{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,12]],"date-time":"2025-04-12T22:43:45Z","timestamp":1744497825331,"version":"3.27.0"},"reference-count":64,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Fusion"],"published-print":{"date-parts":[[2023,10]]},"DOI":"10.1016\/j.inffus.2023.101834","type":"journal-article","created":{"date-parts":[[2023,5,18]],"date-time":"2023-05-18T03:48:35Z","timestamp":1684381715000},"page":"101834","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":26,"special_numbering":"C","title":["Multi-modal policy fusion for end-to-end autonomous driving"],"prefix":"10.1016","volume":"98","author":[{"given":"Zhenbo","family":"Huang","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7069-3752","authenticated-orcid":false,"given":"Shiliang","family":"Sun","sequence":"additional","affiliation":[]},{"given":"Jing","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Liang","family":"Mao","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"doi-asserted-by":"crossref","unstructured":"G. Salgian, D. Ballard, Visual routines for autonomous driving, in: Proceedings of the International Conference on Computer Vision, 1998, pp. 876\u2013882.","key":"10.1016\/j.inffus.2023.101834_b1","DOI":"10.1109\/ICCV.1998.710820"},{"doi-asserted-by":"crossref","unstructured":"F. Codevilla, E. Santana, A.M. L\u00f3pez, A. Gaidon, Exploring the limitations of behavior cloning for autonomous driving, in: Proceedings of the International Conference on Computer Vision, 2019, pp. 9329\u20139338.","key":"10.1016\/j.inffus.2023.101834_b2","DOI":"10.1109\/ICCV.2019.00942"},{"doi-asserted-by":"crossref","unstructured":"A. Behl, K. Chitta, A. Prakash, E. Ohn-Bar, A. Geiger, Label efficient visual abstractions for autonomous driving, in: Proceedings of the IEEE Conference on Intelligent Robots and Systems, 2020, pp. 2338\u20132345.","key":"10.1016\/j.inffus.2023.101834_b3","DOI":"10.1109\/IROS45743.2020.9340641"},{"doi-asserted-by":"crossref","unstructured":"A. Prakash, A. Behl, E. Ohn-Bar, K. Chitta, A. Geiger, Exploring data aggregation in policy learning for vision-based urban autonomous driving, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020, pp. 11763\u201311773.","key":"10.1016\/j.inffus.2023.101834_b4","DOI":"10.1109\/CVPR42600.2020.01178"},{"year":"2016","author":"Bojarski","series-title":"End-to-end learning for self-driving cars","key":"10.1016\/j.inffus.2023.101834_b5"},{"year":"2020","author":"Boloor","series-title":"Attacking vision-based perception in end-to-end autonomous driving models","key":"10.1016\/j.inffus.2023.101834_b6"},{"doi-asserted-by":"crossref","unstructured":"L. Cultrera, L. Seidenari, F. Becattini, P. Pala, A. Del Bimbo, Explaining autonomous driving by learning end-to-end visual attention, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020, pp. 340\u2013341.","key":"10.1016\/j.inffus.2023.101834_b7","DOI":"10.1109\/CVPRW50498.2020.00178"},{"key":"10.1016\/j.inffus.2023.101834_b8","doi-asserted-by":"crossref","DOI":"10.1016\/j.trc.2021.103051","article-title":"Dynamic driving environment complexity quantification method and its verification","volume":"127","author":"Yu","year":"2021","journal-title":"Transp. Res. C"},{"unstructured":"J. Sun, Y. Cao, Q.A. Chen, Z.M. Mao, Towards robust LiDAR-based perception in autonomous driving: General black-box adversarial sensor attack and countermeasures, in: USENIX Security Symposium, 2020, pp. 877\u2013894.","key":"10.1016\/j.inffus.2023.101834_b9"},{"doi-asserted-by":"crossref","unstructured":"D. Deng, A. Zakhor, Temporal LiDAR frame prediction for autonomous driving, in: Proceedings of the IEEE Conference on 3D Vision, 2020, pp. 829\u2013837.","key":"10.1016\/j.inffus.2023.101834_b10","DOI":"10.1109\/3DV50981.2020.00093"},{"doi-asserted-by":"crossref","unstructured":"F. Lu, G. Chen, S. Qu, Z. Li, Y. Liu, A. Knoll, Pointinet: Point cloud frame interpolation network, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2021, pp. 2251\u20132259.","key":"10.1016\/j.inffus.2023.101834_b11","DOI":"10.1609\/aaai.v35i3.16324"},{"doi-asserted-by":"crossref","unstructured":"K. Qian, S. Zhu, X. Zhang, L.E. Li, Robust multi-modal vehicle detection in foggy weather using complementary LiDAR and radar signals, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2021, pp. 444\u2013453.","key":"10.1016\/j.inffus.2023.101834_b12","DOI":"10.1109\/CVPR46437.2021.00051"},{"key":"10.1016\/j.inffus.2023.101834_b13","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1016\/j.inffus.2020.11.002","article-title":"Point-cloud based 3D object detection and classification methods for self-driving applications: A survey and taxonomy","volume":"68","author":"Fernandes","year":"2021","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2023.101834_b14","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1016\/j.inffus.2022.08.016","article-title":"Data fusion for ITS: A systematic literature review","volume":"89","author":"Ounoughi","year":"2023","journal-title":"Inf. Fusion"},{"doi-asserted-by":"crossref","unstructured":"M.T. Arafin, K. Kornegay, Attack Detection and Countermeasures for Autonomous Navigation, in: Annual Conference on Information Sciences and Systems, 2021, pp. 1\u20136.","key":"10.1016\/j.inffus.2023.101834_b15","DOI":"10.1109\/CISS50987.2021.9400224"},{"key":"10.1016\/j.inffus.2023.101834_b16","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1016\/j.inffus.2019.01.004","article-title":"Seamless navigation and mapping using an INS\/GNSS\/grid-based SLAM semi-tightly coupled integration scheme","volume":"50","author":"Chiang","year":"2019","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2023.101834_b17","doi-asserted-by":"crossref","first-page":"8","DOI":"10.1016\/j.inffus.2021.04.009","article-title":"Sensor fusion algorithms for orientation tracking via magnetic and inertial measurement units: An experimental comparison survey","volume":"76","author":"Nazarahari","year":"2021","journal-title":"Inf. Fusion"},{"doi-asserted-by":"crossref","unstructured":"A. Gaidon, Q. Wang, Y. Cabon, E. Vig, Virtual worlds as proxy for multi-object tracking analysis, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 4340\u20134349.","key":"10.1016\/j.inffus.2023.101834_b18","DOI":"10.1109\/CVPR.2016.470"},{"year":"2018","author":"Yu","series-title":"BDD100K: A diverse driving video database with scalable annotation tooling","key":"10.1016\/j.inffus.2023.101834_b19"},{"key":"10.1016\/j.inffus.2023.101834_b20","series-title":"Advances in Neural Information Processing Systems, Vol. 34","first-page":"10944","article-title":"What makes multi-modal learning better than single (provably)","author":"Huang","year":"2021"},{"doi-asserted-by":"crossref","unstructured":"M. Liang, B. Yang, S. Wang, R. Urtasun, Deep continuous fusion for multi-sensor 3D object detection, in: Proceedings of the European Conference on Computer Vision, 2018, pp. 641\u2013656.","key":"10.1016\/j.inffus.2023.101834_b21","DOI":"10.1007\/978-3-030-01270-0_39"},{"doi-asserted-by":"crossref","unstructured":"R. Qian, D. Garg, Y. Wang, Y. You, S. Belongie, B. Hariharan, M. Campbell, K.Q. Weinberger, W.-L. Chao, End-to-end pseudo-LiDAR for image-based 3D object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020, pp. 5881\u20135890.","key":"10.1016\/j.inffus.2023.101834_b22","DOI":"10.1109\/CVPR42600.2020.00592"},{"doi-asserted-by":"crossref","unstructured":"T. Huang, Z. Liu, X. Chen, X. Bai, EPNet: Enhancing point features with image semantics for 3D object detection, in: Proceedings of the European Conference on Computer Vision, 2020, pp. 35\u201352.","key":"10.1016\/j.inffus.2023.101834_b23","DOI":"10.1007\/978-3-030-58555-6_3"},{"key":"10.1016\/j.inffus.2023.101834_b24","doi-asserted-by":"crossref","first-page":"172","DOI":"10.1016\/j.inffus.2021.07.004","article-title":"SaccadeFork: A lightweight multi-sensor fusion-based target detector","volume":"77","author":"Ouyang","year":"2022","journal-title":"Inf. Fusion"},{"issue":"11","key":"10.1016\/j.inffus.2023.101834_b25","doi-asserted-by":"crossref","DOI":"10.3390\/rs12111895","article-title":"KDA3D: Key-point densification and multi-attention guidance for 3D object detection","volume":"12","author":"Wang","year":"2020","journal-title":"Remote Sens."},{"unstructured":"P.J. Besl, N.D. McKay, Method for registration of 3-D shapes, in: Sensor Fusion IV: Control Paradigms and Data Structures, Vol. 1611, 1992, pp. 586\u2013606.","key":"10.1016\/j.inffus.2023.101834_b26"},{"doi-asserted-by":"crossref","unstructured":"Y. Zheng, Y. Kuang, S. Sugimoto, K. Astrom, M. Okutomi, Revisiting the pnp problem: A fast, general and optimal solution, in: Proceedings of the IEEE International Conference on Computer Vision, 2013, pp. 2344\u20132351.","key":"10.1016\/j.inffus.2023.101834_b27","DOI":"10.1109\/ICCV.2013.291"},{"key":"10.1016\/j.inffus.2023.101834_b28","series-title":"Advances in Neural Information Processing Systems, Vol. 30","first-page":"5998","article-title":"Attention is all you need","author":"Vaswani","year":"2017"},{"unstructured":"L.L. Li, B. Yang, M. Liang, W. Zeng, M. Ren, S. Segal, R. Urtasun, End-to-end contextual perception and prediction with interaction transformer, in: Proceedings of the IEEE Conference on Intelligent Robots and Systems, 2020, pp. 5784\u20135791.","key":"10.1016\/j.inffus.2023.101834_b29"},{"doi-asserted-by":"crossref","unstructured":"A. Prakash, K. Chitta, A. Geiger, Multi-modal fusion transformer for end-to-end autonomous driving, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2021, pp. 7077\u20137087.","key":"10.1016\/j.inffus.2023.101834_b30","DOI":"10.1109\/CVPR46437.2021.00700"},{"year":"2018","author":"Devlin","series-title":"Bert: Pre-training of deep bidirectional transformers for language understanding","key":"10.1016\/j.inffus.2023.101834_b31"},{"doi-asserted-by":"crossref","unstructured":"Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, Swin transformer: Hierarchical vision transformer using shifted windows, in: Proceedings of the IEEE International Conference on Computer Vision, 2021, pp. 10012\u201310022.","key":"10.1016\/j.inffus.2023.101834_b32","DOI":"10.1109\/ICCV48922.2021.00986"},{"unstructured":"W. Kim, B. Son, I. Kim, Vilt: Vision-and-language transformer without convolution or region supervision, in: Proceedings of the International Conference on Machine Learning, 2021, pp. 5583\u20135594.","key":"10.1016\/j.inffus.2023.101834_b33"},{"doi-asserted-by":"crossref","unstructured":"F. Secci, A. Ceccarelli, On failures of RGB cameras and their effects in autonomous driving applications, in: Proceedings of the International Symposium on Software Reliability Engineering, 2020, pp. 13\u201324.","key":"10.1016\/j.inffus.2023.101834_b34","DOI":"10.1109\/ISSRE5003.2020.00011"},{"key":"10.1016\/j.inffus.2023.101834_b35","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1016\/j.inffus.2021.11.018","article-title":"Information fusion for edge intelligence: A survey","volume":"81","author":"Zhang","year":"2022","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2023.101834_b36","doi-asserted-by":"crossref","first-page":"64","DOI":"10.1016\/j.inffus.2020.10.001","article-title":"Smart anomaly detection in sensor systems: A multi-perspective review","volume":"67","author":"Erhan","year":"2021","journal-title":"Inf. Fusion"},{"issue":"7540","key":"10.1016\/j.inffus.2023.101834_b37","doi-asserted-by":"crossref","first-page":"529","DOI":"10.1038\/nature14236","article-title":"Human-level control through deep reinforcement learning","volume":"518","author":"Mnih","year":"2015","journal-title":"Nature"},{"key":"10.1016\/j.inffus.2023.101834_b38","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.inffus.2022.03.003","article-title":"Exploration in deep reinforcement learning: A survey","volume":"85","author":"Ladosz","year":"2022","journal-title":"Inf. Fusion"},{"unstructured":"A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, V. Koltun, CARLA: An open urban driving simulator, in: Proceedings of the Conference on Robot Learning, 2017, pp. 1\u201316.","key":"10.1016\/j.inffus.2023.101834_b39"},{"doi-asserted-by":"crossref","unstructured":"V.A. Sindagi, Y. Zhou, O. Tuzel, Mvx-net: Multi-modal voxelnet for 3D object detection, in: Proceedings of the International Conference on Robotics and Automation, 2019, pp. 7276\u20137282.","key":"10.1016\/j.inffus.2023.101834_b40","DOI":"10.1109\/ICRA.2019.8794195"},{"key":"10.1016\/j.inffus.2023.101834_b41","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1016\/j.patrec.2017.09.038","article-title":"Multi-modal vehicle detection: Fusing 3D-LiDAR and color camera data","volume":"115","author":"Asvadi","year":"2018","journal-title":"Pattern Recognit. Lett."},{"doi-asserted-by":"crossref","unstructured":"G. Melotti, C. Premebida, N.M.d.S. Gon\u00e7alves, U.J. Nunes, D.R. Faria, Multi-modal CNN pedestrian classification: A study on combining LiDAR and camera data, in: Proceedings of the International Conference on Intelligent Transportation Systems, 2018, pp. 3138\u20133143.","key":"10.1016\/j.inffus.2023.101834_b42","DOI":"10.1109\/ITSC.2018.8569666"},{"doi-asserted-by":"crossref","unstructured":"S. Pang, D. Morris, H. Radha, CLOCs: Camera-LiDAR object candidates fusion for 3D object detection, in: Proceedings of the IEEE Conference on Intelligent Robots and Systems, 2020, pp. 10386\u201310393.","key":"10.1016\/j.inffus.2023.101834_b43","DOI":"10.1109\/IROS45743.2020.9341791"},{"issue":"12","key":"10.1016\/j.inffus.2023.101834_b44","doi-asserted-by":"crossref","first-page":"11635","DOI":"10.1109\/TVT.2019.2946100","article-title":"Integrating dense LiDAR-camera road detection maps by a multi-modal Crf model","volume":"68","author":"Gu","year":"2019","journal-title":"IEEE Trans. Veh. Technol."},{"doi-asserted-by":"crossref","unstructured":"S. Gu, Y. Zhang, J. Tang, J. Yang, H. Kong, Road detection through Crf based LiDAR-camera fusion, in: Proceedings of the International Conference on Robotics and Automation, 2019, pp. 3832\u20133838.","key":"10.1016\/j.inffus.2023.101834_b45","DOI":"10.1109\/ICRA.2019.8793585"},{"key":"10.1016\/j.inffus.2023.101834_b46","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1016\/j.inffus.2021.10.008","article-title":"A novel multimodal fusion network based on a joint coding model for lane line segmentation","volume":"80","author":"Zou","year":"2022","journal-title":"Inf. Fusion"},{"issue":"6","key":"10.1016\/j.inffus.2023.101834_b47","doi-asserted-by":"crossref","first-page":"5068","DOI":"10.1109\/TITS.2020.3046646","article-title":"Interpretable end-to-end urban autonomous driving with latent deep reinforcement learning","volume":"23","author":"Chen","year":"2022","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"doi-asserted-by":"crossref","unstructured":"Z. Zhang, A. Liniger, D. Dai, F. Yu, L. Van Gool, End-to-end urban driving by imitating a reinforcement learning coach, in: Proceedings of the International Conference on Computer Vision, 2021, pp. 15222\u201315232.","key":"10.1016\/j.inffus.2023.101834_b48","DOI":"10.1109\/ICCV48922.2021.01494"},{"doi-asserted-by":"crossref","unstructured":"J. Ku, M. Mozifian, J. Lee, A. Harakeh, S.L. Waslander, Joint 3d proposal generation and object detection from view aggregation, in: Proceedings of the IEEE International Conference on Intelligent Robots and Systems, 2018, pp. 1\u20138.","key":"10.1016\/j.inffus.2023.101834_b49","DOI":"10.1109\/IROS.2018.8594049"},{"doi-asserted-by":"crossref","unstructured":"M. Liang, B. Yang, Y. Chen, R. Hu, R. Urtasun, Multi-task multi-sensor fusion for 3d object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 7345\u20137353.","key":"10.1016\/j.inffus.2023.101834_b50","DOI":"10.1109\/CVPR.2019.00752"},{"doi-asserted-by":"crossref","unstructured":"S. Fadadu, S. Pandey, D. Hegde, Y. Shi, F.-C. Chou, N. Djuric, C. Vallespi-Gonzalez, Multi-view fusion of sensor data for improved perception and prediction in autonomous driving, in: Proceedings of the IEEE Winter Conference on Applications of Computer Vision, 2022, pp. 2349\u20132357.","key":"10.1016\/j.inffus.2023.101834_b51","DOI":"10.1109\/WACV51458.2022.00335"},{"doi-asserted-by":"crossref","unstructured":"K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770\u2013778.","key":"10.1016\/j.inffus.2023.101834_b52","DOI":"10.1109\/CVPR.2016.90"},{"doi-asserted-by":"crossref","unstructured":"A.H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, O. Beijbom, Pointpillars: Fast encoders for object detection from point clouds, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 12697\u201312705.","key":"10.1016\/j.inffus.2023.101834_b53","DOI":"10.1109\/CVPR.2019.01298"},{"key":"10.1016\/j.inffus.2023.101834_b54","series-title":"Advances in Neural Information Processing Systems","first-page":"1","article-title":"RUDDER: Return decomposition for delayed rewards","author":"Arjona-Medina","year":"2019"},{"key":"10.1016\/j.inffus.2023.101834_b55","series-title":"Advances in Neural Information Processing Systems","first-page":"822","article-title":"Learning guidance rewards with trajectory-space smoothing","author":"Gangwani","year":"2020"},{"issue":"1","key":"10.1016\/j.inffus.2023.101834_b56","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41467-019-13073-w","article-title":"Optimizing agent behavior over long time scales by transporting value","volume":"10","author":"Hung","year":"2019","journal-title":"Nature Commun."},{"year":"2020","author":"Levine","series-title":"Offline reinforcement learning: Tutorial, review, and perspectives on open problems","key":"10.1016\/j.inffus.2023.101834_b57"},{"key":"10.1016\/j.inffus.2023.101834_b58","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1613\/jair.1.12440","article-title":"Reward machines: Exploiting reward function structure in reinforcement learning","volume":"73","author":"Icarte","year":"2022","journal-title":"J. Artificial Intelligence Res."},{"unstructured":"Y. Wu, S. Zhai, N. Srivastava, J.M. Susskind, J. Zhang, R. Salakhutdinov, H. Goh, Uncertainty weighted actor-critic for offline reinforcement learning, in: Proceedings of the International Conference on Machine Learning, Vol. 139, 2021, pp. 11319\u201311328.","key":"10.1016\/j.inffus.2023.101834_b59"},{"year":"2010","author":"Bellman","series-title":"Dynamic Programming","key":"10.1016\/j.inffus.2023.101834_b60"},{"doi-asserted-by":"crossref","unstructured":"K. Chen, Y. Lee, H. Soh, Multi-modal mutual information (mummi) training for robust self-supervised deep reinforcement learning, in: Proceedings of the IEEE International Conference on Robotics and Automation, 2021, pp. 4274\u20134280.","key":"10.1016\/j.inffus.2023.101834_b61","DOI":"10.1109\/ICRA48506.2021.9561187"},{"issue":"11","key":"10.1016\/j.inffus.2023.101834_b62","doi-asserted-by":"crossref","first-page":"9224","DOI":"10.1109\/TGRS.2020.3048967","article-title":"A mutual information-based self-supervised learning model for PolSAR land cover classification","volume":"59","author":"Ren","year":"2021","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2023.101834_b63","series-title":"Advances in Neural Information Processing Systems, Vol. 28","first-page":"3483","article-title":"Learning structured output representation using deep conditional generative models","author":"Sohn","year":"2015"},{"key":"10.1016\/j.inffus.2023.101834_b64","doi-asserted-by":"crossref","first-page":"492","DOI":"10.1214\/aoms\/1177703732","article-title":"Robust estimation of a location parameter","volume":"35","author":"Huber","year":"1964","journal-title":"Ann. Math. Stat."}],"container-title":["Information Fusion"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1566253523001501?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1566253523001501?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,20]],"date-time":"2024-10-20T15:58:49Z","timestamp":1729439929000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1566253523001501"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,10]]},"references-count":64,"alternative-id":["S1566253523001501"],"URL":"https:\/\/doi.org\/10.1016\/j.inffus.2023.101834","relation":{},"ISSN":["1566-2535"],"issn-type":[{"type":"print","value":"1566-2535"}],"subject":[],"published":{"date-parts":[[2023,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Multi-modal policy fusion for end-to-end autonomous driving","name":"articletitle","label":"Article Title"},{"value":"Information Fusion","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.inffus.2023.101834","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"101834"}}