deep learning for the analysis of magnetic resonance image in neuro-oncology","volume":"16","author":"Pitarch","year":"2024","journal-title":"Cancers"},{"key":"10.1016\/j.inffus.2024.102713_b9","doi-asserted-by":"crossref","DOI":"10.1016\/j.neucom.2023.127216","article-title":"Ranmerformer: Randomized vision transformer with token merging for brain tumor classification","volume":"573","author":"Wang","year":"2024","journal-title":"Neurocomputing"},{"key":"10.1016\/j.inffus.2024.102713_b10","doi-asserted-by":"crossref","unstructured":"F.A. Maken, Y. Gal, D. McClymont, A.P. Bradley, Multiple instance learning for breast cancer magnetic resonance imaging, in: International Conference on Digital Image Computing: Techniques and Applications, 2014, pp. 1\u20138.","DOI":"10.1109\/DICTA.2014.7008118"},{"issue":"5","key":"10.1016\/j.inffus.2024.102713_b11","doi-asserted-by":"crossref","first-page":"808","DOI":"10.1016\/j.media.2014.04.006","article-title":"Multiple instance learning for classification of dementia in brain MRI","volume":"18","author":"Tong","year":"2014","journal-title":"Med. Image Anal."},{"issue":"9","key":"10.1016\/j.inffus.2024.102713_b12","doi-asserted-by":"crossref","first-page":"2354","DOI":"10.1109\/TMI.2021.3077079","article-title":"Dual attention multi-instance deep learning for Alzheimer\u2019s disease diagnosis with structural MRI","volume":"40","author":"Zhu","year":"2021","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.inffus.2024.102713_b13","doi-asserted-by":"crossref","first-page":"509","DOI":"10.3389\/fnins.2019.00509","article-title":"Diagnosis of Alzheimer\u2019s disease via multi-modality 3D convolutional neural network","volume":"13","author":"Huang","year":"2019","journal-title":"Front. Neurosci."},{"key":"10.1016\/j.inffus.2024.102713_b14","doi-asserted-by":"crossref","unstructured":"Z. Li, L. Yuan, H. Xu, et al., Deep multi-instance learning with induced self-attention for medical image classification, in: International Conference on Bioinformatics and Biomedicine, 2020, pp. 446\u2013450.","DOI":"10.1109\/BIBM49941.2020.9313518"},{"key":"10.1016\/j.inffus.2024.102713_b15","doi-asserted-by":"crossref","first-page":"5602","DOI":"10.1007\/s00330-020-06912-8","article-title":"Survival-relevant high-risk subregion identification for glioblastoma patients: the MRI-based multiple instance learning approach","volume":"30","author":"Zhang","year":"2020","journal-title":"Eur. Radiol."},{"key":"10.1016\/j.inffus.2024.102713_b16","doi-asserted-by":"crossref","first-page":"124","DOI":"10.3390\/info13030124","article-title":"An attentive multi-modal cnn for brain tumor radiogenomic classification","author":"Qu","year":"2022","journal-title":"Information"},{"key":"10.1016\/j.inffus.2024.102713_b17","first-page":"1","article-title":"Using deep learning to predict microvascular invasion in hepatocellular carcinoma based on dynamic contrast-enhanced MRI combined with clinical parameters","author":"Song","year":"2021","journal-title":"J. Cancer Res. Clin. Oncol."},{"issue":"3","key":"10.1016\/j.inffus.2024.102713_b18","doi-asserted-by":"crossref","first-page":"895","DOI":"10.1002\/ima.22839","article-title":"A novel convolutional neural network-based approach for brain tumor classification using magnetic resonance images","volume":"33","author":"Cinar","year":"2023","journal-title":"Int. J. Imaging Syst. Technol."},{"issue":"3","key":"10.1016\/j.inffus.2024.102713_b19","doi-asserted-by":"crossref","first-page":"2541","DOI":"10.1007\/s00521-022-07742-z","article-title":"An attention-guided convolutional neural network for automated classification of brain tumor from MRI","volume":"35","author":"Saurav","year":"2023","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.inffus.2024.102713_b20","series-title":"Medical Image Computing and Computer Assisted Intervention","first-page":"730","article-title":"Multi-label thoracic disease image classification with cross-attention networks","author":"Ma","year":"2019"},{"key":"10.1016\/j.inffus.2024.102713_b21","article-title":"Modality-based attention and dual-stream multiple instance convolutional neural network for predicting microvascular invasion of hepatocellular carcinoma","volume":"13","author":"Li","year":"2023","journal-title":"Front. Oncol."},{"key":"10.1016\/j.inffus.2024.102713_b22","doi-asserted-by":"crossref","DOI":"10.1016\/j.artmed.2021.102194","article-title":"Multiple instance convolutional neural network with modality-based attention and contextual multi-instance learning pooling layer for effective differentiation between borderline and malignant epithelial ovarian tumors","volume":"121","author":"Jian","year":"2021","journal-title":"Artif. Intell. Med."},{"key":"10.1016\/j.inffus.2024.102713_b23","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2021.102105","article-title":"Dual attention multiple instance learning with unsupervised complementary loss for COVID-19 screening","volume":"72","author":"Chikontwe","year":"2021","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.inffus.2024.102713_b24","doi-asserted-by":"crossref","unstructured":"X. Li, W. Wan, Y. Zhou, J. Zhao, Q. Wei, J. Rong, P. Zhou, L. Xu, L. Lang, Y. Liu, et al., Deep multiple instance learning with spatial attention for ROP case classification, instance selection and abnormality localization, in: International Conference on Pattern Recognition, 2021, pp. 7293\u20137298.","DOI":"10.1109\/ICPR48806.2021.9412074"},{"key":"10.1016\/j.inffus.2024.102713_b25","doi-asserted-by":"crossref","unstructured":"C. Shen, J. Zhang, X. Liang, Z. Hao, K. Li, F. Wang, Z. Wang, C. Lian, Forensic Histopathological Recognition via a Context-Aware MIL Network Powered by Self-supervised Contrastive Learning, in: International Conference on Medical Image Computing and Computer-Assisted Intervention, 2023, pp. 528\u2013538.","DOI":"10.1007\/978-3-031-43987-2_51"},{"key":"10.1016\/j.inffus.2024.102713_b26","doi-asserted-by":"crossref","first-page":"1662","DOI":"10.1109\/TIP.2020.3046875","article-title":"Loss-based attention for interpreting image-level prediction of convolutional neural networks","volume":"30","author":"Shi","year":"2021","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.inffus.2024.102713_b27","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2023.102890","article-title":"Multi-scale representation attention based deep multiple instance learning for gigapixel whole slide image analysis","volume":"89","author":"Xiang","year":"2023","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.inffus.2024.102713_b28","first-page":"2136","article-title":"Transmil: Transformer based correlated multiple instance learning for whole slide image classification","volume":"34","author":"Shao","year":"2021","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"12","key":"10.1016\/j.inffus.2024.102713_b29","doi-asserted-by":"crossref","first-page":"6025","DOI":"10.1109\/TIP.2018.2864920","article-title":"A deep multi-modal CNN for multi-instance multi-label image classification","volume":"27","author":"Song","year":"2018","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.inffus.2024.102713_b30","series-title":"ACM International Conference on Multimedia","first-page":"2474","article-title":"Multi-modal multi-instance learning for retinal disease recognition","author":"Li","year":"2021"},{"key":"10.1016\/j.inffus.2024.102713_b31","series-title":"Medical Imaging with Deep Learning","first-page":"682","article-title":"Cluster-to-conquer: A framework for end-to-end multi-instance learning for whole slide image classification","author":"Sharma","year":"2021"},{"issue":"6","key":"10.1016\/j.inffus.2024.102713_b32","doi-asserted-by":"crossref","first-page":"1591","DOI":"10.1109\/TMI.2021.3059956","article-title":"Multi-modal retinal image classification with modality-specific attention network","volume":"40","author":"He","year":"2021","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.inffus.2024.102713_b33","doi-asserted-by":"crossref","unstructured":"F.A. Santos, M.D. de Souza, P. Oliveira, L.N. Matos, P. Novais, C. Zanchettin, Image Classification Understanding with Model Inspector Tool, in: International Conference on Hybrid Artificial Intelligence Systems, 2023, pp. 611\u2013622.","DOI":"10.1007\/978-3-031-40725-3_52"},{"issue":"12","key":"10.1016\/j.inffus.2024.102713_b34","doi-asserted-by":"crossref","first-page":"642","DOI":"10.3390\/info14120642","article-title":"Explainable deep learning approach for multi-class brain magnetic resonance imaging tumor classification and localization using gradient-weighted class activation mapping","volume":"14","author":"Hussain","year":"2023","journal-title":"Information"},{"key":"10.1016\/j.inffus.2024.102713_b35","doi-asserted-by":"crossref","unstructured":"D.E.B. Schiavon, C.D.L. Becker, V.R. Botelho, T.A. Pianoski, Interpreting convolutional neural networks for brain tumor classification: An explainable artificial intelligence approach, in: Brazilian Conference on Intelligent Systems, 2023, pp. 77\u201391.","DOI":"10.1007\/978-3-031-45389-2_6"},{"key":"10.1016\/j.inffus.2024.102713_b36","article-title":"A robust approach for multi-type classification of brain tumor using deep feature fusion","volume":"18","author":"Chen","year":"2024","journal-title":"Front. Neurosci."},{"issue":"4","key":"10.1016\/j.inffus.2024.102713_b37","doi-asserted-by":"crossref","first-page":"2067","DOI":"10.1007\/s00521-023-09164-x","article-title":"An integrated convolutional neural network with attention guidance for improved performance of medical image classification","volume":"36","author":"\u00d6ks\u00fcz","year":"2024","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.inffus.2024.102713_b38","unstructured":"M. Ilse, J. Tomczak, M. Welling, Attention-based deep multiple instance learning, in: International Conference on Machine Learning, 2018, pp. 2127\u20132136."},{"issue":"8","key":"10.1016\/j.inffus.2024.102713_b39","doi-asserted-by":"crossref","first-page":"2584","DOI":"10.1109\/TMI.2020.2996256","article-title":"Accurate screening of COVID-19 using attention-based deep 3D multiple instance learning","volume":"39","author":"Han","year":"2020","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"04","key":"10.1016\/j.inffus.2024.102713_b40","doi-asserted-by":"crossref","first-page":"5742","DOI":"10.1609\/aaai.v34i04.6030","article-title":"Loss-based attention for deep multiple instance learning","volume":"34","author":"Shi","year":"2020","journal-title":"Proceedings of the AAAI Conference on Artificial Intelligence"},{"issue":"4","key":"10.1016\/j.inffus.2024.102713_b41","doi-asserted-by":"crossref","DOI":"10.1016\/j.xops.2023.100311","article-title":"Deep-GA-Net for accurate and explainable detection of geographic atrophy on OCT scans","volume":"3","author":"Elsawy","year":"2023","journal-title":"Ophthalmol. Sci."},{"key":"10.1016\/j.inffus.2024.102713_b42","doi-asserted-by":"crossref","first-page":"3338","DOI":"10.1007\/s00330-019-06205-9","article-title":"Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI","volume":"29","author":"Hamm","year":"2019","journal-title":"Eur. Radiol."},{"key":"10.1016\/j.inffus.2024.102713_b43","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2021.102154","article-title":"United adversarial learning for liver tumor segmentation and detection of multi-modality non-contrast MRI","volume":"73","author":"Zhao","year":"2021","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.inffus.2024.102713_b44","first-page":"29","article-title":"MobileNetV1-based deep learning model for accurate brain tumor classification","volume":"2023","author":"Mijwil","year":"2023","journal-title":"Mesop. J. Comput. Sci."},{"key":"10.1016\/j.inffus.2024.102713_b45","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2023.119782","article-title":"Heuristic multi-modal integration framework for liver tumor detection from multi-modal non-enhanced MRIs","volume":"221","author":"Zhang","year":"2023","journal-title":"Expert Syst. Appl."},{"issue":"1","key":"10.1016\/j.inffus.2024.102713_b46","doi-asserted-by":"crossref","first-page":"134","DOI":"10.1002\/jmri.27538","article-title":"Deep learning with 3D convolutional neural network for noninvasive prediction of microvascular invasion in hepatocellular carcinoma","volume":"54","author":"Zhang","year":"2021","journal-title":"J. Magn. Reson. Imaging"},{"key":"10.1016\/j.inffus.2024.102713_b47","article-title":"Prediction of microvascular invasion of hepatocellular carcinoma based on contrast-enhanced MR and 3D convolutional neural networks","author":"Zhou","year":"2021","journal-title":"Front. Oncol."},{"key":"10.1016\/j.inffus.2024.102713_b48","doi-asserted-by":"crossref","DOI":"10.1186\/s12957-022-02645-8","article-title":"Deep-learning-based analysis of preoperative MRI predicts microvascular invasion and outcome in hepatocellular carcinoma","author":"Sun","year":"2022","journal-title":"World J. Surg. Oncol."},{"key":"10.1016\/j.inffus.2024.102713_b49","article-title":"Application of a convolutional neural network for multitask learning to simultaneously predict microvascular invasion and vessels that encapsulate tumor clusters in hepatocellular carcinoma","author":"Chu","year":"2022","journal-title":"Ann. Surg. Oncol."},{"key":"10.1016\/j.inffus.2024.102713_b50","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2022.102575","article-title":"TED: Two-stage expert-guided interpretable diagnosis framework for microvascular invasion in hepatocellular carcinoma","volume":"82","author":"Zhou","year":"2022","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.inffus.2024.102713_b51","doi-asserted-by":"crossref","unstructured":"C. Pan, P. Zhou, J. Tan, et al., Liver Tumor Detection Via A Multi-Scale Intermediate Multi-Modal Fusion Network on MRI Images, in: International Conference on Image Processing, 2021, pp. 299\u2013303.","DOI":"10.1109\/ICIP42928.2021.9506237"},{"key":"10.1016\/j.inffus.2024.102713_b52","doi-asserted-by":"crossref","first-page":"37","DOI":"10.2147\/JHC.S154321","article-title":"Basic MRI for the liver oncologists and surgeons","author":"Vu","year":"2018","journal-title":"J. Hepatocell. Carcinoma"},{"key":"10.1016\/j.inffus.2024.102713_b53","series-title":"Prediction of microvascular invasion in hepatocellular carcinoma via deep learning: A multi-center and prospective validation study","first-page":"19","author":"Wei","year":"2021"},{"issue":"1","key":"10.1016\/j.inffus.2024.102713_b54","doi-asserted-by":"crossref","first-page":"3934","DOI":"10.1038\/s41598-024-51833-x","article-title":"Effective lung nodule detection using deep CNN with dual attention mechanisms","volume":"14","author":"UrRehman","year":"2024","journal-title":"Sci. Rep."},{"year":"2022","series-title":"UniFormer: Unified transformer for efficient spatiotemporal representation learning","author":"Li","key":"10.1016\/j.inffus.2024.102713_b55"},{"key":"10.1016\/j.inffus.2024.102713_b56","doi-asserted-by":"crossref","first-page":"680","DOI":"10.3389\/fonc.2020.00680","article-title":"Deep learning for accurate diagnosis of liver tumor based on magnetic resonance imaging and clinical data","volume":"10","author":"Zhen","year":"2020","journal-title":"Front. Oncol."},{"key":"10.1016\/j.inffus.2024.102713_b57","article-title":"An enhanced deep learning approach for brain cancer MRI images classification using residual networks","volume":"102","author":"Ismael","year":"2020","journal-title":"Artif. Intell. Med."},{"year":"2020","series-title":"Brain Tumor Detection using Multiple Instance Learning Technique","author":"Chaudhary","key":"10.1016\/j.inffus.2024.102713_b58"},{"key":"10.1016\/j.inffus.2024.102713_b59","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1016\/j.patcog.2017.08.026","article-title":"Revisiting multiple instance neural networks","volume":"74","author":"Wang","year":"2018","journal-title":"Pattern Recognit."},{"issue":"3","key":"10.1016\/j.inffus.2024.102713_b60","doi-asserted-by":"crossref","first-page":"923","DOI":"10.1109\/JBHI.2018.2886276","article-title":"Extending 2-D convolutional neural networks to 3-D for advancing deep learning cancer classification with application to MRI liver tumor differentiation","volume":"23","author":"Trivizakis","year":"2018","journal-title":"IEEE J. Biomed. Health Inf."},{"key":"10.1016\/j.inffus.2024.102713_b61","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2021.102105","article-title":"Dual attention multiple instance learning with unsupervised complementary loss for COVID-19 screening","volume":"72","author":"Chikontwe","year":"2021","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.inffus.2024.102713_b62","doi-asserted-by":"crossref","unstructured":"Z. Wang, J. Poon, S. Sun, S. Poon, Attention-based multi-instance neural network for medical diagnosis from incomplete and low quality data, in: International Joint Conference on Neural Networks, 2019, pp. 1\u20138.","DOI":"10.1109\/IJCNN.2019.8851846"},{"key":"10.1016\/j.inffus.2024.102713_b63","series-title":"Medical Imaging: Image Processing","first-page":"751","article-title":"Attention-based 3D convolutional networks for detection of geographic atrophy from optical coherence tomography scans","author":"Elsawy","year":"2023"},{"key":"10.1016\/j.inffus.2024.102713_b64","doi-asserted-by":"crossref","unstructured":"Y. Yu, J. Choi, Y. Kim, K. Yoo, S.-H. Lee, G. Kim, Supervising neural attention models for video captioning by human gaze data, in: Conference on Computer Vision and Pattern Recognition, 2017, pp. 490\u2013498.","DOI":"10.1109\/CVPR.2017.648"},{"issue":"23","key":"10.1016\/j.inffus.2024.102713_b65","doi-asserted-by":"crossref","first-page":"6158","DOI":"10.3390\/rs14236158","article-title":"Dual-branch attention-assisted CNN for hyperspectral image classification","volume":"14","author":"Huang","year":"2022","journal-title":"Remote Sens."},{"key":"10.1016\/j.inffus.2024.102713_b66","doi-asserted-by":"crossref","unstructured":"H. Zhang, Y. Meng, Y. Zhao, et al., Dtfd-mil: Double-tier feature distillation multiple instance learning for histopathology whole slide image classification, in: Conference on Computer Vision and Pattern Recognition, 2022, pp. 18802\u201318812.","DOI":"10.1109\/CVPR52688.2022.01824"},{"key":"10.1016\/j.inffus.2024.102713_b67","doi-asserted-by":"crossref","unstructured":"B. Li, Y. Li, K.W. Eliceiri, Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning, in: Conference on Computer Vision and Pattern Recognition, 2021, pp. 14318\u201314328.","DOI":"10.1109\/CVPR46437.2021.01409"},{"year":"2022","series-title":"MONAI: An open-source framework for deep learning in healthcare","author":"Cardoso","key":"10.1016\/j.inffus.2024.102713_b68"},{"issue":"3","key":"10.1016\/j.inffus.2024.102713_b69","doi-asserted-by":"crossref","DOI":"10.1016\/j.xops.2021.100038","article-title":"Improving interpretability in machine diagnosis: Detection of geographic atrophy in OCT scans","volume":"1","author":"Shi","year":"2021","journal-title":"Ophthalmol. Sci."},{"key":"10.1016\/j.inffus.2024.102713_b70","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1007\/s10479-005-5724-z","article-title":"A tutorial on the cross-entropy method","volume":"134","author":"De Boer","year":"2005","journal-title":"Ann. Oper. Res."},{"key":"10.1016\/j.inffus.2024.102713_b71","series-title":"Medical Image Computing and Computer Assisted Intervention","first-page":"87","article-title":"SAME: Deformable image registration based on self-supervised anatomical embeddings","author":"Liu","year":"2021"},{"year":"2023","series-title":"Matching in the wild: Learning anatomical embeddings for multi-modality images","author":"Bai","key":"10.1016\/j.inffus.2024.102713_b72"},{"year":"2024","series-title":"SDR-former: A Siamese dual-resolution transformer for liver lesion classification using 3D multi-phase imaging","author":"Lou","key":"10.1016\/j.inffus.2024.102713_b73"},{"year":"2020","series-title":"A survey of methods for managing the classification and solution of data imbalance problem","author":"Hasib","key":"10.1016\/j.inffus.2024.102713_b74"},{"issue":"4","key":"10.1016\/j.inffus.2024.102713_b75","first-page":"1","article-title":"Hsdlm: a hybrid sampling with deep learning method for imbalanced data classification","volume":"11","author":"Hasib","year":"2021","journal-title":"Int. J. Cloud Appl. Comput."}],"container-title":["Information Fusion"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1566253524004913?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1566253524004913?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,25]],"date-time":"2024-10-25T15:52:29Z","timestamp":1729871549000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1566253524004913"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2025,2]]},"references-count":75,"alternative-id":["S1566253524004913"],"URL":"https:\/\/doi.org\/10.1016\/j.inffus.2024.102713","relation":{},"ISSN":["1566-2535"],"issn-type":[{"type":"print","value":"1566-2535"}],"subject":[],"published":{"date-parts":[[2025,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Cross-attention guided loss-based deep dual-branch fusion network for liver tumor classification","name":"articletitle","label":"Article Title"},{"value":"Information Fusion","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.inffus.2024.102713","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"102713"}}