{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,27]],"date-time":"2025-03-27T11:35:29Z","timestamp":1743075329833,"version":"3.28.0"},"reference-count":350,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2025,1,1]],"date-time":"2025-01-01T00:00:00Z","timestamp":1735689600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2025,1,1]],"date-time":"2025-01-01T00:00:00Z","timestamp":1735689600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2025,1,1]],"date-time":"2025-01-01T00:00:00Z","timestamp":1735689600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2025,1,1]],"date-time":"2025-01-01T00:00:00Z","timestamp":1735689600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2025,1,1]],"date-time":"2025-01-01T00:00:00Z","timestamp":1735689600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2025,1,1]],"date-time":"2025-01-01T00:00:00Z","timestamp":1735689600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2025,1,1]],"date-time":"2025-01-01T00:00:00Z","timestamp":1735689600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Fusion"],"published-print":{"date-parts":[[2025,1]]},"DOI":"10.1016\/j.inffus.2024.102601","type":"journal-article","created":{"date-parts":[[2024,7,27]],"date-time":"2024-07-27T06:33:31Z","timestamp":1722062011000},"page":"102601","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":9,"special_numbering":"C","title":["Advancing 3D point cloud understanding through deep transfer learning: A comprehensive survey"],"prefix":"10.1016","volume":"113","author":[{"given":"Shahab Saquib","family":"Sohail","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8904-5587","authenticated-orcid":false,"given":"Yassine","family":"Himeur","sequence":"additional","affiliation":[]},{"given":"Hamza","family":"Kheddar","sequence":"additional","affiliation":[]},{"given":"Abbes","family":"Amira","sequence":"additional","affiliation":[]},{"given":"Fodil","family":"Fadli","sequence":"additional","affiliation":[]},{"given":"Shadi","family":"Atalla","sequence":"additional","affiliation":[]},{"given":"Abigail","family":"Copiaco","sequence":"additional","affiliation":[]},{"given":"Wathiq","family":"Mansoor","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.inffus.2024.102601_b1","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2022.105698","article-title":"Video surveillance using deep transfer learning and deep domain adaptation: Towards better generalization","volume":"119","author":"Himeur","year":"2023","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.inffus.2024.102601_b2","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2022.105775","article-title":"An innovative deep anomaly detection of building energy consumption using energy time-series images","volume":"119","author":"Copiaco","year":"2023","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.inffus.2024.102601_b3","doi-asserted-by":"crossref","DOI":"10.1016\/j.autcon.2022.104667","article-title":"Attention-enhanced sampling point cloud network (ASPCNet) for efficient 3D tunnel semantic segmentation","volume":"146","author":"Zhou","year":"2023","journal-title":"Autom. Constr."},{"issue":"10","key":"10.1016\/j.inffus.2024.102601_b4","doi-asserted-by":"crossref","first-page":"519","DOI":"10.3390\/systems11100519","article-title":"Ai in thyroid cancer diagnosis: Techniques, trends, and future directions","volume":"11","author":"Habchi","year":"2023","journal-title":"Systems"},{"key":"10.1016\/j.inffus.2024.102601_b5","doi-asserted-by":"crossref","DOI":"10.1016\/j.autcon.2022.104668","article-title":"Semi-supervised learning-based point cloud network for segmentation of 3D tunnel scenes","volume":"146","author":"Ji","year":"2023","journal-title":"Autom. Constr."},{"key":"10.1016\/j.inffus.2024.102601_b6","doi-asserted-by":"crossref","DOI":"10.1109\/JSEN.2024.3394237","article-title":"Exploiting 2D representations for enhanced indoor localization: A transfer learning approach","author":"Kerdjidj","year":"2024","journal-title":"IEEE Sens. J."},{"key":"10.1016\/j.inffus.2024.102601_b7","doi-asserted-by":"crossref","DOI":"10.1016\/j.autcon.2022.104462","article-title":"Volumetric wall detection in unorganized indoor point clouds using continuous segments in 2D grids","volume":"141","author":"Fotsing","year":"2022","journal-title":"Autom. Constr."},{"key":"10.1016\/j.inffus.2024.102601_b8","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"8500","article-title":"Stratified transformer for 3D point cloud segmentation","author":"Lai","year":"2022"},{"year":"2024","series-title":"Federated and transfer learning for cancer detection based on image analysis","author":"Bechar","key":"10.1016\/j.inffus.2024.102601_b9"},{"key":"10.1016\/j.inffus.2024.102601_b10","article-title":"Lidar point cloud compression, processing and learning for autonomous driving","author":"Abbasi","year":"2022","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"key":"10.1016\/j.inffus.2024.102601_b11","article-title":"Imperceptible transfer attack and defense on 3D point cloud classification","author":"Liu","year":"2022","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2024.102601_b12","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2022.108395","article-title":"Part-wise AtlasNet for 3D point cloud reconstruction from a single image","volume":"242","author":"Yu","year":"2022","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.inffus.2024.102601_b13","first-page":"1500","article-title":"Simipu: Simple 2D image and 3D point cloud unsupervised pre-training for spatial-aware visual representations","volume":"vol. 36","author":"Li","year":"2022"},{"year":"2021","series-title":"Panoptic segmentation: a review","author":"Elharrouss","key":"10.1016\/j.inffus.2024.102601_b14"},{"issue":"1","key":"10.1016\/j.inffus.2024.102601_b15","doi-asserted-by":"crossref","first-page":"11","DOI":"10.3390\/machines11010011","article-title":"Semantic segmentation for point clouds via semantic-based local aggregation and multi-scale global pyramid","volume":"11","author":"Cao","year":"2023","journal-title":"Machines"},{"key":"10.1016\/j.inffus.2024.102601_b16","article-title":"3D building model generation from MLS point cloud and 3D mesh using multi-source data fusion","volume":"116","author":"Liu","year":"2023","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.inffus.2024.102601_b17","doi-asserted-by":"crossref","DOI":"10.1016\/j.autcon.2022.104519","article-title":"Automated semantic segmentation of bridge components from large-scale point clouds using a weighted superpoint graph","volume":"142","author":"Yang","year":"2022","journal-title":"Autom. Constr."},{"key":"10.1016\/j.inffus.2024.102601_b18","doi-asserted-by":"crossref","DOI":"10.1016\/j.autcon.2022.104423","article-title":"Whale optimization algorithm-based point cloud data processing method for sewer pipeline inspection","volume":"141","author":"Liu","year":"2022","journal-title":"Autom. Constr."},{"issue":"13","key":"10.1016\/j.inffus.2024.102601_b19","doi-asserted-by":"crossref","first-page":"10318","DOI":"10.1109\/JIOT.2021.3052067","article-title":"A deep-learning-based smart healthcare system for patient\u2019s discomfort detection at the edge of Internet of Things","volume":"8","author":"Ahmed","year":"2021","journal-title":"IEEE Internet Things J."},{"issue":"2","key":"10.1016\/j.inffus.2024.102601_b20","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1007\/s12599-018-0551-3","article-title":"A novel business process prediction model using a deep learning method","volume":"62","author":"Mehdiyev","year":"2020","journal-title":"Bus. Inf. Syst. Eng."},{"key":"10.1016\/j.inffus.2024.102601_b21","article-title":"DNNRec: A novel deep learning based hybrid recommender system","volume":"144","author":"Kiran","year":"2020","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.inffus.2024.102601_b22","doi-asserted-by":"crossref","DOI":"10.1016\/j.apenergy.2021.116601","article-title":"Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives","volume":"287","author":"Himeur","year":"2021","journal-title":"Appl. Energy"},{"issue":"16","key":"10.1016\/j.inffus.2024.102601_b23","doi-asserted-by":"crossref","first-page":"17479","DOI":"10.1109\/JSEN.2021.3069266","article-title":"Towards precision agriculture: IoT-enabled intelligent irrigation systems using deep learning neural network","volume":"21","author":"Kashyap","year":"2021","journal-title":"IEEE Sens. J."},{"issue":"2","key":"10.1016\/j.inffus.2024.102601_b24","doi-asserted-by":"crossref","first-page":"611","DOI":"10.1109\/TASE.2019.2938316","article-title":"Semiautomatic labeling for deep learning in robotics","volume":"17","author":"De Gregorio","year":"2019","journal-title":"IEEE Trans. Autom. Sci. Eng."},{"key":"10.1016\/j.inffus.2024.102601_b25","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2022.105254","article-title":"Deep and transfer learning for building occupancy detection: A review and comparative analysis","volume":"115","author":"Sayed","year":"2022","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.inffus.2024.102601_b26","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2023.110851","article-title":"Deep transfer learning for automatic speech recognition: Towards better generalization","volume":"277","author":"Kheddar","year":"2023","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.inffus.2024.102601_b27","doi-asserted-by":"crossref","DOI":"10.1016\/j.jnca.2023.103760","article-title":"Deep transfer learning for intrusion detection in industrial control networks: A comprehensive review","volume":"220","author":"Kheddar","year":"2023","journal-title":"J. Netw. Comput. Appl."},{"key":"10.1016\/j.inffus.2024.102601_b28","series-title":"Procedures for Performing Systematic Reviews","first-page":"1","author":"Kitchenham","year":"2004"},{"key":"10.1016\/j.inffus.2024.102601_b29","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.inffus.2021.02.002","article-title":"A survey of recommender systems for energy efficiency in buildings: Principles, challenges and prospects","volume":"72","author":"Himeur","year":"2021","journal-title":"Inf. Fusion"},{"issue":"11","key":"10.1016\/j.inffus.2024.102601_b30","doi-asserted-by":"crossref","first-page":"1729","DOI":"10.3390\/rs12111729","article-title":"Deep learning on 3D point clouds","volume":"12","author":"Bello","year":"2020","journal-title":"Remote Sens."},{"issue":"12","key":"10.1016\/j.inffus.2024.102601_b31","doi-asserted-by":"crossref","first-page":"4338","DOI":"10.1109\/TPAMI.2020.3005434","article-title":"Deep learning for 3D point clouds: A survey","volume":"43","author":"Guo","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"year":"2017","series-title":"Deep reinforcement learning: An overview","author":"Li","key":"10.1016\/j.inffus.2024.102601_b32"},{"key":"10.1016\/j.inffus.2024.102601_b33","series-title":"Proceedings of the IEEE\/CVF International Conference on Computer Vision","first-page":"8110","article-title":"Learning across tasks and domains","author":"Ramirez","year":"2019"},{"key":"10.1016\/j.inffus.2024.102601_b34","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2020.104115","article-title":"A scoping review of transfer learning research on medical image analysis using ImageNet","volume":"128","author":"Morid","year":"2021","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.inffus.2024.102601_b35","article-title":"Can emotion be transferred?\u2014A review on transfer learning for EEG-based Emotion Recognition","author":"Li","year":"2021","journal-title":"IEEE Trans. Cogn. Dev. Syst."},{"year":"2020","series-title":"A survey on transfer learning in natural language processing","author":"Alyafeai","key":"10.1016\/j.inffus.2024.102601_b36"},{"key":"10.1016\/j.inffus.2024.102601_b37","series-title":"2019 32nd SIBGRAPI Conference on Graphics, Patterns and Images Tutorials (SIBGRAPI-T)","first-page":"47","article-title":"A survey of transfer learning for convolutional neural networks","author":"Ribani","year":"2019"},{"key":"10.1016\/j.inffus.2024.102601_b38","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.neucom.2020.09.017","article-title":"A review on transfer learning in EEG signal analysis","volume":"421","author":"Wan","year":"2021","journal-title":"Neurocomputing"},{"key":"10.1016\/j.inffus.2024.102601_b39","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TIM.2021.3118090","article-title":"Optimal transport-based deep domain adaptation approach for fault diagnosis of rotating machine","volume":"70","author":"Liu","year":"2021","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"10.1016\/j.inffus.2024.102601_b40","series-title":"International Conference on Artificial Neural Networks","first-page":"270","article-title":"A survey on deep transfer learning","author":"Tan","year":"2018"},{"issue":"1","key":"10.1016\/j.inffus.2024.102601_b41","first-page":"1","article-title":"Cross-modality transfer learning for image-text information management","volume":"13","author":"Niu","year":"2021","journal-title":"ACM Trans. Manag. Inf. Syst. (TMIS)"},{"key":"10.1016\/j.inffus.2024.102601_b42","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2020.108827","article-title":"Unsupervised deep transfer learning with moment matching: A new intelligent fault diagnosis approach for bearings","volume":"172","author":"Si","year":"2021","journal-title":"Measurement"},{"issue":"11","key":"10.1016\/j.inffus.2024.102601_b43","doi-asserted-by":"crossref","first-page":"5423","DOI":"10.1109\/TCYB.2019.2956091","article-title":"Adversarial learning for multiscale crowd counting under complex scenes","volume":"51","author":"Zhou","year":"2020","journal-title":"IEEE Trans. Cybern."},{"issue":"1","key":"10.1016\/j.inffus.2024.102601_b44","article-title":"Domain-adversarial training of neural networks","volume":"17","author":"Ganin","year":"2016","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.inffus.2024.102601_b45","doi-asserted-by":"crossref","unstructured":"Z. Shen, Y. Xu, B. Ni, M. Wang, J. Hu, X. Yang, Crowd counting via adversarial cross-scale consistency pursuit, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 5245\u20135254.","DOI":"10.1109\/CVPR.2018.00550"},{"year":"2020","series-title":"A background-agnostic framework with adversarial training for abnormal event detection in video","author":"Georgescu","key":"10.1016\/j.inffus.2024.102601_b46"},{"key":"10.1016\/j.inffus.2024.102601_b47","article-title":"Unsupervised gait phase estimation with domain-adversarial neural network and adaptive window","author":"Choi","year":"2021","journal-title":"IEEE J. Biomed. Health Inf."},{"key":"10.1016\/j.inffus.2024.102601_b48","doi-asserted-by":"crossref","first-page":"26","DOI":"10.1016\/j.neucom.2020.10.056","article-title":"Cross-subject transfer learning in human activity recognition systems using generative adversarial networks","volume":"426","author":"Soleimani","year":"2021","journal-title":"Neurocomputing"},{"issue":"1","key":"10.1016\/j.inffus.2024.102601_b49","first-page":"1","article-title":"Transfer learning with dynamic distribution adaptation","volume":"11","author":"Wang","year":"2020","journal-title":"ACM Trans. Intell. Syst. Technol."},{"key":"10.1016\/j.inffus.2024.102601_b50","series-title":"Proceedings of the 29th ACM International Conference on Multimedia","first-page":"2185","article-title":"Coarse to fine: Domain adaptive crowd counting via adversarial scoring network","author":"Zou","year":"2021"},{"key":"10.1016\/j.inffus.2024.102601_b51","first-page":"15498","article-title":"Adversarially robust 3D point cloud recognition using self-supervisions","volume":"34","author":"Sun","year":"2021","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2024.102601_b52","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"652","article-title":"Pointnet: Deep learning on point sets for 3D classification and segmentation","author":"Qi","year":"2017"},{"key":"10.1016\/j.inffus.2024.102601_b53","article-title":"Pointnet++: Deep hierarchical feature learning on point sets in a metric space","volume":"30","author":"Qi","year":"2017","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2024.102601_b54","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1016\/j.neucom.2020.10.086","article-title":"PointVGG: Graph convolutional network with progressive aggregating features on point clouds","volume":"429","author":"Li","year":"2021","journal-title":"Neurocomputing"},{"key":"10.1016\/j.inffus.2024.102601_b55","series-title":"Intelligent Computing Theories and Application: 17th International Conference, ICIC 2021, Shenzhen, China, August 12\u201315, 2021, Proceedings, Part II","first-page":"718","article-title":"PointPAVGG: An incremental algorithm for extraction of points\u2019 positional feature using VGG on point clouds","author":"Shi","year":"2021"},{"key":"10.1016\/j.inffus.2024.102601_b56","doi-asserted-by":"crossref","unstructured":"Y. Xu, T. Fan, M. Xu, L. Zeng, Y. Qiao, Spidercnn: Deep learning on point sets with parameterized convolutional filters, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 87\u2013102.","DOI":"10.1007\/978-3-030-01237-3_6"},{"key":"10.1016\/j.inffus.2024.102601_b57","article-title":"Pointcnn: Convolution on x-transformed points","volume":"31","author":"Li","year":"2018","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2024.102601_b58","doi-asserted-by":"crossref","unstructured":"H. Su, V. Jampani, D. Sun, S. Maji, E. Kalogerakis, M.-H. Yang, J. Kautz, Splatnet: Sparse lattice networks for point cloud processing, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 2530\u20132539.","DOI":"10.1109\/CVPR.2018.00268"},{"key":"10.1016\/j.inffus.2024.102601_b59","doi-asserted-by":"crossref","unstructured":"W. Wang, R. Yu, Q. Huang, U. Neumann, SGPN: Similarity group proposal network for 3D point cloud instance segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 2569\u20132578.","DOI":"10.1109\/CVPR.2018.00272"},{"key":"10.1016\/j.inffus.2024.102601_b60","doi-asserted-by":"crossref","unstructured":"Y. Yang, C. Feng, Y. Shen, D. Tian, Foldingnet: Point cloud auto-encoder via deep grid deformation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 206\u2013215.","DOI":"10.1109\/CVPR.2018.00029"},{"key":"10.1016\/j.inffus.2024.102601_b61","doi-asserted-by":"crossref","unstructured":"L. Yu, X. Li, C.-W. Fu, D. Cohen-Or, P.-A. Heng, Pu-net: Point cloud upsampling network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 2790\u20132799.","DOI":"10.1109\/CVPR.2018.00295"},{"key":"10.1016\/j.inffus.2024.102601_b62","doi-asserted-by":"crossref","unstructured":"T. Le, Y. Duan, Pointgrid: A deep network for 3D shape understanding, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 9204\u20139214.","DOI":"10.1109\/CVPR.2018.00959"},{"key":"10.1016\/j.inffus.2024.102601_b63","doi-asserted-by":"crossref","unstructured":"L. Ge, Y. Cai, J. Weng, J. Yuan, Hand pointnet: 3D hand pose estimation using point sets, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8417\u20138426.","DOI":"10.1109\/CVPR.2018.00878"},{"key":"10.1016\/j.inffus.2024.102601_b64","doi-asserted-by":"crossref","unstructured":"M.A. Uy, G.H. Lee, Pointnetvlad: Deep point cloud based retrieval for large-scale place recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4470\u20134479.","DOI":"10.1109\/CVPR.2018.00470"},{"key":"10.1016\/j.inffus.2024.102601_b65","doi-asserted-by":"crossref","unstructured":"S. Huang, Z. Gojcic, M. Usvyatsov, A. Wieser, K. Schindler, Predator: Registration of 3D point clouds with low overlap, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 4267\u20134276.","DOI":"10.1109\/CVPR46437.2021.00425"},{"key":"10.1016\/j.inffus.2024.102601_b66","doi-asserted-by":"crossref","unstructured":"H. Wang, Y. Cong, O. Litany, Y. Gao, L.J. Guibas, 3Dioumatch: Leveraging iou prediction for semi-supervised 3D object detection, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 14615\u201314624.","DOI":"10.1109\/CVPR46437.2021.01438"},{"key":"10.1016\/j.inffus.2024.102601_b67","doi-asserted-by":"crossref","unstructured":"A. Dai, A.X. Chang, M. Savva, M. Halber, T. Funkhouser, M. Nie\u00dfner, Scannet: Richly-annotated 3D reconstructions of indoor scenes, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 5828\u20135839.","DOI":"10.1109\/CVPR.2017.261"},{"key":"10.1016\/j.inffus.2024.102601_b68","doi-asserted-by":"crossref","unstructured":"G. Riegler, A. Osman Ulusoy, A. Geiger, Octnet: Learning deep 3D representations at high resolutions, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 3577\u20133586.","DOI":"10.1109\/CVPR.2017.701"},{"key":"10.1016\/j.inffus.2024.102601_b69","doi-asserted-by":"crossref","unstructured":"J. Li, B.M. Chen, G.H. Lee, So-net: Self-organizing network for point cloud analysis, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 9397\u20139406.","DOI":"10.1109\/CVPR.2018.00979"},{"key":"10.1016\/j.inffus.2024.102601_b70","doi-asserted-by":"crossref","unstructured":"B. Yang, W. Luo, R. Urtasun, Pixor: Real-time 3D object detection from point clouds, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7652\u20137660.","DOI":"10.1109\/CVPR.2018.00798"},{"key":"10.1016\/j.inffus.2024.102601_b71","doi-asserted-by":"crossref","unstructured":"Y. Zhou, O. Tuzel, VoxelNet: End-to-end learning for point cloud based 3D object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4490\u20134499.","DOI":"10.1109\/CVPR.2018.00472"},{"key":"10.1016\/j.inffus.2024.102601_b72","doi-asserted-by":"crossref","unstructured":"H. Deng, T. Birdal, S. Ilic, PPFNet: Global context aware local features for robust 3D point matching, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 195\u2013205.","DOI":"10.1109\/CVPR.2018.00028"},{"key":"10.1016\/j.inffus.2024.102601_b73","doi-asserted-by":"crossref","unstructured":"D. Xu, D. Anguelov, A. Jain, Pointfusion: Deep sensor fusion for 3D bounding box estimation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 244\u2013253.","DOI":"10.1109\/CVPR.2018.00033"},{"key":"10.1016\/j.inffus.2024.102601_b74","doi-asserted-by":"crossref","unstructured":"C.R. Qi, W. Liu, C. Wu, H. Su, L.J. Guibas, Frustum pointnets for 3D object detection from RGB-D data, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 918\u2013927.","DOI":"10.1109\/CVPR.2018.00102"},{"key":"10.1016\/j.inffus.2024.102601_b75","doi-asserted-by":"crossref","unstructured":"Z.J. Yew, G.H. Lee, 3DFeat-Net: Weakly supervised local 3D features for point cloud registration, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 607\u2013623.","DOI":"10.1007\/978-3-030-01267-0_37"},{"key":"10.1016\/j.inffus.2024.102601_b76","series-title":"2018 IEEE International Conference on Robotics and Automation","first-page":"1887","article-title":"SqueezeSeg: Convolutional neural nets with recurrent CRF for real-time road-object segmentation from 3D LiDAR point cloud","author":"Wu","year":"2018"},{"key":"10.1016\/j.inffus.2024.102601_b77","series-title":"European Conference on Computer Vision","first-page":"677","article-title":"2DPASS: 2D priors assisted semantic segmentation on LiDAR point clouds","author":"Yan","year":"2022"},{"key":"10.1016\/j.inffus.2024.102601_b78","series-title":"Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision","first-page":"2824","article-title":"PointPoseNet: Point pose network for robust 6D object pose estimation","author":"Chen","year":"2020"},{"year":"2020","series-title":"ASAP-Net: Attention and structure aware point cloud sequence segmentation","author":"Cao","key":"10.1016\/j.inffus.2024.102601_b79"},{"key":"10.1016\/j.inffus.2024.102601_b80","first-page":"22170","article-title":"Muscle: Multi sweep compression of LiDAR using deep entropy models","volume":"33","author":"Biswas","year":"2020","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2024.102601_b81","first-page":"3430","article-title":"PC-RGNN: Point cloud completion and graph neural network for 3D object detection","volume":"vol. 35","author":"Zhang","year":"2021"},{"year":"2021","series-title":"Image2Point: 3D point-cloud understanding with 2D image pretrained models","author":"Xu","key":"10.1016\/j.inffus.2024.102601_b82"},{"issue":"22","key":"10.1016\/j.inffus.2024.102601_b83","doi-asserted-by":"crossref","first-page":"3820","DOI":"10.3390\/rs12223820","article-title":"Manhole cover detection on rasterized mobile mapping point cloud data using transfer learned fully convolutional neural networks","volume":"12","author":"Mattheuwsen","year":"2020","journal-title":"Remote Sens."},{"issue":"2","key":"10.1016\/j.inffus.2024.102601_b84","doi-asserted-by":"crossref","first-page":"24","DOI":"10.3390\/drones4020024","article-title":"Deep learning classification of 2D orthomosaic images and 3D point clouds for post-event structural damage assessment","volume":"4","author":"Liao","year":"2020","journal-title":"Drones"},{"key":"10.1016\/j.inffus.2024.102601_b85","series-title":"VISIGRAPP (4: VISAPP)","first-page":"518","article-title":"Blind projection-based 3D point cloud quality assessment method using a convolutional neural network","author":"Bourbia","year":"2022"},{"key":"10.1016\/j.inffus.2024.102601_b86","series-title":"2021 17th International Conference on Machine Vision and Applications","first-page":"1","article-title":"Pix2Poin: Learning outdoor 3D using sparse point clouds and optimal transport","author":"Leroy","year":"2021"},{"key":"10.1016\/j.inffus.2024.102601_b87","doi-asserted-by":"crossref","DOI":"10.1016\/j.autcon.2019.103058","article-title":"Transfer learning in urban object classification: Online images to recognize point clouds","volume":"111","author":"Balado","year":"2020","journal-title":"Autom. Constr."},{"key":"10.1016\/j.inffus.2024.102601_b88","doi-asserted-by":"crossref","DOI":"10.1016\/j.gmod.2019.101039","article-title":"Service-oriented semantic enrichment of indoor point clouds using octree-based multiview classification","volume":"105","author":"Stojanovic","year":"2019","journal-title":"Graph. Models"},{"key":"10.1016\/j.inffus.2024.102601_b89","series-title":"2018 WRC Symposium on Advanced Robotics and Automation (WRC SARA)","first-page":"52","article-title":"Object detection for soft robotic manipulation based on RGB-D sensors","author":"Dongyu","year":"2018"},{"issue":"8","key":"10.1016\/j.inffus.2024.102601_b90","doi-asserted-by":"crossref","first-page":"1406","DOI":"10.1109\/LGRS.2019.2947608","article-title":"ALS point cloud classification with small training data set based on transfer learning","volume":"17","author":"Zhao","year":"2020","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"10.1016\/j.inffus.2024.102601_b91","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"},{"key":"10.1016\/j.inffus.2024.102601_b92","first-page":"11596","article-title":"Morphing and sampling network for dense point cloud completion","volume":"vol. 34","author":"Liu","year":"2020"},{"key":"10.1016\/j.inffus.2024.102601_b93","first-page":"3625","article-title":"ASHF-Net: Adaptive sampling and hierarchical folding network for robust point cloud completion","volume":"vol. 35","author":"Zong","year":"2021"},{"key":"10.1016\/j.inffus.2024.102601_b94","series-title":"2018 International Conference on 3D Vision (3DV)","first-page":"728","article-title":"Pcn: Point completion network","author":"Yuan","year":"2018"},{"key":"10.1016\/j.inffus.2024.102601_b95","doi-asserted-by":"crossref","unstructured":"X. Wen, T. Li, Z. Han, Y.-S. Liu, Point cloud completion by skip-attention network with hierarchical folding, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 1939\u20131948.","DOI":"10.1109\/CVPR42600.2020.00201"},{"key":"10.1016\/j.inffus.2024.102601_b96","first-page":"16119","article-title":"Skeleton-bridged point completion: From global inference to local adjustment","volume":"33","author":"Nie","year":"2020","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2024.102601_b97","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1016\/j.isprsjprs.2020.05.008","article-title":"GRNet: Geometric relation network for 3D object detection from point clouds","volume":"165","author":"Li","year":"2020","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.inffus.2024.102601_b98","doi-asserted-by":"crossref","unstructured":"X. Wang, M.H. Ang, G.H. Lee, Voxel-based network for shape completion by leveraging edge generation, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2021, pp. 13189\u201313198.","DOI":"10.1109\/ICCV48922.2021.01294"},{"key":"10.1016\/j.inffus.2024.102601_b99","first-page":"5171","article-title":"Point-PEFT: Parameter-efficient fine-tuning for 3D pre-trained models","volume":"vol. 38","author":"Tang","year":"2024"},{"key":"10.1016\/j.inffus.2024.102601_b100","doi-asserted-by":"crossref","unstructured":"X. Zhou, D. Liang, W. Xu, X. Zhu, Y. Xu, Z. Zou, X. Bai, Dynamic Adapter Meets Prompt Tuning: Parameter-Efficient Transfer Learning for Point Cloud Analysis, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2024, pp. 14707\u201314717.","DOI":"10.1109\/CVPR52733.2024.01393"},{"key":"10.1016\/j.inffus.2024.102601_b101","doi-asserted-by":"crossref","unstructured":"G. Song, H. Xu, J. Liu, T. Zhi, Y. Shi, J. Zhang, Z. Jiang, J. Feng, S. Sang, L. Luo, Agilegan3D: Few-shot 3D portrait stylization by augmented transfer learning, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2024, pp. 765\u2013774.","DOI":"10.1109\/CVPRW63382.2024.00081"},{"key":"10.1016\/j.inffus.2024.102601_b102","first-page":"1","article-title":"3D estimation of single-view 2D images using shape priors and transfer learning","author":"Shoukat","year":"2024","journal-title":"Multimedia Tools Appl."},{"key":"10.1016\/j.inffus.2024.102601_b103","article-title":"Deep sets","volume":"30","author":"Zaheer","year":"2017","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2024.102601_b104","doi-asserted-by":"crossref","unstructured":"R. Klokov, V. Lempitsky, Escape from cells: Deep kd-networks for the recognition of 3D point cloud models, in: Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 2017, pp. 863\u2013872.","DOI":"10.1109\/ICCV.2017.99"},{"key":"10.1016\/j.inffus.2024.102601_b105","series-title":"Proceedings of the European Conference on Computer Vision (ECCV) Workshops","article-title":"3Dcontextnet: Kd tree guided hierarchical learning of point clouds using local and global contextual cues","author":"Zeng","year":"2018"},{"key":"10.1016\/j.inffus.2024.102601_b106","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"984","article-title":"Pointwise convolutional neural networks","author":"Hua","year":"2018"},{"key":"10.1016\/j.inffus.2024.102601_b107","series-title":"Proceedings of the IEEE\/CVF International Conference on Computer Vision","first-page":"1607","article-title":"Shellnet: Efficient point cloud convolutional neural networks using concentric shells statistics","author":"Zhang","year":"2019"},{"key":"10.1016\/j.inffus.2024.102601_b108","series-title":"Proceedings of the 26th ACM International Conference on Multimedia","first-page":"746","article-title":"Rgcnn: Regularized graph cnn for point cloud segmentation","author":"Te","year":"2018"},{"key":"10.1016\/j.inffus.2024.102601_b109","series-title":"Proceedings of the European Conference on Computer Vision","first-page":"52","article-title":"Local spectral graph convolution for point set feature learning","author":"Wang","year":"2018"},{"key":"10.1016\/j.inffus.2024.102601_b110","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"4606","article-title":"Attentional shapecontextnet for point cloud recognition","author":"Xie","year":"2018"},{"key":"10.1016\/j.inffus.2024.102601_b111","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"2598","article-title":"Feastnet: Feature-steered graph convolutions for 3D shape analysis","author":"Verma","year":"2018"},{"key":"10.1016\/j.inffus.2024.102601_b112","doi-asserted-by":"crossref","DOI":"10.1016\/j.cag.2020.02.005","article-title":"ConvPoint: Continuous convolutions for point cloud processing","author":"Boulch","year":"2020","journal-title":"Comput. Graph."},{"key":"10.1016\/j.inffus.2024.102601_b113","series-title":"Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision","first-page":"134","article-title":"Continuous geodesic convolutions for learning on 3D shapes","author":"Yang","year":"2021"},{"key":"10.1016\/j.inffus.2024.102601_b114","article-title":"Self-supervised deep learning on point clouds by reconstructing space","volume":"32","author":"Sauder","year":"2019","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2024.102601_b115","series-title":"2020 International Conference on 3D Vision (3DV)","first-page":"1018","article-title":"Self-supervised learning of point clouds via orientation estimation","author":"Poursaeed","year":"2020"},{"key":"10.1016\/j.inffus.2024.102601_b116","series-title":"Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision","first-page":"123","article-title":"Self-supervised learning for domain adaptation on point clouds","author":"Achituve","year":"2021"},{"key":"10.1016\/j.inffus.2024.102601_b117","series-title":"Computer Vision\u2013ECCV 2020: 16th European Conference, Glasgow, UK, August 23\u201328, 2020, Proceedings, Part III 16","first-page":"574","article-title":"Pointcontrast: Unsupervised pre-training for 3D point cloud understanding","author":"Xie","year":"2020"},{"key":"10.1016\/j.inffus.2024.102601_b118","doi-asserted-by":"crossref","unstructured":"H. Wang, Q. Liu, X. Yue, J. Lasenby, M.J. Kusner, Unsupervised point cloud pre-training via occlusion completion, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, Montreal, BC, Canada, 2021, pp. 9782\u20139792.","DOI":"10.1109\/ICCV48922.2021.00964"},{"key":"10.1016\/j.inffus.2024.102601_b119","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"19313","article-title":"Point-BERT: Pre-training 3D point cloud transformers with masked point modeling","author":"Yu","year":"2022"},{"year":"2022","series-title":"Point-M2AE: multi-scale masked autoencoders for hierarchical point cloud pre-training","author":"Zhang","key":"10.1016\/j.inffus.2024.102601_b120"},{"key":"10.1016\/j.inffus.2024.102601_b121","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"3075","article-title":"4D spatio-temporal ConvNets: Minkowski convolutional neural networks","author":"Choy","year":"2019"},{"key":"10.1016\/j.inffus.2024.102601_b122","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"9224","article-title":"3D semantic segmentation with submanifold sparse convolutional networks","author":"Graham","year":"2018"},{"key":"10.1016\/j.inffus.2024.102601_b123","series-title":"Medical Image Computing and Computer-Assisted Intervention\u2013MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18","first-page":"234","article-title":"U-net: Convolutional networks for biomedical image segmentation","author":"Ronneberger","year":"2015"},{"key":"10.1016\/j.inffus.2024.102601_b124","doi-asserted-by":"crossref","DOI":"10.1016\/j.inffus.2024.102422","article-title":"Automatic speech recognition using advanced deep learning approaches: A survey","author":"Kheddar","year":"2024","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2024.102601_b125","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"8552","article-title":"Pointclip: Point cloud understanding by clip","author":"Zhang","year":"2022"},{"issue":"1","key":"10.1016\/j.inffus.2024.102601_b126","article-title":"A transfer learning-based multi-fidelity point-cloud neural network approach for melt pool modeling in additive manufacturing","volume":"8","author":"Huang","year":"2022","journal-title":"ASCE-ASME J. Risk uncertain. Eng. Syst. Part B Mech. Eng."},{"issue":"4","key":"10.1016\/j.inffus.2024.102601_b127","doi-asserted-by":"crossref","first-page":"500","DOI":"10.3390\/app8040500","article-title":"A semantic segmentation algorithm using FCN with combination of BSLIC","volume":"8","author":"Zhao","year":"2018","journal-title":"Appl. Sci."},{"key":"10.1016\/j.inffus.2024.102601_b128","series-title":"2020 IEEE International Conference on Visual Communications and Image Processing","first-page":"144","article-title":"Unsupervised feedforward feature (UFF) learning for point cloud classification and segmentation","author":"Zhang","year":"2020"},{"key":"10.1016\/j.inffus.2024.102601_b129","doi-asserted-by":"crossref","first-page":"201","DOI":"10.5194\/isprs-archives-XLIII-B2-2021-201-2021","article-title":"Semantic segmentation for building fa\u00e7ade 3D point cloud from 2D orthophoto images using transfer learning","volume":"43","author":"Murtiyoso","year":"2021","journal-title":"ISPRS-Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci."},{"issue":"12","key":"10.1016\/j.inffus.2024.102601_b130","doi-asserted-by":"crossref","first-page":"3964","DOI":"10.3390\/s21123964","article-title":"Transfer learning based semantic segmentation for 3D object detection from point cloud","volume":"21","author":"Imad","year":"2021","journal-title":"Sensors"},{"key":"10.1016\/j.inffus.2024.102601_b131","doi-asserted-by":"crossref","DOI":"10.1016\/j.compeleceng.2022.107685","article-title":"An improved 3D point cloud instance segmentation method for overhead catenary height detection","volume":"98","author":"Zong","year":"2022","journal-title":"Comput. Electr. Eng."},{"key":"10.1016\/j.inffus.2024.102601_b132","doi-asserted-by":"crossref","first-page":"188056","DOI":"10.1109\/ACCESS.2020.3031812","article-title":"DCG-net: Dynamic capsule graph convolutional network for point clouds","volume":"8","author":"Bazazian","year":"2020","journal-title":"IEEE Access"},{"issue":"1","key":"10.1016\/j.inffus.2024.102601_b133","article-title":"Automatic extraction and labelling of memorial objects from 3D point clouds","volume":"4","author":"Arnold","year":"2021","journal-title":"J. Comput. Appl. Archaeol."},{"key":"10.1016\/j.inffus.2024.102601_b134","series-title":"Computer Vision\u2013ECCV 2020: 16th European Conference, Glasgow, UK, August 23\u201328, 2020, Proceedings, Part XI 16","first-page":"545","article-title":"DPDist: Comparing point clouds using deep point cloud distance","author":"Urbach","year":"2020"},{"issue":"9","key":"10.1016\/j.inffus.2024.102601_b135","doi-asserted-by":"crossref","first-page":"850","DOI":"10.1109\/34.232073","article-title":"Comparing images using the Hausdorff distance","volume":"15","author":"Huttenlocher","year":"1993","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2024.102601_b136","doi-asserted-by":"crossref","unstructured":"T. Nguyen, Q.-H. Pham, T. Le, T. Pham, N. Ho, B.-S. Hua, Point-set distances for learning representations of 3D point clouds, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, Montreal, BC, Canada, 2021, pp. 10478\u201310487.","DOI":"10.1109\/ICCV48922.2021.01031"},{"key":"10.1016\/j.inffus.2024.102601_b137","series-title":"2021 IEEE\/SICE International Symposium on System Integration","first-page":"60","article-title":"Automatic toolpath pattern recommendation for various industrial applications based on deep learning","author":"Xie","year":"2021"},{"issue":"23","key":"10.1016\/j.inffus.2024.102601_b138","doi-asserted-by":"crossref","first-page":"6969","DOI":"10.3390\/s20236969","article-title":"ALS point cloud classification by integrating an improved fully convolutional network into transfer learning with multi-scale and multi-view deep features","volume":"20","author":"Lei","year":"2020","journal-title":"Sensors"},{"key":"10.1016\/j.inffus.2024.102601_b139","doi-asserted-by":"crossref","unstructured":"X. Li, C. Li, Z. Tong, A. Lim, J. Yuan, Y. Wu, J. Tang, R. Huang, Campus3D: A photogrammetry point cloud benchmark for hierarchical understanding of outdoor scene, in: Proceedings of the 28th ACM International Conference on Multimedia, 2020, pp. 238\u2013246.","DOI":"10.1145\/3394171.3413661"},{"key":"10.1016\/j.inffus.2024.102601_b140","doi-asserted-by":"crossref","DOI":"10.1016\/j.autcon.2021.104092","article-title":"Deep learning-based 3D reconstruction of scaffolds using a robot dog","volume":"134","author":"Kim","year":"2022","journal-title":"Autom. Constr."},{"issue":"3","key":"10.1016\/j.inffus.2024.102601_b141","doi-asserted-by":"crossref","DOI":"10.1061\/(ASCE)CP.1943-5487.0000968","article-title":"Classification of soft-story buildings using deep learning with density features extracted from 3D point clouds","volume":"35","author":"Chen","year":"2021","journal-title":"J. Comput. Civ. Eng."},{"issue":"10","key":"10.1016\/j.inffus.2024.102601_b142","doi-asserted-by":"crossref","first-page":"2940","DOI":"10.3390\/s20102940","article-title":"Recognition of human activities using depth maps and the viewpoint feature histogram descriptor","volume":"20","author":"Sidor","year":"2020","journal-title":"Sensors"},{"key":"10.1016\/j.inffus.2024.102601_b143","article-title":"VDM-DA: Virtual domain modeling for source data-free domain adaptation","author":"Tian","year":"2021","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"issue":"17","key":"10.1016\/j.inffus.2024.102601_b144","doi-asserted-by":"crossref","first-page":"4856","DOI":"10.3390\/s20174856","article-title":"Superb monocular depth estimation based on transfer learning and surface normal guidance","volume":"20","author":"Huang","year":"2020","journal-title":"Sensors"},{"key":"10.1016\/j.inffus.2024.102601_b145","series-title":"Sipaim\u2013Miccai Biomedical Workshop","first-page":"82","article-title":"A transfer learning exploited for indexing protein structures from 3D point clouds","author":"Benhabiles","year":"2018"},{"key":"10.1016\/j.inffus.2024.102601_b146","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2021.102058","article-title":"EndoSLAM dataset and an unsupervised monocular visual odometry and depth estimation approach for endoscopic videos","volume":"71","author":"Ozyoruk","year":"2021","journal-title":"Med. Image Anal."},{"year":"2015","series-title":"ShapeNet: An information-rich 3D model repository","author":"Chang","key":"10.1016\/j.inffus.2024.102601_b147"},{"key":"10.1016\/j.inffus.2024.102601_b148","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"8248","article-title":"Self-supervised learning on 3D point clouds by learning discrete generative models","author":"Eckart","year":"2021"},{"issue":"18","key":"10.1016\/j.inffus.2024.102601_b149","doi-asserted-by":"crossref","first-page":"6108","DOI":"10.3390\/s21186108","article-title":"Progressive deep learning framework for recognizing 3D orientations and object class based on point cloud representation","volume":"21","author":"Lee","year":"2021","journal-title":"Sensors"},{"key":"10.1016\/j.inffus.2024.102601_b150","series-title":"Australasian Conference on Robotics and Automation","article-title":"Connecting the dots for real-time LiDAR-based object detection with YOLO","author":"Dai","year":"2018"},{"issue":"20","key":"10.1016\/j.inffus.2024.102601_b151","doi-asserted-by":"crossref","first-page":"6772","DOI":"10.3390\/s21206772","article-title":"Remaining useful life prediction from 3D scan data with genetically optimized convolutional neural networks","volume":"21","author":"Diraco","year":"2021","journal-title":"Sensors"},{"key":"10.1016\/j.inffus.2024.102601_b152","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1016\/j.isprsjprs.2018.02.006","article-title":"Building instance classification using street view images","volume":"145","author":"Kang","year":"2018","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.inffus.2024.102601_b153","series-title":"Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision","first-page":"4531","article-title":"Sim2real transfer learning for point cloud segmentation: An industrial application case on autonomous disassembly","author":"Wu","year":"2023"},{"key":"10.1016\/j.inffus.2024.102601_b154","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2022.105554","article-title":"Sampling-attention deep learning network with transfer learning for large-scale urban point cloud semantic segmentation","volume":"117","author":"Zhou","year":"2023","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.inffus.2024.102601_b155","series-title":"2019 International Conference on Robotics and Automation","first-page":"4376","article-title":"SqueezeSegV2: Improved model structure and unsupervised domain adaptation for road-object segmentation from a LiDAR point cloud","author":"Wu","year":"2019"},{"key":"10.1016\/j.inffus.2024.102601_b156","series-title":"2021 IEEE International Conference on Robotics and Automation","first-page":"2457","article-title":"LiDARNet: A boundary-aware domain adaptation model for point cloud semantic segmentation","author":"Jiang","year":"2021"},{"key":"10.1016\/j.inffus.2024.102601_b157","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"15363","article-title":"Complete & label: A domain adaptation approach to semantic segmentation of LiDAR point clouds","author":"Yi","year":"2021"},{"key":"10.1016\/j.inffus.2024.102601_b158","article-title":"Pointdan: A multi-scale 3D domain adaption network for point cloud representation","volume":"32","author":"Qin","year":"2019","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2024.102601_b159","first-page":"3500","article-title":"ePointDA: An end-to-end simulation-to-real domain adaptation framework for LiDAR point cloud segmentation","volume":"vol. 35","author":"Zhao","year":"2021"},{"key":"10.1016\/j.inffus.2024.102601_b160","doi-asserted-by":"crossref","unstructured":"Q. Xu, Y. Zhou, W. Wang, C.R. Qi, D. Anguelov, SPG: Unsupervised domain adaptation for 3D object detection via semantic point generation, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, Montreal, BC, Canada, 2021, pp. 15446\u201315456.","DOI":"10.1109\/ICCV48922.2021.01516"},{"key":"10.1016\/j.inffus.2024.102601_b161","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"12697","article-title":"Pointpillars: Fast encoders for object detection from point clouds","author":"Lang","year":"2019"},{"year":"2022","series-title":"SSDA3D: Semi-supervised domain adaptation for 3D object detection from point cloud","author":"Wang","key":"10.1016\/j.inffus.2024.102601_b162"},{"key":"10.1016\/j.inffus.2024.102601_b163","doi-asserted-by":"crossref","unstructured":"L. Du, X. Ye, X. Tan, J. Feng, Z. Xu, E. Ding, S. Wen, Associate-3Ddet: Perceptual-to-conceptual association for 3D point cloud object detection, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 2020, pp. 13329\u201313338.","DOI":"10.1109\/CVPR42600.2020.01334"},{"key":"10.1016\/j.inffus.2024.102601_b164","first-page":"4060","article-title":"Adafilter: Adaptive filter fine-tuning for deep transfer learning","volume":"vol. 34","author":"Guo","year":"2020"},{"key":"10.1016\/j.inffus.2024.102601_b165","article-title":"Co-regularized alignment for unsupervised domain adaptation","volume":"31","author":"Kumar","year":"2018","journal-title":"Adv. Neural Inf. Process. Syst."},{"year":"2019","series-title":"Transferable end-to-end aspect-based sentiment analysis with selective adversarial learning","author":"Li","key":"10.1016\/j.inffus.2024.102601_b166"},{"key":"10.1016\/j.inffus.2024.102601_b167","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"1086","article-title":"Borrowing treasures from the wealthy: Deep transfer learning through selective joint fine-tuning","author":"Ge","year":"2017"},{"issue":"11","key":"10.1016\/j.inffus.2024.102601_b168","doi-asserted-by":"crossref","first-page":"2645","DOI":"10.3390\/s19112645","article-title":"Transfer learning assisted classification and detection of alzheimer\u2019s disease stages using 3D MRI scans","volume":"19","author":"Maqsood","year":"2019","journal-title":"Sensors"},{"issue":"4","key":"10.1016\/j.inffus.2024.102601_b169","doi-asserted-by":"crossref","first-page":"760","DOI":"10.1109\/TNSRE.2019.2896269","article-title":"Deep learning for electromyographic hand gesture signal classification using transfer learning","volume":"27","author":"C\u00f4t\u00e9-Allard","year":"2019","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"issue":"12","key":"10.1016\/j.inffus.2024.102601_b170","doi-asserted-by":"crossref","first-page":"5440","DOI":"10.1109\/TIP.2014.2365725","article-title":"Transfer learning of structured representation for face recognition","volume":"23","author":"Ren","year":"2014","journal-title":"IEEE Trans. Image Process."},{"issue":"25","key":"10.1016\/j.inffus.2024.102601_b171","doi-asserted-by":"crossref","first-page":"73","DOI":"10.4995\/var.2021.15318","article-title":"Transfer learning and performance enhancement techniques for deep semantic segmentation of built heritage point clouds","volume":"12","author":"Matrone","year":"2021","journal-title":"Virtual Archaeol. Rev."},{"key":"10.1016\/j.inffus.2024.102601_b172","series-title":"International Conference on Machine Learning","first-page":"2825","article-title":"Explicit inductive bias for transfer learning with convolutional networks","author":"Xuhong","year":"2018"},{"issue":"24","key":"10.1016\/j.inffus.2024.102601_b173","doi-asserted-by":"crossref","first-page":"4057","DOI":"10.3390\/rs12244057","article-title":"Collapsed building detection using 3D point clouds and deep learning","volume":"12","author":"Xiu","year":"2020","journal-title":"Remote Sens."},{"issue":"5","key":"10.1016\/j.inffus.2024.102601_b174","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3326362","article-title":"Dynamic graph cnn for learning on point clouds","volume":"38","author":"Wang","year":"2019","journal-title":"ACM Trans. Graph. (TOG)"},{"key":"10.1016\/j.inffus.2024.102601_b175","doi-asserted-by":"crossref","DOI":"10.1016\/j.autcon.2022.104543","article-title":"Named entity recognition of building construction defect information from text with linguistic noise","volume":"143","author":"Jeon","year":"2022","journal-title":"Autom. Constr."},{"key":"10.1016\/j.inffus.2024.102601_b176","doi-asserted-by":"crossref","DOI":"10.1016\/j.autcon.2022.104669","article-title":"Image quality enhancement using HybridGAN for automated railway track defect recognition","volume":"146","author":"Cheng","year":"2023","journal-title":"Autom. Constr."},{"key":"10.1016\/j.inffus.2024.102601_b177","doi-asserted-by":"crossref","unstructured":"G. Kang, L. Jiang, Y. Yang, A.G. Hauptmann, Contrastive adaptation network for unsupervised domain adaptation, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 2019, pp. 4893\u20134902.","DOI":"10.1109\/CVPR.2019.00503"},{"year":"2020","series-title":"A2D2: Audi autonomous driving dataset","author":"Geyer","key":"10.1016\/j.inffus.2024.102601_b178"},{"key":"10.1016\/j.inffus.2024.102601_b179","first-page":"1","article-title":"Cross-domain contrastive learning for unsupervised domain adaptation","author":"Wang","year":"2022","journal-title":"IEEE Trans. Multimed."},{"key":"10.1016\/j.inffus.2024.102601_b180","doi-asserted-by":"crossref","DOI":"10.1109\/TKDE.2022.3185233","article-title":"A collaborative alignment framework of transferable knowledge extraction for unsupervised domain adaptation","author":"Xie","year":"2022","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.inffus.2024.102601_b181","doi-asserted-by":"crossref","first-page":"2122","DOI":"10.1109\/TIP.2022.3152052","article-title":"Multi-source unsupervised domain adaptation via pseudo target domain","volume":"31","author":"Ren","year":"2022","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.inffus.2024.102601_b182","series-title":"2013 IEEE International Conference on Computer Vision","first-page":"2960","article-title":"Unsupervised visual domain adaptation using subspace alignment","author":"Fernando","year":"2013"},{"issue":"4","key":"10.1016\/j.inffus.2024.102601_b183","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1109\/MSP.2017.2693418","article-title":"Geometric deep learning: Going beyond Euclidean data","volume":"34","author":"Bronstein","year":"2017","journal-title":"IEEE Signal Process. Mag."},{"key":"10.1016\/j.inffus.2024.102601_b184","series-title":"2019 IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"10277","article-title":"Sliced wasserstein discrepancy for unsupervised domain adaptation","author":"Lee","year":"2019"},{"year":"2017","series-title":"Photo-realistic single image super-resolution using a generative adversarial network","author":"Ledig","key":"10.1016\/j.inffus.2024.102601_b185"},{"key":"10.1016\/j.inffus.2024.102601_b186","series-title":"2019 IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"4435","article-title":"TextureNet: Consistent local parametrizations for learning from high-resolution signals on meshes","author":"Huang","year":"2019"},{"key":"10.1016\/j.inffus.2024.102601_b187","article-title":"Reshaping visual datasets for domain adaptation","volume":"26","author":"Gong","year":"2013","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2024.102601_b188","doi-asserted-by":"crossref","unstructured":"Y. Shen, Y. Yang, M. Yan, H. Wang, Y. Zheng, L.J. Guibas, Domain adaptation on point clouds via geometry-aware implicits, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 2022, pp. 7223\u20137232.","DOI":"10.1109\/CVPR52688.2022.00708"},{"key":"10.1016\/j.inffus.2024.102601_b189","series-title":"Proceedings of the IEEE International Conference on Computer Vision","first-page":"2223","article-title":"Unpaired image-to-image translation using cycle-consistent adversarial networks","author":"Zhu","year":"2017"},{"key":"10.1016\/j.inffus.2024.102601_b190","series-title":"Proceedings of the IEEE\/CVF International Conference on Computer Vision Workshops","article-title":"Domain adaptation for vehicle detection from bird\u2019s eye view LiDAR point cloud data","author":"Saleh","year":"2019"},{"key":"10.1016\/j.inffus.2024.102601_b191","series-title":"Proceedings of the European Conference on Computer Vision","first-page":"137","article-title":"Unsupervised domain adaptation for 3D keypoint estimation via view consistency","author":"Zhou","year":"2018"},{"key":"10.1016\/j.inffus.2024.102601_b192","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"11713","article-title":"Train in germany, test in the USA: Making 3D object detectors generalize","author":"Wang","year":"2020"},{"issue":"11","key":"10.1016\/j.inffus.2024.102601_b193","doi-asserted-by":"crossref","first-page":"1231","DOI":"10.1177\/0278364913491297","article-title":"Vision meets robotics: The kitti dataset","volume":"32","author":"Geiger","year":"2013","journal-title":"Int. J. Robot. Res."},{"key":"10.1016\/j.inffus.2024.102601_b194","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"2446","article-title":"Scalability in perception for autonomous driving: Waymo open dataset","author":"Sun","year":"2020"},{"key":"10.1016\/j.inffus.2024.102601_b195","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"10368","article-title":"ST3D: Self-training for unsupervised domain adaptation on 3D object detection","author":"Yang","year":"2021"},{"key":"10.1016\/j.inffus.2024.102601_b196","doi-asserted-by":"crossref","unstructured":"M. Jaritz, T.-H. Vu, R.d. Charette, E. Wirbel, P. P\u00e9rez, xMUDA: Cross-modal unsupervised domain adaptation for 3D semantic segmentation, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 2020, pp. 12605\u201312614.","DOI":"10.1109\/CVPR42600.2020.01262"},{"key":"10.1016\/j.inffus.2024.102601_b197","series-title":"2020 International Conference on 3D Vision (3DV)","first-page":"771","article-title":"SF-UDA 3D: Source-free unsupervised domain adaptation for LiDAR-based 3D object detection","author":"Saltori","year":"2020"},{"key":"10.1016\/j.inffus.2024.102601_b198","series-title":"2021 International Conference on 3D Vision (3DV)","first-page":"331","article-title":"RefRec: Pseudo-labels refinement via shape reconstruction for unsupervised 3D domain adaptation","author":"Cardace","year":"2021"},{"key":"10.1016\/j.inffus.2024.102601_b199","first-page":"1","article-title":"DFAN: Dual-branch feature alignment network for domain adaptation on point clouds","volume":"60","author":"Shi","year":"2022","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2024.102601_b200","doi-asserted-by":"crossref","first-page":"56901","DOI":"10.1109\/ACCESS.2022.3176719","article-title":"Unsupervised domain adaptation for 3D point clouds by searched transformations","volume":"10","author":"Kang","year":"2022","journal-title":"IEEE Access"},{"key":"10.1016\/j.inffus.2024.102601_b201","doi-asserted-by":"crossref","unstructured":"Y.S. Tang, G.H. Lee, Transferable semi-supervised 3D object detection from RGB-D data, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2019, pp. 1931\u20131940.","DOI":"10.1109\/ICCV.2019.00202"},{"key":"10.1016\/j.inffus.2024.102601_b202","doi-asserted-by":"crossref","unstructured":"X. Huang, G. Mei, J. Zhang, Feature-metric registration: A fast semi-supervised approach for robust point cloud registration without correspondences, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 11366\u201311374.","DOI":"10.1109\/CVPR42600.2020.01138"},{"key":"10.1016\/j.inffus.2024.102601_b203","series-title":"2021 International Conference on 3D Vision (3DV)","first-page":"1351","article-title":"3D point cloud registration with multi-scale architecture and unsupervised transfer learning","author":"Horache","year":"2021"},{"key":"10.1016\/j.inffus.2024.102601_b204","doi-asserted-by":"crossref","first-page":"227","DOI":"10.1016\/j.neucom.2021.01.091","article-title":"Semi-supervised point cloud segmentation using self-training with label confidence prediction","volume":"437","author":"Li","year":"2021","journal-title":"Neurocomputing"},{"year":"2021","series-title":"Multimodal semi-supervised learning for 3D objects","author":"Chen","key":"10.1016\/j.inffus.2024.102601_b205"},{"key":"10.1016\/j.inffus.2024.102601_b206","first-page":"2795","article-title":"Transfer learning from synthetic to real LiDAR point cloud for semantic segmentation","volume":"vol. 36","author":"Xiao","year":"2022"},{"issue":"6","key":"10.1016\/j.inffus.2024.102601_b207","doi-asserted-by":"crossref","first-page":"2496","DOI":"10.1109\/TITS.2019.2919741","article-title":"Semantic segmentation of 3D LiDAR data in dynamic scene using semi-supervised learning","volume":"21","author":"Mei","year":"2019","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"key":"10.1016\/j.inffus.2024.102601_b208","doi-asserted-by":"crossref","unstructured":"S. Huang, Y. Xie, S.-C. Zhu, Y. Zhu, Spatio-temporal self-supervised representation learning for 3D point clouds, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2021, pp. 6535\u20136545.","DOI":"10.1109\/ICCV48922.2021.00647"},{"key":"10.1016\/j.inffus.2024.102601_b209","doi-asserted-by":"crossref","unstructured":"Z. Qin, J. Wang, Y. Lu, Weakly supervised 3D object detection from point clouds, in: Proceedings of the 28th ACM International Conference on Multimedia, 2020, pp. 4144\u20134152.","DOI":"10.1145\/3394171.3413805"},{"key":"10.1016\/j.inffus.2024.102601_b210","series-title":"European Conference on Computer Vision","first-page":"182","article-title":"Data efficient 3D learner via knowledge transferred from 2D model","author":"Yu","year":"2022"},{"key":"10.1016\/j.inffus.2024.102601_b211","doi-asserted-by":"crossref","unstructured":"Z. Xu, B. Yuan, S. Zhao, Q. Zhang, X. Gao, Hierarchical Point-based Active Learning for Semi-supervised Point Cloud Semantic Segmentation, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2023, pp. 18098\u201318108.","DOI":"10.1109\/ICCV51070.2023.01659"},{"key":"10.1016\/j.inffus.2024.102601_b212","doi-asserted-by":"crossref","unstructured":"D. Zhang, D. Liang, Z. Zou, J. Li, X. Ye, Z. Liu, X. Tan, X. Bai, A simple vision transformer for weakly semi-supervised 3D object detection, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2023, pp. 8373\u20138383.","DOI":"10.1109\/ICCV51070.2023.00769"},{"key":"10.1016\/j.inffus.2024.102601_b213","first-page":"2707","article-title":"SSDA3D: Semi-supervised domain adaptation for 3D object detection from point cloud","volume":"vol. 37","author":"Wang","year":"2023"},{"issue":"1","key":"10.1016\/j.inffus.2024.102601_b214","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1109\/JPROC.2020.3004555","article-title":"A comprehensive survey on transfer learning","volume":"109","author":"Zhuang","year":"2020","journal-title":"Proc. IEEE"},{"issue":"10","key":"10.1016\/j.inffus.2024.102601_b215","doi-asserted-by":"crossref","first-page":"1345","DOI":"10.1109\/TKDE.2009.191","article-title":"A survey on transfer learning","volume":"22","author":"Pan","year":"2009","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.inffus.2024.102601_b216","doi-asserted-by":"crossref","unstructured":"Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni, A. Markham, RandLA-Net: Efficient semantic segmentation of large-scale point clouds, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 2020, pp. 11108\u201311117.","DOI":"10.1109\/CVPR42600.2020.01112"},{"year":"2017","series-title":"Semantic3D. net: A new large-scale point cloud classification benchmark","author":"Hackel","key":"10.1016\/j.inffus.2024.102601_b217"},{"issue":"8","key":"10.1016\/j.inffus.2024.102601_b218","doi-asserted-by":"crossref","first-page":"1406","DOI":"10.1109\/LGRS.2019.2947608","article-title":"ALS point cloud classification with small training data set based on transfer learning","volume":"17","author":"Zhao","year":"2019","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"10.1016\/j.inffus.2024.102601_b219","article-title":"Point-voxel CNN for efficient 3D deep learning","volume":"32","author":"Liu","year":"2019","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"4","key":"10.1016\/j.inffus.2024.102601_b220","doi-asserted-by":"crossref","first-page":"2416","DOI":"10.1109\/TII.2018.2881543","article-title":"Deep transfer learning based on sparse autoencoder for remaining useful life prediction of tool in manufacturing","volume":"15","author":"Sun","year":"2018","journal-title":"IEEE Trans. Ind. Inform."},{"issue":"22","key":"10.1016\/j.inffus.2024.102601_b221","doi-asserted-by":"crossref","first-page":"5046","DOI":"10.3390\/s19225046","article-title":"Body dimension measurements of qinchuan cattle with transfer learning from LiDAR sensing","volume":"19","author":"Huang","year":"2019","journal-title":"Sensors"},{"key":"10.1016\/j.inffus.2024.102601_b222","series-title":"Seventh IEEE International Conference on Data Mining Workshops (ICDMW 2007)","first-page":"77","article-title":"A comparative study of methods for transductive transfer learning","author":"Arnold","year":"2007"},{"key":"10.1016\/j.inffus.2024.102601_b223","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"3722","article-title":"Unsupervised pixel-level domain adaptation with generative adversarial networks","author":"Bousmalis","year":"2017"},{"issue":"3","key":"10.1016\/j.inffus.2024.102601_b224","doi-asserted-by":"crossref","first-page":"465","DOI":"10.1109\/TPAMI.2011.114","article-title":"Domain transfer multiple kernel learning","volume":"34","author":"Duan","year":"2012","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2024.102601_b225","series-title":"International Conference on Machine Learning","first-page":"2208","article-title":"Deep transfer learning with joint adaptation networks","author":"Long","year":"2017"},{"key":"10.1016\/j.inffus.2024.102601_b226","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"3801","article-title":"Collaborative and adversarial network for unsupervised domain adaptation","author":"Zhang","year":"2018"},{"key":"10.1016\/j.inffus.2024.102601_b227","doi-asserted-by":"crossref","unstructured":"Z. Wang, S. Ding, Y. Li, M. Zhao, S. Roychowdhury, A. Wallin, G. Sapiro, Q. Qiu, Range adaptation for 3D object detection in LiDAR, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision Workshops, Seoul, Korea, 2019.","DOI":"10.1109\/ICCVW.2019.00285"},{"key":"10.1016\/j.inffus.2024.102601_b228","doi-asserted-by":"crossref","unstructured":"W. Zhang, W. Li, D. Xu, SRDAN: Scale-aware and range-aware domain adaptation network for cross-dataset 3D object detection, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 2021, pp. 6769\u20136779.","DOI":"10.1109\/CVPR46437.2021.00670"},{"key":"10.1016\/j.inffus.2024.102601_b229","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1016\/j.isprsjprs.2021.04.012","article-title":"Adversarial unsupervised domain adaptation for 3D semantic segmentation with multi-modal learning","volume":"176","author":"Liu","year":"2021","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.inffus.2024.102601_b230","series-title":"2021 International Joint Conference on Neural Networks","first-page":"1","article-title":"Bi-adversarial discrepancy minimization for unsupervised domain adaptation on 3D point cloud","author":"Tang","year":"2021"},{"issue":"7","key":"10.1016\/j.inffus.2024.102601_b231","doi-asserted-by":"crossref","first-page":"1838","DOI":"10.1109\/TMI.2021.3066683","article-title":"Adapt everywhere: unsupervised adaptation of point-clouds and entropy minimization for multi-modal cardiac image segmentation","volume":"40","author":"Vesal","year":"2021","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.inffus.2024.102601_b232","series-title":"IEEE INFOCOM 2021-IEEE Conference on Computer Communications","first-page":"1","article-title":"PALMAR: Towards adaptive multi-inhabitant activity recognition in point-cloud technology","author":"Alam","year":"2021"},{"issue":"8","key":"10.1016\/j.inffus.2024.102601_b233","doi-asserted-by":"crossref","first-page":"927","DOI":"10.3390\/electronics10080927","article-title":"Unsupervised subcategory domain adaptive network for 3D object detection in LiDAR","volume":"10","author":"Wang","year":"2021","journal-title":"Electronics"},{"key":"10.1016\/j.inffus.2024.102601_b234","series-title":"2021 IEEE\/RSJ International Conference on Intelligent Robots and Systems","first-page":"1317","article-title":"A registration-aided domain adaptation network for 3D point cloud based place recognition","author":"Qiao","year":"2021"},{"key":"10.1016\/j.inffus.2024.102601_b235","doi-asserted-by":"crossref","first-page":"1801","DOI":"10.1016\/j.procir.2021.11.304","article-title":"Automatic assembly quality inspection based on an unsupervised point cloud domain adaptation model","volume":"104","author":"Zhu","year":"2021","journal-title":"Procedia CIRP"},{"key":"10.1016\/j.inffus.2024.102601_b236","doi-asserted-by":"crossref","first-page":"7364","DOI":"10.1109\/TIP.2021.3092818","article-title":"Cross-dataset point cloud recognition using deep-shallow domain adaptation network","volume":"30","author":"Wang","year":"2021","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.inffus.2024.102601_b237","series-title":"MobiQuitous 2020-17th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services","first-page":"1","article-title":"LAMAR: Lidar based multi-inhabitant activity recognition","author":"Alam","year":"2020"},{"key":"10.1016\/j.inffus.2024.102601_b238","article-title":"Cross-modal learning for domain adaptation in 3D semantic segmentation","author":"Jaritz","year":"2022","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2024.102601_b239","series-title":"2019 IEEE Intelligent Transportation Systems Conference","first-page":"2020","article-title":"Cyclist intent prediction using 3D LiDAR sensors for fully automated vehicles","author":"Saleh","year":"2019"},{"key":"10.1016\/j.inffus.2024.102601_b240","series-title":"2019 IEEE Intelligent Vehicles Symposium","first-page":"1535","article-title":"Cross-sensor deep domain adaptation for LiDAR detection and segmentation","author":"Rist","year":"2019"},{"issue":"10","key":"10.1016\/j.inffus.2024.102601_b241","doi-asserted-by":"crossref","first-page":"1205","DOI":"10.3390\/electronics10101205","article-title":"Strong-weak feature alignment for 3D object detection","volume":"10","author":"Wang","year":"2021","journal-title":"Electronics"},{"issue":"2","key":"10.1016\/j.inffus.2024.102601_b242","doi-asserted-by":"crossref","first-page":"2116","DOI":"10.1109\/LRA.2022.3142440","article-title":"SegContrast: 3D point cloud feature representation learning through self-supervised segment discrimination","volume":"7","author":"Nunes","year":"2022","journal-title":"IEEE Robot. Autom. Lett."},{"issue":"12","key":"10.1016\/j.inffus.2024.102601_b243","doi-asserted-by":"crossref","first-page":"2481","DOI":"10.1109\/TPAMI.2016.2644615","article-title":"Segnet: A deep convolutional encoder-decoder architecture for image segmentation","volume":"39","author":"Badrinarayanan","year":"2017","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"year":"2022","series-title":"Upsampling autoencoder for self-supervised point cloud learning","author":"Zhang","key":"10.1016\/j.inffus.2024.102601_b244"},{"key":"10.1016\/j.inffus.2024.102601_b245","doi-asserted-by":"crossref","unstructured":"E. Nezhadarya, E. Taghavi, R. Razani, B. Liu, J. Luo, Adaptive hierarchical down-sampling for point cloud classification, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 2020, pp. 12956\u201312964.","DOI":"10.1109\/CVPR42600.2020.01297"},{"key":"10.1016\/j.inffus.2024.102601_b246","first-page":"87","article-title":"Pointpronets: Consolidation of point clouds with convolutional neural networks","volume":"vol. 37","author":"Roveri","year":"2018"},{"key":"10.1016\/j.inffus.2024.102601_b247","series-title":"International Semantic Web Conference","first-page":"446","article-title":"Semantic labeling: a domain-independent approach","author":"Pham","year":"2016"},{"key":"10.1016\/j.inffus.2024.102601_b248","doi-asserted-by":"crossref","DOI":"10.1016\/j.autcon.2021.103992","article-title":"Automated semantic segmentation of bridge point cloud based on local descriptor and machine learning","volume":"133","author":"Xia","year":"2022","journal-title":"Autom. Constr."},{"key":"10.1016\/j.inffus.2024.102601_b249","doi-asserted-by":"crossref","unstructured":"R. Sun, X. Zhu, C. Wu, C. Huang, J. Shi, L. Ma, Not all areas are equal: Transfer learning for semantic segmentation via hierarchical region selection, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 2019, pp. 4360\u20134369.","DOI":"10.1109\/CVPR.2019.00449"},{"key":"10.1016\/j.inffus.2024.102601_b250","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"3204","article-title":"Learning transferrable knowledge for semantic segmentation with deep convolutional neural network","author":"Hong","year":"2016"},{"key":"10.1016\/j.inffus.2024.102601_b251","doi-asserted-by":"crossref","first-page":"90","DOI":"10.1016\/j.isprsjprs.2019.07.002","article-title":"Addressing overfitting on point cloud classification using Atrous XCRF","volume":"155","author":"Arief","year":"2019","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"issue":"2","key":"10.1016\/j.inffus.2024.102601_b252","doi-asserted-by":"crossref","first-page":"314","DOI":"10.1109\/TRO.2020.3033695","article-title":"Teaser: Fast and certifiable point cloud registration","volume":"37","author":"Yang","year":"2020","journal-title":"IEEE Trans. Robot."},{"key":"10.1016\/j.inffus.2024.102601_b253","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"5556","article-title":"Robust reconstruction of indoor scenes","author":"Choi","year":"2015"},{"key":"10.1016\/j.inffus.2024.102601_b254","doi-asserted-by":"crossref","unstructured":"Y. Wang, J.M. Solomon, Deep closest point: Learning representations for point cloud registration, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019, pp. 3523\u20133532.","DOI":"10.1109\/ICCV.2019.00362"},{"key":"10.1016\/j.inffus.2024.102601_b255","doi-asserted-by":"crossref","unstructured":"Y. Chen, J. Liu, B. Ni, H. Wang, J. Yang, N. Liu, T. Li, Q. Tian, Shape self-correction for unsupervised point cloud understanding, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, Montreal, BC, Canada, 2021, pp. 8382\u20138391.","DOI":"10.1109\/ICCV48922.2021.00827"},{"year":"2021","series-title":"PointCLIP: Point cloud understanding by CLIP","author":"Zhang","key":"10.1016\/j.inffus.2024.102601_b256"},{"key":"10.1016\/j.inffus.2024.102601_b257","article-title":"FG-Net: A fast and accurate framework for large-scale LiDAR point cloud understanding","author":"Liu","year":"2022","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.inffus.2024.102601_b258","doi-asserted-by":"crossref","unstructured":"S. Luo, W. Hu, Score-based point cloud denoising, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, Montreal, BC, Canada, 2021, pp. 4583\u20134592.","DOI":"10.1109\/ICCV48922.2021.00454"},{"key":"10.1016\/j.inffus.2024.102601_b259","doi-asserted-by":"crossref","first-page":"3474","DOI":"10.1109\/TIP.2019.2961429","article-title":"3D point cloud denoising using graph Laplacian regularization of a low dimensional manifold model","volume":"29","author":"Zeng","year":"2019","journal-title":"IEEE Trans. Image Process."},{"year":"2018","series-title":"Fast 3D point cloud denoising via bipartite graph approximation & total variation","author":"Dinesh","key":"10.1016\/j.inffus.2024.102601_b260"},{"year":"2018","series-title":"Weighted multi-projection: 3D point cloud denoising with estimated tangent planes","author":"Duan","key":"10.1016\/j.inffus.2024.102601_b261"},{"key":"10.1016\/j.inffus.2024.102601_b262","doi-asserted-by":"crossref","first-page":"2841","DOI":"10.1109\/TSP.2020.2978617","article-title":"Feature graph learning for 3D point cloud denoising","volume":"68","author":"Hu","year":"2020","journal-title":"IEEE Trans. Signal Process."},{"issue":"3","key":"10.1016\/j.inffus.2024.102601_b263","doi-asserted-by":"crossref","DOI":"10.1029\/2020WR027608","article-title":"Using deep learning for automatic water stage measurements","volume":"57","author":"Eltner","year":"2021","journal-title":"Water Resour. Res."},{"key":"10.1016\/j.inffus.2024.102601_b264","series-title":"2017 IEEE International Conference on Autonomous Robot Systems and Competitions","first-page":"228","article-title":"3D point cloud downsampling for 2D indoor scene modelling in mobile robotics","author":"Garrote","year":"2017"},{"key":"10.1016\/j.inffus.2024.102601_b265","series-title":"The 2013 International Joint Conference on Neural Networks","first-page":"1","article-title":"Point cloud data filtering and downsampling using growing neural gas","author":"Orts-Escolano","year":"2013"},{"issue":"2","key":"10.1016\/j.inffus.2024.102601_b266","doi-asserted-by":"crossref","first-page":"70","DOI":"10.3390\/geosciences9020070","article-title":"Down-sampling of point clouds for the technical diagnostics of buildings and structures","volume":"9","author":"Suchocki","year":"2019","journal-title":"Geosciences"},{"key":"10.1016\/j.inffus.2024.102601_b267","first-page":"4035","article-title":"SGFormer: Semantic graph transformer for point cloud-based 3D scene graph generation","volume":"vol. 38","author":"Lv","year":"2024"},{"key":"10.1016\/j.inffus.2024.102601_b268","doi-asserted-by":"crossref","unstructured":"Z. Li, Z. Li, Z. Cui, M. Pollefeys, M.R. Oswald, Sat2Scene: 3D Urban Scene Generation from Satellite Images with Diffusion, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2024, pp. 7141\u20137150.","DOI":"10.1109\/CVPR52733.2024.00682"},{"year":"2024","series-title":"Art3D: 3D Gaussian splatting for text-guided artistic scenes generation","author":"Li","key":"10.1016\/j.inffus.2024.102601_b269"},{"year":"2023","series-title":"LucidDreamer: Domain-free generation of 3D Gaussian splatting scenes","author":"Chung","key":"10.1016\/j.inffus.2024.102601_b270"},{"key":"10.1016\/j.inffus.2024.102601_b271","doi-asserted-by":"crossref","unstructured":"Y.-K. Wang, C. Xing, Y.-L. Wei, X.-M. Wu, W.-S. Zheng, Single-View Scene Point Cloud Human Grasp Generation, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2024, pp. 831\u2013841.","DOI":"10.1109\/CVPR52733.2024.00085"},{"key":"10.1016\/j.inffus.2024.102601_b272","doi-asserted-by":"crossref","unstructured":"S. Koch, P. Hermosilla, N. Vaskevicius, M. Colosi, T. Ropinski, SGRec3D: Self-supervised 3D scene graph learning via object-level scene reconstruction, in: Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision, 2024, pp. 3404\u20133414.","DOI":"10.1109\/WACV57701.2024.00337"},{"year":"2023","series-title":"Pyramid diffusion for fine 3D large scene generation","author":"Liu","key":"10.1016\/j.inffus.2024.102601_b273"},{"issue":"2","key":"10.1016\/j.inffus.2024.102601_b274","doi-asserted-by":"crossref","first-page":"450","DOI":"10.3390\/rs15020450","article-title":"What are we missing? Occlusion in laser scanning point clouds and its impact on the detection of single-tree morphologies and stand structural variables","volume":"15","author":"Mathes","year":"2023","journal-title":"Remote Sens."},{"key":"10.1016\/j.inffus.2024.102601_b275","first-page":"1","article-title":"PLOT: a 3D point cloud object detection network for autonomous driving","author":"Zhang","year":"2023","journal-title":"Robotica"},{"key":"10.1016\/j.inffus.2024.102601_b276","doi-asserted-by":"crossref","DOI":"10.1016\/j.scs.2022.104059","article-title":"Next-generation energy systems for sustainable smart cities: Roles of transfer learning","author":"Himeur","year":"2022","journal-title":"Sustainable Cities Soc."},{"key":"10.1016\/j.inffus.2024.102601_b277","doi-asserted-by":"crossref","DOI":"10.1016\/j.cad.2023.103479","article-title":"Recognising geometric primitives in 3D point clouds of mechanical cad objects","author":"Romanengo","year":"2023","journal-title":"Comput. Aided Des."},{"issue":"2","key":"10.1016\/j.inffus.2024.102601_b278","doi-asserted-by":"crossref","first-page":"107","DOI":"10.3390\/systems11020107","article-title":"Face mask detection in smart cities using deep and transfer learning: Lessons learned from the COVID-19 pandemic","volume":"11","author":"Himeur","year":"2023","journal-title":"Systems"},{"key":"10.1016\/j.inffus.2024.102601_b279","series-title":"Joint European Conference on Machine Learning and Knowledge Discovery in Databases","first-page":"71","article-title":"An algorithm for transfer learning in a heterogeneous environment","author":"Argyriou","year":"2008"},{"key":"10.1016\/j.inffus.2024.102601_b280","doi-asserted-by":"crossref","unstructured":"R. Gong, D. Dai, Y. Chen, W. Li, L. Van Gool, mDALU: Multi-Source Domain Adaptation and Label Unification with Partial Datasets, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, Montreal, BC, Canada, 2021, pp. 8876\u20138885.","DOI":"10.1109\/ICCV48922.2021.00875"},{"key":"10.1016\/j.inffus.2024.102601_b281","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.artint.2018.12.008","article-title":"Ridesharing car detection by transfer learning","volume":"273","author":"Wang","year":"2019","journal-title":"Artificial Intelligence"},{"year":"2017","series-title":"Minimal-entropy correlation alignment for unsupervised deep domain adaptation","author":"Morerio","key":"10.1016\/j.inffus.2024.102601_b282"},{"key":"10.1016\/j.inffus.2024.102601_b283","doi-asserted-by":"crossref","unstructured":"M. Liang, B. Yang, Y. Chen, R. Hu, R. Urtasun, Multi-task multi-sensor fusion for 3D object detection, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 2019, pp. 7345\u20137353.","DOI":"10.1109\/CVPR.2019.00752"},{"issue":"5","key":"10.1016\/j.inffus.2024.102601_b284","doi-asserted-by":"crossref","first-page":"1239","DOI":"10.1007\/s11263-019-01188-y","article-title":"Self-supervised model adaptation for multimodal semantic segmentation","volume":"128","author":"Valada","year":"2020","journal-title":"Int. J. Comput. Vis."},{"key":"10.1016\/j.inffus.2024.102601_b285","doi-asserted-by":"crossref","DOI":"10.1016\/j.scs.2022.104064","article-title":"Deep visual social distancing monitoring to combat COVID-19: A comprehensive survey","author":"Himeur","year":"2022","journal-title":"Sustainable Cities Soc."},{"key":"10.1016\/j.inffus.2024.102601_b286","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.isprsjprs.2019.11.024","article-title":"Transferring deep learning models for cloud detection between Landsat-8 and Proba-V","volume":"160","author":"Mateo-Garc\u00eda","year":"2020","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.inffus.2024.102601_b287","doi-asserted-by":"crossref","first-page":"2","DOI":"10.1016\/j.isprsjprs.2021.12.013","article-title":"A graph-matching approach for cross-view registration of over-view and street-view based point clouds","volume":"185","author":"Ling","year":"2022","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.inffus.2024.102601_b288","series-title":"ICML","article-title":"Domain adaptation for large-scale sentiment classification: A deep learning approach","author":"Glorot","year":"2011"},{"key":"10.1016\/j.inffus.2024.102601_b289","series-title":"Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation","first-page":"61","article-title":"Heterogeneous transfer learning for thermal comfort modeling","author":"Hu","year":"2019"},{"key":"10.1016\/j.inffus.2024.102601_b290","doi-asserted-by":"crossref","DOI":"10.1016\/j.apenergy.2020.114499","article-title":"Statistical investigations of transfer learning-based methodology for short-term building energy predictions","volume":"262","author":"Fan","year":"2020","journal-title":"Appl. Energy"},{"key":"10.1016\/j.inffus.2024.102601_b291","article-title":"Deep domain adaptation for non-intrusive load monitoring based on a knowledge transfer learning network","author":"Lin","year":"2021","journal-title":"IEEE Trans. Smart Grid"},{"key":"10.1016\/j.inffus.2024.102601_b292","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"1442","article-title":"Learning to learn, from transfer learning to domain adaptation: A unifying perspective","author":"Patricia","year":"2014"},{"key":"10.1016\/j.inffus.2024.102601_b293","first-page":"1","article-title":"Automatic speech recognition with BERT and CTC transformers: A review","volume":"vol. 1","author":"Djeffal","year":"2023"},{"year":"2022","series-title":"Pix4Point: Image pretrained transformers for 3D point cloud understanding","author":"Qian","key":"10.1016\/j.inffus.2024.102601_b294"},{"year":"2018","series-title":"Bert: Pre-training of deep bidirectional transformers for language understanding","author":"Devlin","key":"10.1016\/j.inffus.2024.102601_b295"},{"key":"10.1016\/j.inffus.2024.102601_b296","doi-asserted-by":"crossref","unstructured":"Q.-H. Pham, T. Nguyen, B.-S. Hua, G. Roig, S.-K. Yeung, JSIS3D: Joint semantic-instance segmentation of 3D point clouds with multi-task pointwise networks and multi-value conditional random fields, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 8827\u20138836.","DOI":"10.1109\/CVPR.2019.00903"},{"issue":"7","key":"10.1016\/j.inffus.2024.102601_b297","doi-asserted-by":"crossref","first-page":"9568","DOI":"10.1109\/TITS.2022.3150155","article-title":"Multi-task Y-shaped graph neural network for point cloud learning in autonomous driving","volume":"23","author":"Zou","year":"2022","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"key":"10.1016\/j.inffus.2024.102601_b298","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2021.108250","article-title":"JSPNet: Learning joint semantic & instance segmentation of point clouds via feature self-similarity and cross-task probability","volume":"122","author":"Chen","year":"2022","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.inffus.2024.102601_b299","first-page":"3231","article-title":"Lidarmultinet: Towards a unified multi-task network for LiDAR perception","volume":"vol. 37","author":"Ye","year":"2023"},{"key":"10.1016\/j.inffus.2024.102601_b300","article-title":"HARadNet: Anchor-free target detection for radar point clouds using hierarchical attention and multi-task learning","volume":"8","author":"Dubey","year":"2022","journal-title":"Mach. Learn. Appl."},{"key":"10.1016\/j.inffus.2024.102601_b301","doi-asserted-by":"crossref","unstructured":"K. Hassani, M. Haley, Unsupervised multi-task feature learning on point clouds, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2019, pp. 8160\u20138171.","DOI":"10.1109\/ICCV.2019.00825"},{"key":"10.1016\/j.inffus.2024.102601_b302","series-title":"International Conference on Adaptive and Intelligent Systems","first-page":"382","article-title":"A multi-task learning framework for semantic segmentation in MLS point clouds","author":"Lin","year":"2022"},{"key":"10.1016\/j.inffus.2024.102601_b303","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2023.121552","article-title":"Robust multi-task learning network for complex LiDAR point cloud data preprocessing","volume":"237","author":"Zhao","year":"2024","journal-title":"Expert Syst. Appl."},{"issue":"2","key":"10.1016\/j.inffus.2024.102601_b304","doi-asserted-by":"crossref","first-page":"206","DOI":"10.1109\/TEVC.2021.3086308","article-title":"Multitask shape optimization using a 3-D point cloud autoencoder as unified representation","volume":"26","author":"Rios","year":"2021","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.inffus.2024.102601_b305","series-title":"2021 IEEE\/RSJ International Conference on Intelligent Robots and Systems","first-page":"7067","article-title":"A simple and efficient multi-task network for 3D object detection and road understanding","author":"Feng","year":"2021"},{"key":"10.1016\/j.inffus.2024.102601_b306","doi-asserted-by":"crossref","unstructured":"J. Rebut, A. Ouaknine, W. Malik, P. P\u00e9rez, Raw high-definition radar for multi-task learning, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 17021\u201317030.","DOI":"10.1109\/CVPR52688.2022.01651"},{"key":"10.1016\/j.inffus.2024.102601_b307","article-title":"GPA-Net: No-reference point cloud quality assessment with multi-task graph convolutional network","author":"Shan","year":"2023","journal-title":"IEEE Trans. Vis. Comput. Graphics"},{"key":"10.1016\/j.inffus.2024.102601_b308","doi-asserted-by":"crossref","unstructured":"A. Hatem, Y. Qian, Y. Wang, Point-TTA: Test-Time Adaptation for Point Cloud Registration Using Multitask Meta-Auxiliary Learning, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2023, pp. 16494\u201316504.","DOI":"10.1109\/ICCV51070.2023.01512"},{"issue":"179","key":"10.1016\/j.inffus.2024.102601_b309","doi-asserted-by":"crossref","first-page":"260","DOI":"10.1111\/phor.12420","article-title":"An improved multi-task pointwise network for segmentation of building roofs in airborne laser scanning point clouds","volume":"37","author":"Zhang","year":"2022","journal-title":"Photogramm. Rec."},{"key":"10.1016\/j.inffus.2024.102601_b310","doi-asserted-by":"crossref","DOI":"10.1016\/j.cad.2021.103105","article-title":"Multi-task joint learning of 3D keypoint saliency and correspondence estimation","volume":"141","author":"Wei","year":"2021","journal-title":"Comput. Aided Des."},{"key":"10.1016\/j.inffus.2024.102601_b311","doi-asserted-by":"crossref","DOI":"10.1016\/j.rcim.2022.102369","article-title":"Machining feature recognition based on a novel multi-task deep learning network","volume":"77","author":"Zhang","year":"2022","journal-title":"Robot. Comput.-Integr. Manuf."},{"key":"10.1016\/j.inffus.2024.102601_b312","doi-asserted-by":"crossref","unstructured":"M. Afham, I. Dissanayake, D. Dissanayake, A. Dharmasiri, K. Thilakarathna, R. Rodrigo, Crosspoint: Self-supervised cross-modal contrastive learning for 3D point cloud understanding, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 9902\u20139912.","DOI":"10.1109\/CVPR52688.2022.00967"},{"key":"10.1016\/j.inffus.2024.102601_b313","first-page":"32398","article-title":"Let images give you more: Point cloud cross-modal training for shape analysis","volume":"35","author":"Yan","year":"2022","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2024.102601_b314","article-title":"Self-supervised intra-modal and cross-modal contrastive learning for point cloud understanding","author":"Wu","year":"2023","journal-title":"IEEE Trans. Multimed."},{"key":"10.1016\/j.inffus.2024.102601_b315","series-title":"Chinese Conference on Pattern Recognition and Computer Vision","first-page":"465","article-title":"Cross-modal and cross-domain knowledge transfer for label-free 3D segmentation","author":"Zhang","year":"2023"},{"key":"10.1016\/j.inffus.2024.102601_b316","first-page":"2670","article-title":"X4D-sceneformer: Enhanced scene understanding on 4D point cloud videos through cross-modal knowledge transfer","volume":"vol. 38","author":"Jing","year":"2024"},{"key":"10.1016\/j.inffus.2024.102601_b317","article-title":"PointMCD: Boosting deep point cloud encoders via multi-view cross-modal distillation for 3D shape recognition","author":"Zhang","year":"2023","journal-title":"IEEE Trans. Multimed."},{"issue":"4","key":"10.1016\/j.inffus.2024.102601_b318","doi-asserted-by":"crossref","first-page":"987","DOI":"10.1109\/TRO.2019.2914772","article-title":"A transfer learning approach to cross-modal object recognition: from visual observation to robotic haptic exploration","volume":"35","author":"Falco","year":"2019","journal-title":"IEEE Trans. Robot."},{"issue":"4","key":"10.1016\/j.inffus.2024.102601_b319","doi-asserted-by":"crossref","first-page":"9557","DOI":"10.1109\/LRA.2022.3191408","article-title":"Deep active cross-modal visuo-tactile transfer learning for robotic object recognition","volume":"7","author":"Murali","year":"2022","journal-title":"IEEE Robot. Autom. Lett."},{"year":"2022","series-title":"Simcrosstrans: A simple cross-modality transfer learning for object detection with convnets or vision transformers","author":"Shen","key":"10.1016\/j.inffus.2024.102601_b320"},{"key":"10.1016\/j.inffus.2024.102601_b321","doi-asserted-by":"crossref","unstructured":"L. Jing, E. Vahdani, J. Tan, Y. Tian, Cross-modal center loss for 3D cross-modal retrieval, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 3142\u20133151.","DOI":"10.1109\/CVPR46437.2021.00316"},{"key":"10.1016\/j.inffus.2024.102601_b322","article-title":"CSDN: Cross-modal shape-transfer dual-refinement network for point cloud completion","author":"Zhu","year":"2023","journal-title":"IEEE Trans. Vis. Comput. Graphics"},{"key":"10.1016\/j.inffus.2024.102601_b323","doi-asserted-by":"crossref","unstructured":"M. Li, Y. Zhang, Y. Xie, Z. Gao, C. Li, Z. Zhang, Y. Qu, Cross-domain and cross-modal knowledge distillation in domain adaptation for 3D semantic segmentation, in: Proceedings of the 30th ACM International Conference on Multimedia, 2022, pp. 3829\u20133837.","DOI":"10.1145\/3503161.3547990"},{"key":"10.1016\/j.inffus.2024.102601_b324","doi-asserted-by":"crossref","unstructured":"D. Peng, Y. Lei, W. Li, P. Zhang, Y. Guo, Sparse-to-dense feature matching: Intra and inter domain cross-modal learning in domain adaptation for 3D semantic segmentation, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2021, pp. 7108\u20137117.","DOI":"10.1109\/ICCV48922.2021.00702"},{"key":"10.1016\/j.inffus.2024.102601_b325","series-title":"2020 IEEE Intelligent Vehicles Symposium","first-page":"1601","article-title":"Learning common and transferable feature representations for multi-modal data","author":"Nitsch","year":"2020"},{"key":"10.1016\/j.inffus.2024.102601_b326","doi-asserted-by":"crossref","unstructured":"M. Li, Y. Zhang, X. Ma, Y. Qu, Y. Fu, BEV-DG: Cross-Modal Learning under Bird\u2019s-Eye View for Domain Generalization of 3D Semantic Segmentation, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2023, pp. 11632\u201311642.","DOI":"10.1109\/ICCV51070.2023.01068"},{"key":"10.1016\/j.inffus.2024.102601_b327","doi-asserted-by":"crossref","unstructured":"P. Tang, H.-M. Xu, C. Ma, ProtoTransfer: Cross-Modal Prototype Transfer for Point Cloud Segmentation, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2023, pp. 3337\u20133347.","DOI":"10.1109\/ICCV51070.2023.00309"},{"key":"10.1016\/j.inffus.2024.102601_b328","first-page":"2974","article-title":"Cross-modal contrastive learning for domain adaptation in 3D semantic segmentation","volume":"vol. 37","author":"Xing","year":"2023"},{"key":"10.1016\/j.inffus.2024.102601_b329","doi-asserted-by":"crossref","unstructured":"Z. Yuan, X. Yan, Y. Liao, Y. Guo, G. Li, S. Cui, Z. Li, X-Trans2Cap: Cross-modal knowledge transfer using transformer for 3D dense captioning, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 8563\u20138573.","DOI":"10.1109\/CVPR52688.2022.00837"},{"year":"2023","series-title":"PointCMC: Cross-modal multi-scale correspondences learning for point cloud understanding","author":"Zhou","key":"10.1016\/j.inffus.2024.102601_b330"},{"key":"10.1016\/j.inffus.2024.102601_b331","doi-asserted-by":"crossref","unstructured":"X. Zheng, X. Huang, G. Mei, Y. Hou, Z. Lyu, B. Dai, W. Ouyang, Y. Gong, Point Cloud Pre-training with Diffusion Models, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2024, pp. 22935\u201322945.","DOI":"10.1109\/CVPR52733.2024.02164"},{"key":"10.1016\/j.inffus.2024.102601_b332","article-title":"Point cloud completion with pretrained text-to-image diffusion models","volume":"36","author":"Kasten","year":"2024","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2024.102601_b333","series-title":"ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing","first-page":"4375","article-title":"3D point cloud semantic segmentation based on diffusion model","author":"Liu","year":"2024"},{"key":"10.1016\/j.inffus.2024.102601_b334","article-title":"Se (3) diffusion model-based point cloud registration for robust 6D object pose estimation","volume":"36","author":"Jiang","year":"2024","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2024.102601_b335","doi-asserted-by":"crossref","unstructured":"S. Jin, I. Armeni, M. Pollefeys, D. Barath, Multiway Point Cloud Mosaicking with Diffusion and Global Optimization, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2024, pp. 20838\u201320849.","DOI":"10.1109\/CVPR52733.2024.01969"},{"year":"2024","series-title":"DiffPoint: Single and multi-view point cloud reconstruction with ViT based diffusion model","author":"Feng","key":"10.1016\/j.inffus.2024.102601_b336"},{"key":"10.1016\/j.inffus.2024.102601_b337","doi-asserted-by":"crossref","unstructured":"G. Sharma, C. Gupta, A. Agarwal, L. Sharma, A. Dhall, Generating Point Cloud Augmentations via Class-Conditioned Diffusion Model, in: Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision, 2024, pp. 480\u2013488.","DOI":"10.1109\/WACVW60836.2024.00057"},{"key":"10.1016\/j.inffus.2024.102601_b338","article-title":"Dit-3D: Exploring plain diffusion transformers for 3D shape generation","volume":"36","author":"Mo","year":"2024","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2024.102601_b339","doi-asserted-by":"crossref","unstructured":"T. Yi, J. Fang, J. Wang, G. Wu, L. Xie, X. Zhang, W. Liu, Q. Tian, X. Wang, Gaussiandreamer: Fast generation from text to 3D Gaussians by bridging 2D and 3D diffusion models, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2024, pp. 6796\u20136807.","DOI":"10.1109\/CVPR52733.2024.00649"},{"key":"10.1016\/j.inffus.2024.102601_b340","article-title":"Diffusion-SS3D: Diffusion model for semi-supervised 3D object detection","volume":"36","author":"Ho","year":"2024","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2024.102601_b341","doi-asserted-by":"crossref","DOI":"10.1016\/j.pmcj.2024.101914","article-title":"Privacy-preserving pedestrian tracking with path image inpainting and 3D point cloud features","volume":"100","author":"Ohno","year":"2024","journal-title":"Pervasive Mob. Comput."},{"key":"10.1016\/j.inffus.2024.102601_b342","doi-asserted-by":"crossref","DOI":"10.1109\/TGRS.2024.3349681","article-title":"DiffusionEMIS: Diffusion model for 3D electromagnetic inverse scattering","author":"Bi","year":"2024","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2024.102601_b343","doi-asserted-by":"crossref","unstructured":"N.S. Dutt, S. Muralikrishnan, N.J. Mitra, Diffusion 3D features (Diff3F): Decorating untextured shapes with distilled semantic features, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2024, pp. 4494\u20134504.","DOI":"10.1109\/CVPR52733.2024.00430"},{"year":"2024","series-title":"Generative design of crystal structures by point cloud representations and diffusion model","author":"Li","key":"10.1016\/j.inffus.2024.102601_b344"},{"year":"2024","series-title":"3D diffusion policy","author":"Ze","key":"10.1016\/j.inffus.2024.102601_b345"},{"key":"10.1016\/j.inffus.2024.102601_b346","article-title":"PointDifformer: Robust point cloud registration with neural diffusion and transformer","author":"She","year":"2024","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2024.102601_b347","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2024.124225","article-title":"3D colored object reconstruction from a single view image through diffusion","volume":"252","author":"Li","year":"2024","journal-title":"Expert Syst. Appl."},{"year":"2024","series-title":"V3D: Video diffusion models are effective 3D generators","author":"Chen","key":"10.1016\/j.inffus.2024.102601_b348"},{"year":"2024","series-title":"Topology-aware latent diffusion for 3D shape generation","author":"Hu","key":"10.1016\/j.inffus.2024.102601_b349"},{"key":"10.1016\/j.inffus.2024.102601_b350","doi-asserted-by":"crossref","unstructured":"Y. Dong, Q. Zuo, X. Gu, W. Yuan, Z. Zhao, Z. Dong, L. Bo, Q. Huang, GPLD3D: Latent Diffusion of 3D Shape Generative Models by Enforcing Geometric and Physical Priors, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2024, pp. 56\u201366.","DOI":"10.1109\/CVPR52733.2024.00014"}],"container-title":["Information Fusion"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1566253524003798?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1566253524003798?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,24]],"date-time":"2024-11-24T22:53:08Z","timestamp":1732488788000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1566253524003798"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2025,1]]},"references-count":350,"alternative-id":["S1566253524003798"],"URL":"https:\/\/doi.org\/10.1016\/j.inffus.2024.102601","relation":{},"ISSN":["1566-2535"],"issn-type":[{"type":"print","value":"1566-2535"}],"subject":[],"published":{"date-parts":[[2025,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Advancing 3D point cloud understanding through deep transfer learning: A comprehensive survey","name":"articletitle","label":"Article Title"},{"value":"Information Fusion","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.inffus.2024.102601","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"102601"}}