{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,30]],"date-time":"2024-12-30T19:14:54Z","timestamp":1735586094996,"version":"3.28.0"},"reference-count":70,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Fusion"],"published-print":{"date-parts":[[2023,12]]},"DOI":"10.1016\/j.inffus.2023.101939","type":"journal-article","created":{"date-parts":[[2023,7,22]],"date-time":"2023-07-22T07:14:58Z","timestamp":1690010098000},"page":"101939","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":17,"special_numbering":"C","title":["MEGACare: Knowledge-guided multi-view hypergraph predictive framework for healthcare"],"prefix":"10.1016","volume":"100","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-9015-7487","authenticated-orcid":false,"given":"Jialun","family":"Wu","sequence":"first","affiliation":[]},{"given":"Kai","family":"He","sequence":"additional","affiliation":[]},{"given":"Rui","family":"Mao","sequence":"additional","affiliation":[]},{"given":"Chen","family":"Li","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3030-1280","authenticated-orcid":false,"given":"Erik","family":"Cambria","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.inffus.2023.101939_b1","doi-asserted-by":"crossref","unstructured":"F. Ma, R. Chitta, J. Zhou, Q. You, T. Sun, J. Gao, Dipole: Diagnosis prediction in healthcare via attention-based bidirectional recurrent neural networks, in: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp. 1903\u20131911.","DOI":"10.1145\/3097983.3098088"},{"key":"10.1016\/j.inffus.2023.101939_b2","doi-asserted-by":"crossref","unstructured":"L. Ma, J. Gao, Y. Wang, C. Zhang, J. Wang, W. Ruan, W. Tang, X. Gao, X. Ma, AdaCare: Explainable clinical health status representation learning via scale-adaptive feature extraction and recalibration, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No. 01, 2020, pp. 825\u2013832.","DOI":"10.1609\/aaai.v34i01.5427"},{"key":"10.1016\/j.inffus.2023.101939_b3","series-title":"Machine Learning for Healthcare Conference","first-page":"301","article-title":"Doctor AI: Predicting clinical events via recurrent neural networks","author":"Choi","year":"2016"},{"key":"10.1016\/j.inffus.2023.101939_b4","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1016\/j.artmed.2017.05.008","article-title":"Prediction of synergistic anti-cancer drug combinations based on drug target network and drug induced gene expression profiles","volume":"83","author":"Li","year":"2017","journal-title":"Artif. Intell. Med."},{"issue":"1","key":"10.1016\/j.inffus.2023.101939_b5","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41467-019-09692-y","article-title":"Network-based prediction of drug combinations","volume":"10","author":"Cheng","year":"2019","journal-title":"Nature Commun."},{"key":"10.1016\/j.inffus.2023.101939_b6","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1016\/j.yebeh.2019.02.002","article-title":"Understanding the patient perspective of epilepsy treatment through text mining of online patient support groups","volume":"94","author":"He","year":"2019","journal-title":"Epilepsy Behav."},{"issue":"8","key":"10.1016\/j.inffus.2023.101939_b7","doi-asserted-by":"crossref","DOI":"10.2196\/25670","article-title":"Construction of genealogical knowledge graphs from obituaries: Multitask neural network extraction system","volume":"23","author":"He","year":"2021","journal-title":"J. Med. Internet Res."},{"key":"10.1016\/j.inffus.2023.101939_b8","series-title":"2022 IEEE International Conference on Bioinformatics and Biomedicine","first-page":"2318","article-title":"Uncertainty-guided mutual consistency training for semi-supervised biomedical relation extraction","author":"Mao","year":"2022"},{"issue":"1","key":"10.1016\/j.inffus.2023.101939_b9","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s12859-022-05096-w","article-title":"JCBIE: a joint continual learning neural network for biomedical information extraction","volume":"23","author":"He","year":"2022","journal-title":"BMC Bioinformatics"},{"key":"10.1016\/j.inffus.2023.101939_b10","unstructured":"S. Ji, T. Zhang, L. Ansari, J. Fu, P. Tiwari, E. Cambria, MentalBERT: Publicly Available Pretrained Language Models for Mental Healthcare, in: Proceedings of the Thirteenth Language Resources and Evaluation Conference, 2022, pp. 7184\u20137190."},{"key":"10.1016\/j.inffus.2023.101939_b11","series-title":"Advances in Neural Information Processing Systems","first-page":"3512","article-title":"RETAIN: An interpretable predictive model for healthcare using reverse time attention mechanism","author":"Choi","year":"2016"},{"issue":"5","key":"10.1016\/j.inffus.2023.101939_b12","doi-asserted-by":"crossref","first-page":"379","DOI":"10.1089\/big.2020.0070","article-title":"Graph neural network-based diagnosis prediction","volume":"8","author":"Li","year":"2020","journal-title":"Big Data"},{"key":"10.1016\/j.inffus.2023.101939_b13","series-title":"Proceedings of the 2020 SIAM International Conference on Data Mining","first-page":"19","article-title":"Knowledge guided diagnosis prediction via graph spatial-temporal network","author":"Li","year":"2020"},{"key":"10.1016\/j.inffus.2023.101939_b14","doi-asserted-by":"crossref","unstructured":"E. Choi, M.T. Bahadori, L. Song, W.F. Stewart, J. Sun, GRAM: graph-based attention model for healthcare representation learning, in: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp. 787\u2013795.","DOI":"10.1145\/3097983.3098126"},{"key":"10.1016\/j.inffus.2023.101939_b15","doi-asserted-by":"crossref","unstructured":"F. Ma, Q. You, H. Xiao, R. Chitta, J. Zhou, J. Gao, Kame: Knowledge-based attention model for diagnosis prediction in healthcare, in: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, 2018, pp. 743\u2013752.","DOI":"10.1145\/3269206.3271701"},{"key":"10.1016\/j.inffus.2023.101939_b16","series-title":"2022 IEEE International Conference on Bioinformatics and Biomedicine","first-page":"2287","article-title":"Knowledge enhanced coreference resolution via gated attention","author":"He","year":"2022"},{"issue":"6","key":"10.1016\/j.inffus.2023.101939_b17","first-page":"1","article-title":"Incorporating medical code descriptions for diagnosis prediction in healthcare","volume":"19","author":"Ma","year":"2019","journal-title":"BMC Med. Inform. Decis. Mak."},{"year":"2021","series-title":"SafeDrug: Dual molecular graph encoders for safe drug recommendations","author":"Yang","key":"10.1016\/j.inffus.2023.101939_b18"},{"key":"10.1016\/j.inffus.2023.101939_b19","doi-asserted-by":"crossref","DOI":"10.1093\/bib\/bbab133","article-title":"SSI\u2013DDI: Substructure\u2013substructure interactions for drug\u2013drug interaction prediction","author":"Nyamabo","year":"2021","journal-title":"Brief. Bioinform."},{"key":"10.1016\/j.inffus.2023.101939_b20","series-title":"2015 IEEE Information Theory Workshop","first-page":"1","article-title":"Deep learning and the information bottleneck principle","author":"Tishby","year":"2015"},{"issue":"1","key":"10.1016\/j.inffus.2023.101939_b21","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/sdata.2016.35","article-title":"MIMIC-III, a freely accessible critical care database","volume":"3","author":"Johnson","year":"2016","journal-title":"Sci. Data"},{"issue":"17","key":"10.1016\/j.inffus.2023.101939_b22","doi-asserted-by":"crossref","first-page":"2699","DOI":"10.1093\/bioinformatics\/btab153","article-title":"Knowledge enhanced lstm for coreference resolution on biomedical texts","volume":"37","author":"Li","year":"2021","journal-title":"Bioinformatics"},{"issue":"8","key":"10.1016\/j.inffus.2023.101939_b23","doi-asserted-by":"crossref","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","article-title":"Long short-term memory","volume":"9","author":"Hochreiter","year":"1997","journal-title":"Neural Comput."},{"key":"10.1016\/j.inffus.2023.101939_b24","article-title":"Attention is all you need","volume":"30","author":"Vaswani","year":"2017","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2023.101939_b25","series-title":"Proceedings of the 29th International Conference on Computational Linguistics","first-page":"94","article-title":"Hierarchical attention network for explainable depression detection on Twitter aided by metaphor concept mappings","author":"Han","year":"2022"},{"key":"10.1016\/j.inffus.2023.101939_b26","doi-asserted-by":"crossref","unstructured":"Y. Zhang, R. Chen, J. Tang, W.F. Stewart, J. Sun, LEAP: Learning to prescribe effective and safe treatment combinations for multimorbidity, in: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp. 1315\u20131324.","DOI":"10.1145\/3097983.3098109"},{"key":"10.1016\/j.inffus.2023.101939_b27","doi-asserted-by":"crossref","unstructured":"J. Shang, C. Xiao, T. Ma, H. Li, J. Sun, GAMENet: Graph augmented memory networks for recommending medication combination, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, No. 01, 2019, pp. 1126\u20131133.","DOI":"10.1609\/aaai.v33i01.33011126"},{"year":"2016","series-title":"Semi-supervised classification with graph convolutional networks","author":"Kipf","key":"10.1016\/j.inffus.2023.101939_b28"},{"key":"10.1016\/j.inffus.2023.101939_b29","doi-asserted-by":"crossref","unstructured":"E. Choi, Z. Xu, Y. Li, M. Dusenberry, G. Flores, E. Xue, A. Dai, Learning the graphical structure of electronic health records with graph convolutional transformer, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No. 01, 2020, pp. 606\u2013613.","DOI":"10.1609\/aaai.v34i01.5400"},{"year":"2019","series-title":"Pre-training of graph augmented transformers for medication recommendation","author":"Shang","key":"10.1016\/j.inffus.2023.101939_b30"},{"key":"10.1016\/j.inffus.2023.101939_b31","series-title":"An Introduction. Mathematical Engineering","article-title":"Hypergraph theory","author":"Bretto","year":"2013"},{"key":"10.1016\/j.inffus.2023.101939_b32","doi-asserted-by":"crossref","first-page":"515","DOI":"10.1016\/j.inffus.2022.10.025","article-title":"Multi-source aggregated classification for stock price movement prediction","volume":"91","author":"Ma","year":"2023","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2023.101939_b33","doi-asserted-by":"crossref","first-page":"253","DOI":"10.1016\/j.inffus.2022.09.020","article-title":"Fusing topology contexts and logical rules in language models for knowledge graph completion","volume":"90","author":"Lin","year":"2023","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2023.101939_b34","doi-asserted-by":"crossref","unstructured":"J. Jiang, Y. Wei, Y. Feng, J. Cao, Y. Gao, Dynamic Hypergraph Neural Networks, in: IJCAI, 2019, pp. 2635\u20132641.","DOI":"10.24963\/ijcai.2019\/366"},{"issue":"6","key":"10.1016\/j.inffus.2023.101939_b35","doi-asserted-by":"crossref","DOI":"10.1016\/j.disc.2021.112372","article-title":"Spectral theory of Laplace operators on oriented hypergraphs","volume":"344","author":"Mulas","year":"2021","journal-title":"Discrete Math."},{"key":"10.1016\/j.inffus.2023.101939_b36","doi-asserted-by":"crossref","unstructured":"Y. Feng, H. You, Z. Zhang, R. Ji, Y. Gao, Hypergraph neural networks, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, No. 01, 2019, pp. 3558\u20133565.","DOI":"10.1609\/aaai.v33i01.33013558"},{"key":"10.1016\/j.inffus.2023.101939_b37","article-title":"Hypergcn: A new method for training graph convolutional networks on hypergraphs","volume":"32","author":"Yadati","year":"2019","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"5","key":"10.1016\/j.inffus.2023.101939_b38","first-page":"2548","article-title":"Hypergraph learning: Methods and practices","volume":"44","author":"Gao","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"year":"2020","series-title":"Hypersage: Generalizing inductive representation learning on hypergraphs","author":"Arya","key":"10.1016\/j.inffus.2023.101939_b39"},{"year":"2021","series-title":"Unignn: a unified framework for graph and hypergraph neural networks","author":"Huang","key":"10.1016\/j.inffus.2023.101939_b40"},{"year":"2021","series-title":"You are allset: A multiset function framework for hypergraph neural networks","author":"Chien","key":"10.1016\/j.inffus.2023.101939_b41"},{"year":"2019","series-title":"Publicly available clinical BERT embeddings","author":"Alsentzer","key":"10.1016\/j.inffus.2023.101939_b42"},{"issue":"4","key":"10.1016\/j.inffus.2023.101939_b43","doi-asserted-by":"crossref","first-page":"1234","DOI":"10.1093\/bioinformatics\/btz682","article-title":"BioBERT: a pre-trained biomedical language representation model for biomedical text mining","volume":"36","author":"Lee","year":"2020","journal-title":"Bioinformatics"},{"key":"10.1016\/j.inffus.2023.101939_b44","doi-asserted-by":"crossref","first-page":"388","DOI":"10.1016\/j.ins.2016.08.084","article-title":"Attention pooling-based convolutional neural network for sentence modelling","volume":"373","author":"Er","year":"2016","journal-title":"Inform. Sci."},{"year":"2017","series-title":"Graph attention networks","author":"Veli\u010dkovi\u0107","key":"10.1016\/j.inffus.2023.101939_b45"},{"year":"2022","series-title":"KnowAugNet: Multi-source medical knowledge augmented medication prediction network with multi-level graph contrastive learning","author":"An","key":"10.1016\/j.inffus.2023.101939_b46"},{"issue":"1","key":"10.1016\/j.inffus.2023.101939_b47","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1021\/ci00057a005","article-title":"SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules","volume":"28","author":"Weininger","year":"1988","journal-title":"J. Chem. Inf. Comput. Sci."},{"issue":"10","key":"10.1016\/j.inffus.2023.101939_b48","doi-asserted-by":"crossref","first-page":"1503","DOI":"10.1002\/cmdc.200800178","article-title":"On the art of compiling and using \u2018drug-like\u2019 chemical fragment spaces","volume":"3","author":"Degen","year":"2008","journal-title":"ChemMedChem"},{"key":"10.1016\/j.inffus.2023.101939_b49","doi-asserted-by":"crossref","unstructured":"W. Li, L. Zhu, R. Mao, E. Cambria, SKIER: A Symbolic Knowledge Integrated Model for Conversational Emotion Recognition, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2023, pp. 13121\u201313129.","DOI":"10.1609\/aaai.v37i11.26541"},{"year":"2016","series-title":"Categorical reparameterization with gumbel-softmax","author":"Jang","key":"10.1016\/j.inffus.2023.101939_b50"},{"year":"2019","series-title":"Deep iterative and adaptive learning for graph neural networks","author":"Chen","key":"10.1016\/j.inffus.2023.101939_b51"},{"issue":"3","key":"10.1016\/j.inffus.2023.101939_b52","doi-asserted-by":"crossref","first-page":"3181","DOI":"10.1109\/TPAMI.2022.3182052","article-title":"HGNN+: General hypergraph neural networks","volume":"45","author":"Gao","year":"2023","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"year":"2015","series-title":"Gated graph sequence neural networks","author":"Li","key":"10.1016\/j.inffus.2023.101939_b53"},{"issue":"3","key":"10.1016\/j.inffus.2023.101939_b54","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevE.82.036106","article-title":"Hyperbolic geometry of complex networks","volume":"82","author":"Krioukov","year":"2010","journal-title":"Phys. Rev. E"},{"key":"10.1016\/j.inffus.2023.101939_b55","unstructured":"S. Ji, J. Ye, Linear dimensionality reduction for multi-label classification, in: Twenty-First International Joint Conference on Artificial Intelligence, 2009, pp. 1077\u20131082."},{"year":"2016","series-title":"Deep variational information bottleneck","author":"Alemi","key":"10.1016\/j.inffus.2023.101939_b56"},{"key":"10.1016\/j.inffus.2023.101939_b57","series-title":"ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing","first-page":"4318","article-title":"Multi-view information bottleneck without variational approximation","author":"Zhang","year":"2022"},{"key":"10.1016\/j.inffus.2023.101939_b58","doi-asserted-by":"crossref","unstructured":"W. An, H. Wang, Q. Sun, J. Xu, Q. Dai, L. Zhang, A PID controller approach for stochastic optimization of deep networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8522\u20138531.","DOI":"10.1109\/CVPR.2018.00889"},{"issue":"23","key":"10.1016\/j.inffus.2023.101939_b59","doi-asserted-by":"crossref","first-page":"e215","DOI":"10.1161\/01.CIR.101.23.e215","article-title":"PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals","volume":"101","author":"Goldberger","year":"2000","journal-title":"Circulation"},{"issue":"D1","key":"10.1016\/j.inffus.2023.101939_b60","doi-asserted-by":"crossref","first-page":"D1074","DOI":"10.1093\/nar\/gkx1037","article-title":"DrugBank 5.0: a major update to the DrugBank database for 2018","volume":"46","author":"Wishart","year":"2018","journal-title":"Nucleic Acids Res."},{"issue":"6","key":"10.1016\/j.inffus.2023.101939_b61","doi-asserted-by":"crossref","first-page":"84","DOI":"10.1145\/3065386","article-title":"Imagenet classification with deep convolutional neural networks","volume":"60","author":"Krizhevsky","year":"2017","journal-title":"Commun. ACM"},{"key":"10.1016\/j.inffus.2023.101939_b62","series-title":"2016 International Conference on Advanced Computer Science and Information Systems","first-page":"385","article-title":"Using logistic regression method to classify tweets into the selected topics","author":"Indra","year":"2016"},{"year":"2021","series-title":"Change matters: Medication change prediction with recurrent residual networks","author":"Yang","key":"10.1016\/j.inffus.2023.101939_b63"},{"key":"10.1016\/j.inffus.2023.101939_b64","doi-asserted-by":"crossref","unstructured":"R. Wu, Z. Qiu, J. Jiang, G. Qi, X. Wu, Conditional Generation Net for Medication Recommendation, in: Proceedings of the ACM Web Conference 2022, 2022, pp. 935\u2013945.","DOI":"10.1145\/3485447.3511936"},{"key":"10.1016\/j.inffus.2023.101939_b65","unstructured":"S. Niwattanakul, J. Singthongchai, E. Naenudorn, S. Wanapu, Using of Jaccard coefficient for keywords similarity, in: Proceedings of the International Multiconference of Engineers and Computer Scientists, Vol. 1, No. 6, 2013, pp. 380\u2013384."},{"key":"10.1016\/j.inffus.2023.101939_b66","doi-asserted-by":"crossref","unstructured":"J. Davis, M. Goadrich, The relationship between precision-recall and ROC curves, in: Proceedings of the 23rd International Conference on Machine Learning, 2006, pp. 233\u2013240.","DOI":"10.1145\/1143844.1143874"},{"key":"10.1016\/j.inffus.2023.101939_b67","doi-asserted-by":"crossref","DOI":"10.1016\/j.bdr.2020.100174","article-title":"SMR: Medical knowledge graph embedding for safe medicine recommendation","volume":"23","author":"Gong","year":"2021","journal-title":"Big Data Res."},{"year":"2014","series-title":"Adam: A method for stochastic optimization","author":"Kingma","key":"10.1016\/j.inffus.2023.101939_b68"},{"key":"10.1016\/j.inffus.2023.101939_b69","doi-asserted-by":"crossref","unstructured":"R. Liu, G. Chen, R. Mao, E. Cambria, A Multi-task Learning Model for Gold-two-mention Co-reference Resolution, in: 2023 International Joint Conference on Neural Networks, IJCNN, 2023, pp. 1\u20139.","DOI":"10.1109\/IJCNN54540.2023.10191719"},{"key":"10.1016\/j.inffus.2023.101939_b70","doi-asserted-by":"crossref","unstructured":"R. Mao, X. Li, Bridging Towers of Multi-task Learning with a Gating Mechanism for Aspect-based Sentiment Analysis and Sequential Metaphor Identification, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, No. 15, 2021, pp. 13534\u201313542.","DOI":"10.1609\/aaai.v35i15.17596"}],"container-title":["Information Fusion"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1566253523002555?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1566253523002555?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,24]],"date-time":"2024-10-24T20:47:21Z","timestamp":1729802841000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1566253523002555"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,12]]},"references-count":70,"alternative-id":["S1566253523002555"],"URL":"https:\/\/doi.org\/10.1016\/j.inffus.2023.101939","relation":{},"ISSN":["1566-2535"],"issn-type":[{"type":"print","value":"1566-2535"}],"subject":[],"published":{"date-parts":[[2023,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"MEGACare: Knowledge-guided multi-view hypergraph predictive framework for healthcare","name":"articletitle","label":"Article Title"},{"value":"Information Fusion","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.inffus.2023.101939","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"101939"}}