{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,15]],"date-time":"2025-04-15T08:18:07Z","timestamp":1744705087528,"version":"3.37.3"},"reference-count":47,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100011821","name":"Ministry of Education \u2013 Kingdom of Saudi Arabi","doi-asserted-by":"publisher","award":["IFKSUOR3-283-2"],"id":[{"id":"10.13039\/501100011821","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Fusion"],"published-print":{"date-parts":[[2024,4]]},"DOI":"10.1016\/j.inffus.2023.102172","type":"journal-article","created":{"date-parts":[[2023,11,30]],"date-time":"2023-11-30T23:35:52Z","timestamp":1701387352000},"page":"102172","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":43,"special_numbering":"C","title":["QMFND: A quantum multimodal fusion-based fake news detection model for social media"],"prefix":"10.1016","volume":"104","author":[{"given":"Zhiguo","family":"Qu","sequence":"first","affiliation":[]},{"given":"Yunyi","family":"Meng","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-9781-3969","authenticated-orcid":false,"given":"Ghulam","family":"Muhammad","sequence":"additional","affiliation":[]},{"given":"Prayag","family":"Tiwari","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"9","key":"10.1016\/j.inffus.2023.102172_b1","doi-asserted-by":"crossref","DOI":"10.1111\/soc4.12724","article-title":"The facts of fake news: A research review","volume":"13","author":"Tandoc","year":"2019","journal-title":"Sociol. Compass"},{"key":"10.1016\/j.inffus.2023.102172_b2","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1016\/j.inffus.2019.12.001","article-title":"A survey on machine learning for data fusion","volume":"57","author":"Meng","year":"2020","journal-title":"Inf. Fusion"},{"issue":"4","key":"10.1016\/j.inffus.2023.102172_b3","first-page":"1","article-title":"Feature fusion methods in pattern classification","volume":"40","author":"Wei-bin","year":"2017","journal-title":"J. Beijing Univ. Posts Telecommun."},{"issue":"4","key":"10.1016\/j.inffus.2023.102172_b4","doi-asserted-by":"crossref","first-page":"293","DOI":"10.4103\/0256-4602.64604","article-title":"A survey of decision fusion and feature fusion strategies for pattern classification","volume":"27","author":"Mangai","year":"2010","journal-title":"IETE Tech. Rev."},{"issue":"4","key":"10.1016\/j.inffus.2023.102172_b5","doi-asserted-by":"crossref","first-page":"446","DOI":"10.1016\/j.inffus.2008.05.002","article-title":"Web information fusion: A review of the state of the art","volume":"9","author":"Yao","year":"2008","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2023.102172_b6","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2023.110235","article-title":"Fake news detection: A survey of graph neural network methods","author":"Phan","year":"2023","journal-title":"Appl. Soft Comput."},{"issue":"1","key":"10.1016\/j.inffus.2023.102172_b7","doi-asserted-by":"crossref","first-page":"38","DOI":"10.3390\/info12010038","article-title":"Identifying fake news on social networks based on natural language processing: Trends and challenges","volume":"12","author":"de Oliveira","year":"2021","journal-title":"Information"},{"year":"2018","series-title":"A survey on natural language processing for fake news detection","author":"Oshikawa","key":"10.1016\/j.inffus.2023.102172_b8"},{"key":"10.1016\/j.inffus.2023.102172_b9","doi-asserted-by":"crossref","unstructured":"Y. Wang, F. Ma, Z. Jin, Y. Yuan, G. Xun, K. Jha, L. Su, J. Gao, Eann: Event adversarial neural networks for multi-modal fake news detection, in: Proceedings of the 24th Acm Sigkdd International Conference on Knowledge Discovery & Data Mining, 2018, pp. 849\u2013857.","DOI":"10.1145\/3219819.3219903"},{"issue":"5","key":"10.1016\/j.inffus.2023.102172_b10","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevA.69.052303","article-title":"Parallel quantum computing in a single ensemble quantum computer","volume":"69","author":"Long","year":"2004","journal-title":"Phys. Rev. A"},{"issue":"2","key":"10.1016\/j.inffus.2023.102172_b11","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevA.66.022303","article-title":"Quantum learning and universal quantum matching machine","volume":"66","author":"Sasaki","year":"2002","journal-title":"Phys. Rev. A"},{"year":"2009","series-title":"Training a large scale classifier with the quantum adiabatic algorithm","author":"Neven","key":"10.1016\/j.inffus.2023.102172_b12"},{"issue":"5\u20136","key":"10.1016\/j.inffus.2023.102172_b13","doi-asserted-by":"crossref","first-page":"763","DOI":"10.1016\/S0893-6080(03)00087-X","article-title":"Quantum optimization for training support vector machines","volume":"16","author":"Anguita","year":"2003","journal-title":"Neural Netw."},{"key":"10.1016\/j.inffus.2023.102172_b14","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2021.116112","article-title":"Hybrid classical\u2013quantum convolutional neural network for stenosis detection in X-ray coronary angiography","volume":"189","author":"Ovalle-Magallanes","year":"2022","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.inffus.2023.102172_b15","article-title":"Temporal-spatial quantum graph convolutional neural network based on Schr\u00f6dinger approach for traffic congestion prediction","author":"Qu","year":"2022","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"key":"10.1016\/j.inffus.2023.102172_b16","doi-asserted-by":"crossref","unstructured":"J. Ma, W. Gao, K.-F. Wong, Detect rumors on twitter by promoting information campaigns with generative adversarial learning, in: The World Wide Web Conference, 2019, pp. 3049\u20133055.","DOI":"10.1145\/3308558.3313741"},{"key":"10.1016\/j.inffus.2023.102172_b17","series-title":"2019 IEEE Fifth International Conference on Multimedia Big Data","first-page":"39","article-title":"Spotfake: A multi-modal framework for fake news detection","author":"Singhal","year":"2019"},{"key":"10.1016\/j.inffus.2023.102172_b18","first-page":"13915","article-title":"Spotfake+: A multimodal framework for fake news detection via transfer learning (student abstract)","volume":"vol. 34","author":"Singhal","year":"2020"},{"issue":"6","key":"10.1016\/j.inffus.2023.102172_b19","doi-asserted-by":"crossref","first-page":"284","DOI":"10.3390\/info13060284","article-title":"Multimodal fake news detection","volume":"13","author":"Segura-Bedmar","year":"2022","journal-title":"Information"},{"key":"10.1016\/j.inffus.2023.102172_b20","series-title":"IECON 2022\u201348th Annual Conference of the IEEE Industrial Electronics Society","first-page":"1","article-title":"Fake news detection using a decentralized deep learning model and federated learning","author":"Jayakody","year":"2022"},{"issue":"4","key":"10.1016\/j.inffus.2023.102172_b21","doi-asserted-by":"crossref","DOI":"10.1016\/j.ipm.2023.103354","article-title":"Dual emotion based fake news detection: A deep attention-weight update approach","volume":"60","author":"Luvembe","year":"2023","journal-title":"Inf. Process. Manage."},{"year":"2020","series-title":"FANG: Leveraging social context for fake news detection using graph representation","author":"Nguyen","key":"10.1016\/j.inffus.2023.102172_b22"},{"issue":"4","key":"10.1016\/j.inffus.2023.102172_b23","doi-asserted-by":"crossref","first-page":"335","DOI":"10.1007\/s41060-021-00302-z","article-title":"Fake news detection based on news content and social contexts: A transformer-based approach","volume":"13","author":"Raza","year":"2022","journal-title":"Int. J. Data Sci. Anal."},{"year":"2021","series-title":"Meet the truth: Leverage objective facts and subjective views for interpretable rumor detection","author":"Li","key":"10.1016\/j.inffus.2023.102172_b24"},{"key":"10.1016\/j.inffus.2023.102172_b25","doi-asserted-by":"crossref","unstructured":"L. Hu, T. Yang, L. Zhang, W. Zhong, D. Tang, C. Shi, N. Duan, M. Zhou, Compare to the knowledge: Graph neural fake news detection with external knowledge, in: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), 2021, pp. 754\u2013763.","DOI":"10.18653\/v1\/2021.acl-long.62"},{"issue":"2","key":"10.1016\/j.inffus.2023.102172_b26","doi-asserted-by":"crossref","first-page":"1103","DOI":"10.1109\/TWC.2021.3102139","article-title":"Quantum neural networks for resource allocation in wireless communications","volume":"21","author":"Narottama","year":"2021","journal-title":"IEEE Trans. Wireless Commun."},{"key":"10.1016\/j.inffus.2023.102172_b27","article-title":"Quantum fuzzy neural network for multimodal sentiment and sarcasm detection","author":"Tiwari","year":"2023","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2023.102172_b28","series-title":"2021 International Conference on Recent Trends on Electronics, Information, Communication & Technology","first-page":"728","article-title":"Quantum convolutional neural networks (QCNN) using deep learning for computer vision applications","author":"Rajesh","year":"2021"},{"issue":"4","key":"10.1016\/j.inffus.2023.102172_b29","doi-asserted-by":"crossref","DOI":"10.1088\/2058-9565\/ab9f93","article-title":"A quantum deep convolutional neural network for image recognition","volume":"5","author":"Li","year":"2020","journal-title":"Quantum Sci. Technol."},{"issue":"2","key":"10.1016\/j.inffus.2023.102172_b30","doi-asserted-by":"crossref","first-page":"655","DOI":"10.1007\/s10044-022-01113-z","article-title":"Quantum convolutional neural network for image classification","volume":"26","author":"Chen","year":"2023","journal-title":"Pattern Anal. Appl."},{"key":"10.1016\/j.inffus.2023.102172_b31","series-title":"ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing","first-page":"6523","article-title":"Decentralizing feature extraction with quantum convolutional neural network for automatic speech recognition","author":"Yang","year":"2021"},{"key":"10.1016\/j.inffus.2023.102172_b32","doi-asserted-by":"crossref","DOI":"10.1016\/j.inffus.2023.101913","article-title":"QNMF: A quantum neural network based multimodal fusion system for intelligent diagnosis","volume":"100","author":"Qu","year":"2023","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2023.102172_b33","doi-asserted-by":"crossref","DOI":"10.1109\/JBHI.2023.3288199","article-title":"IoMT-based smart healthcare detection system driven by quantum blockchain and quantum neural network","author":"Qu","year":"2023","journal-title":"IEEE J. Biomed. Health Inform."},{"issue":"12","key":"10.1016\/j.inffus.2023.102172_b34","doi-asserted-by":"crossref","first-page":"1273","DOI":"10.1038\/s41567-019-0648-8","article-title":"Quantum convolutional neural networks","volume":"15","author":"Cong","year":"2019","journal-title":"Nat. Phys."},{"issue":"1","key":"10.1016\/j.inffus.2023.102172_b35","doi-asserted-by":"crossref","first-page":"579","DOI":"10.1038\/s41467-020-20729-5","article-title":"A co-design framework of neural networks and quantum circuits towards quantum advantage","volume":"12","author":"Jiang","year":"2021","journal-title":"Nat. Commun."},{"year":"2021","series-title":"Lambeq: An efficient high-level python library for quantum NLP","author":"Kartsaklis","key":"10.1016\/j.inffus.2023.102172_b36"},{"year":"2014","series-title":"Very deep convolutional networks for large-scale image recognition","author":"Simonyan","key":"10.1016\/j.inffus.2023.102172_b37"},{"issue":"3","key":"10.1016\/j.inffus.2023.102172_b38","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevA.99.032331","article-title":"Evaluating analytic gradients on quantum hardware","volume":"99","author":"Schuld","year":"2019","journal-title":"Phys. Rev. A"},{"year":"2018","series-title":"FakeNewsNet: A data repository with news content, social context and dynamic information for studying fake news on social media","author":"Shu","key":"10.1016\/j.inffus.2023.102172_b39"},{"year":"2007","series-title":"Politifact","author":"Tampa Bay Times","key":"10.1016\/j.inffus.2023.102172_b40"},{"key":"10.1016\/j.inffus.2023.102172_b41","article-title":"Xlnet: Generalized autoregressive pretraining for language understanding","volume":"32","author":"Yang","year":"2019","journal-title":"Adv. Neural Inf. Process. Syst."},{"year":"2019","series-title":"Well-read students learn better: On the importance of pre-training compact models","author":"Turc","key":"10.1016\/j.inffus.2023.102172_b42"},{"key":"10.1016\/j.inffus.2023.102172_b43","doi-asserted-by":"crossref","unstructured":"Y. Wu, P. Zhan, Y. Zhang, L. Wang, Z. Xu, Multimodal fusion with co-attention networks for fake news detection, in: Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, 2021, pp. 2560\u20132569.","DOI":"10.18653\/v1\/2021.findings-acl.226"},{"issue":"1","key":"10.1016\/j.inffus.2023.102172_b44","doi-asserted-by":"crossref","first-page":"4812","DOI":"10.1038\/s41467-018-07090-4","article-title":"Barren plateaus in quantum neural network training landscapes","volume":"9","author":"McClean","year":"2018","journal-title":"Nat. Commun."},{"issue":"12","key":"10.1016\/j.inffus.2023.102172_b45","doi-asserted-by":"crossref","DOI":"10.1002\/qute.201900070","article-title":"Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms","volume":"2","author":"Sim","year":"2019","journal-title":"Adv. Quantum Technol."},{"issue":"3","key":"10.1016\/j.inffus.2023.102172_b46","doi-asserted-by":"crossref","first-page":"32313","DOI":"10.1103\/PhysRevA.71.032313","article-title":"Average fidelity between random quantum states","volume":"71","author":"yczkowski","year":"2005","journal-title":"Phys. Rev. A"},{"year":"2002","series-title":"Quantum Computation and Quantum Information","author":"Nielsen","key":"10.1016\/j.inffus.2023.102172_b47"}],"container-title":["Information Fusion"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1566253523004888?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1566253523004888?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,1,6]],"date-time":"2024-01-06T21:11:22Z","timestamp":1704575482000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1566253523004888"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,4]]},"references-count":47,"alternative-id":["S1566253523004888"],"URL":"https:\/\/doi.org\/10.1016\/j.inffus.2023.102172","relation":{},"ISSN":["1566-2535"],"issn-type":[{"type":"print","value":"1566-2535"}],"subject":[],"published":{"date-parts":[[2024,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"QMFND: A quantum multimodal fusion-based fake news detection model for social media","name":"articletitle","label":"Article Title"},{"value":"Information Fusion","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.inffus.2023.102172","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"102172"}}