{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:51:57Z","timestamp":1732042317160},"reference-count":222,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2022,12,31]],"date-time":"2022-12-31T00:00:00Z","timestamp":1672444800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Fusion"],"published-print":{"date-parts":[[2023,5]]},"DOI":"10.1016\/j.inffus.2022.12.026","type":"journal-article","created":{"date-parts":[[2023,1,2]],"date-time":"2023-01-02T16:36:29Z","timestamp":1672677389000},"page":"227-242","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":47,"special_numbering":"C","title":["Panchromatic and multispectral image fusion for remote sensing and earth observation: Concepts, taxonomy, literature review, evaluation methodologies and challenges ahead"],"prefix":"10.1016","volume":"93","author":[{"given":"Kai","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Feng","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Wenbo","family":"Wan","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7655-9228","authenticated-orcid":false,"given":"Hui","family":"Yu","sequence":"additional","affiliation":[]},{"given":"Jiande","family":"Sun","sequence":"additional","affiliation":[]},{"given":"Javier","family":"Del Ser","sequence":"additional","affiliation":[]},{"given":"Eyad","family":"Elyan","sequence":"additional","affiliation":[]},{"given":"Amir","family":"Hussain","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.inffus.2022.12.026_b1","doi-asserted-by":"crossref","first-page":"190","DOI":"10.1016\/j.neucom.2019.04.029","article-title":"Aerial image change detection using dual regions of interest networks","volume":"349","author":"Han","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.inffus.2022.12.026_b2","doi-asserted-by":"crossref","first-page":"158","DOI":"10.1016\/j.neucom.2018.06.088","article-title":"Accurate ulva prolifera regions extraction of UAV images with superpixel and CNNs for ocean environment monitoring","volume":"348","author":"Wang","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.inffus.2022.12.026_b3","doi-asserted-by":"crossref","first-page":"215","DOI":"10.1016\/j.neucom.2018.12.050","article-title":"Ship detection based on squeeze excitation skip-connection path networks for optical remote sensing images","volume":"332","author":"Huang","year":"2019","journal-title":"Neurocomputing"},{"issue":"10","key":"10.1016\/j.inffus.2022.12.026_b4","doi-asserted-by":"crossref","first-page":"2104","DOI":"10.1109\/TPAMI.2016.2621050","article-title":"Adaptive nonlocal sparse representation for dual-camera compressive hyperspectral imaging","volume":"39","author":"Wang","year":"2017","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"2","key":"10.1016\/j.inffus.2022.12.026_b5","doi-asserted-by":"crossref","first-page":"956","DOI":"10.1109\/TGRS.2019.2942103","article-title":"Object detection in high-resolution panchromatic images using deep models and spatial template matching","volume":"58","author":"Hou","year":"2020","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"7","key":"10.1016\/j.inffus.2022.12.026_b6","doi-asserted-by":"crossref","first-page":"4259","DOI":"10.1109\/TGRS.2018.2890404","article-title":"A novel approach to the unsupervised update of land-cover maps by classification of time series of multispectral images","volume":"57","author":"Paris","year":"2019","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b7","doi-asserted-by":"crossref","first-page":"131","DOI":"10.1016\/j.neucom.2020.05.082","article-title":"Discriminant sub-dictionary learning with adaptive multiscale superpixel representation for hyperspectral image classification","volume":"409","author":"Tu","year":"2020","journal-title":"Neurocomputing"},{"issue":"6","key":"10.1016\/j.inffus.2022.12.026_b8","doi-asserted-by":"crossref","first-page":"1391","DOI":"10.1109\/TGRS.2005.846874","article-title":"A comparative analysis of image fusion methods","volume":"43","author":"Wang","year":"2005","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"10","key":"10.1016\/j.inffus.2022.12.026_b9","doi-asserted-by":"crossref","first-page":"3012","DOI":"10.1109\/TGRS.2007.904923","article-title":"Comparison of pansharpening algorithms: Outcome of the 2006 GRS-S data-fusion contest","volume":"45","author":"Alparone","year":"2007","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b10","series-title":"IEEE Dataport","article-title":"Data fusion contest 2022 (DFC2022)","author":"Hnsch","year":"2022"},{"issue":"1","key":"10.1016\/j.inffus.2022.12.026_b11","first-page":"125","article-title":"An area-based image fusion scheme for the integration of SAR and optical satellite imagery","volume":"5","author":"Byun","year":"2012","journal-title":"IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b12","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.isprsjprs.2015.05.012","article-title":"Fusion of waveform LiDAR data and hyperspectral imagery for land cover classification","volume":"108","author":"Wang","year":"2015","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"issue":"4","key":"10.1016\/j.inffus.2022.12.026_b13","doi-asserted-by":"crossref","first-page":"1883","DOI":"10.1109\/TGRS.2012.2213095","article-title":"Spatiotemporal satellite image fusion through one-pair image learning","volume":"51","author":"Song","year":"2013","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"3","key":"10.1016\/j.inffus.2022.12.026_b14","doi-asserted-by":"crossref","first-page":"1363","DOI":"10.1109\/TGRS.2016.2623626","article-title":"Multispectral and hyperspectral image fusion based on group spectral embedding and low-rank factorization","volume":"55","author":"Zhang","year":"2017","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"4","key":"10.1016\/j.inffus.2022.12.026_b15","doi-asserted-by":"crossref","first-page":"1030","DOI":"10.1109\/JSTARS.2017.2785411","article-title":"Spatial-spectral-graph-regularized low-rank tensor decomposition for multispectral and hyperspectral image fusion","volume":"11","author":"Zhang","year":"2018","journal-title":"IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b16","doi-asserted-by":"crossref","first-page":"4949","DOI":"10.1007\/s11042-019-7188-1","article-title":"Superpixel guided structure sparsity for multispectral and hyperspectral image fusion over couple dictionary","volume":"79","author":"Zhang","year":"2020","journal-title":"Multimedia Tools Appl."},{"key":"10.1016\/j.inffus.2022.12.026_b17","first-page":"1","article-title":"A survey of classical methods and new trends in pansharpening of multispectral images","volume":"79","author":"Amro","year":"2011","journal-title":"EURASIP J. Advan. Signal Process."},{"issue":"10","key":"10.1016\/j.inffus.2022.12.026_b18","doi-asserted-by":"crossref","first-page":"10556","DOI":"10.1109\/TCYB.2021.3064571","article-title":"GAFNet: Group attention fusion network for PAN and MS image high-resolution classification","volume":"52","author":"Liu","year":"2022","journal-title":"IEEE Trans. Cyber."},{"key":"10.1016\/j.inffus.2022.12.026_b19","doi-asserted-by":"crossref","DOI":"10.1109\/TGRS.2022.3222458","article-title":"A two-stage mutual fusion network for multispectral and panchromatic image classification","volume":"60","author":"Liao","year":"2022","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"11","key":"10.1016\/j.inffus.2022.12.026_b20","doi-asserted-by":"crossref","first-page":"3988","DOI":"10.1109\/JSTARS.2018.2871046","article-title":"Automatic extraction of built-up areas from panchromatic and multispectral remote sensing images using double-stream deep convolutional neural networks","volume":"11","author":"Tan","year":"2018","journal-title":"IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens."},{"issue":"10","key":"10.1016\/j.inffus.2022.12.026_b21","doi-asserted-by":"crossref","first-page":"3769","DOI":"10.1109\/TGRS.2010.2047863","article-title":"Uncertainty analysis for the classification of multispectral satellite images using SVMs and SOMs","volume":"48","author":"Giacco","year":"2010","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b22","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1080\/19479830903561035","article-title":"Multi-source remote sensing data fusion: status and trends I","volume":"1","author":"Zhang","year":"2010","journal-title":"J. Image Data Fusion"},{"key":"10.1016\/j.inffus.2022.12.026_b23","article-title":"A decision-level fusion approach to tree species classification from multi-source remotely sensed data","volume":"1","author":"Hu","year":"2021","journal-title":"ISPRS Open J. Photogram. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b24","doi-asserted-by":"crossref","DOI":"10.1109\/TGRS.2022.3215020","article-title":"GCFnet: Global collaborative fusion network for multispectral and panchromatic image classification","volume":"60","author":"Zhao","year":"2022","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b25","article-title":"An effective approach to selecting the appropriate pan-sharpening method in digital change detection of natural ecosystems","volume":"53","author":"Rayegani","year":"2019","journal-title":"Ecolog. Infor."},{"issue":"1","key":"10.1016\/j.inffus.2022.12.026_b26","article-title":"Detecting and mapping gonipterus scutellatus induced vegetation defoliation using WorldView-2 pan-sharpened image texture combinations and an artificial neural network","volume":"13","author":"Lottering","year":"2019","journal-title":"J. Appli. Remote Sensing"},{"key":"10.1016\/j.inffus.2022.12.026_b27","series-title":"IEEE IGARSS","first-page":"1","article-title":"DOES multispectral\/hyperspectral pansharpening improve the performance of anomaly detection?","author":"Qu","year":"2017"},{"key":"10.1016\/j.inffus.2022.12.026_b28","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1016\/j.inffus.2012.05.003","article-title":"Information fusion techniques for change detection from multi-temporal remote sensing images","volume":"14","author":"Du","year":"2013","journal-title":"Inf. Fusion"},{"issue":"6","key":"10.1016\/j.inffus.2022.12.026_b29","first-page":"691","article-title":"Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images","volume":"63","author":"Wald","year":"1997","journal-title":"Photogramm. Eng. Remote Sens."},{"issue":"5","key":"10.1016\/j.inffus.2022.12.026_b30","doi-asserted-by":"crossref","first-page":"1301","DOI":"10.1109\/TGRS.2007.912448","article-title":"Synthesis of multispectral images to high spatial resolution: A critical review of fusion methods based on remote sensing physics","volume":"46","author":"Thomas","year":"2008","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"5","key":"10.1016\/j.inffus.2022.12.026_b31","doi-asserted-by":"crossref","first-page":"2565","DOI":"10.1109\/TGRS.2014.2361734","article-title":"A critical comparison among pansharpening algorithms","volume":"53","author":"Vivone","year":"2015","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"1","key":"10.1016\/j.inffus.2022.12.026_b32","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1109\/MGRS.2020.3019315","article-title":"A new benchmark based on recent advances in multispectral pansharpening: Revisiting pansharpening with classical and emerging pansharpening methods","volume":"9","author":"Vivone","year":"2021","journal-title":"IEEE Geosci. Remote Sens. Mag."},{"issue":"1","key":"10.1016\/j.inffus.2022.12.026_b33","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1109\/MGRS.2020.2976696","article-title":"A large-scale benchmark data set for evaluating pansharpening performance: Overview and implementation","volume":"9","author":"Meng","year":"2021","journal-title":"IEEE Geosci. Remote Sens. Mag."},{"issue":"4","key":"10.1016\/j.inffus.2022.12.026_b34","first-page":"459","article-title":"The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data","volume":"56","author":"Carper","year":"1990","journal-title":"Photogramm. Eng. Remote Sens."},{"issue":"3","key":"10.1016\/j.inffus.2022.12.026_b35","first-page":"295","article-title":"Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic","volume":"57","author":"Chavez","year":"1991","journal-title":"Photogramm. Eng. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b36","series-title":"Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening","author":"Laben","year":"2000"},{"issue":"1","key":"10.1016\/j.inffus.2022.12.026_b37","first-page":"49","article-title":"Fusion of high spatial and spectral resolution images: The ARSIS concept and its implementation","volume":"66","author":"Ranchin","year":"2000","journal-title":"Photogramm. Eng. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b38","series-title":"A Wavelet Tour of Signal Processing","author":"Mallat","year":"2008"},{"issue":"5","key":"10.1016\/j.inffus.2022.12.026_b39","doi-asserted-by":"crossref","first-page":"1313","DOI":"10.1109\/TGRS.2007.912737","article-title":"Remote sensing image fusion using multiscale mapped LS-SVM","volume":"46","author":"Zheng","year":"2008","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"5","key":"10.1016\/j.inffus.2022.12.026_b40","doi-asserted-by":"crossref","first-page":"2503","DOI":"10.1109\/TGRS.2017.2742002","article-title":"Pansharpening with multiscale geometric support tensor machine","volume":"56","author":"Xing","year":"2018","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"6","key":"10.1016\/j.inffus.2022.12.026_b41","doi-asserted-by":"crossref","first-page":"2882","DOI":"10.1109\/TIP.2016.2556944","article-title":"Fusion of multispectral and panchromatic images based on morphological operators","volume":"25","author":"Restaino","year":"2016","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.inffus.2022.12.026_b42","doi-asserted-by":"crossref","first-page":"100","DOI":"10.1016\/j.inffus.2016.05.004","article-title":"Pixel-level image fusion: A survey of the state of the art","volume":"33","author":"Li","year":"2017","journal-title":"Inf. Fusion"},{"issue":"1","key":"10.1016\/j.inffus.2022.12.026_b43","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1007\/s11263-006-6852-x","article-title":"A variational model for P+XS image fusion","volume":"69","author":"Ballester","year":"2006","journal-title":"Int. J. Comput. Vis."},{"issue":"8","key":"10.1016\/j.inffus.2022.12.026_b44","doi-asserted-by":"crossref","first-page":"3647","DOI":"10.1109\/TNNLS.2017.2736011","article-title":"Learning low-rank decomposition for pan-sharpening with spatial\u2013spectral offsets","volume":"29","author":"Yang","year":"2018","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"1","key":"10.1016\/j.inffus.2022.12.026_b45","first-page":"90","article-title":"Single image super-resolution via adaptive high-dimensional non-local total variation and adaptive geometric feature","volume":"26","author":"Ren","year":"2017","journal-title":"IEEE Trans. Image Process."},{"issue":"4","key":"10.1016\/j.inffus.2022.12.026_b46","doi-asserted-by":"crossref","first-page":"1777","DOI":"10.1109\/TIP.2017.2781425","article-title":"Reweighted low-rank matrix analysis with structural smoothness for image denoising","volume":"27","author":"Wang","year":"2018","journal-title":"IEEE Trans. Image Process."},{"issue":"7553","key":"10.1016\/j.inffus.2022.12.026_b47","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"LeCun","year":"2015","journal-title":"Nature"},{"issue":"1","key":"10.1016\/j.inffus.2022.12.026_b48","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1109\/MSP.2017.2765202","article-title":"Generative adversarial networks: An overview","volume":"35","author":"Creswell","year":"2018","journal-title":"IEEE Signal Process. Mag."},{"key":"10.1016\/j.inffus.2022.12.026_b49","series-title":"NIPS","first-page":"5998","article-title":"Attention is all you need","author":"Vaswani","year":"2017"},{"issue":"1","key":"10.1016\/j.inffus.2022.12.026_b50","doi-asserted-by":"crossref","first-page":"228","DOI":"10.1109\/TGRS.2007.907604","article-title":"Optimal MMSE pan sharpening of very high resolution multispectral images","volume":"46","author":"Garzelli","year":"2008","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"4","key":"10.1016\/j.inffus.2022.12.026_b51","first-page":"180","article-title":"A fast intensity-hue-saturation fusion technique with spectral adjustment for IKONOS imagery","volume":"1","author":"Tu","year":"2015","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"4","key":"10.1016\/j.inffus.2022.12.026_b52","doi-asserted-by":"crossref","first-page":"746","DOI":"10.1109\/LGRS.2010.2046715","article-title":"An adaptive IHS pan-sharpening method","volume":"7","author":"Rahmani","year":"2010","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"5","key":"10.1016\/j.inffus.2022.12.026_b53","doi-asserted-by":"crossref","first-page":"985","DOI":"10.1109\/LGRS.2013.2284282","article-title":"An improved adaptive intensity-hue-saturation method for the fusion of remote sensing images","volume":"11","author":"Leung","year":"2014","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"11","key":"10.1016\/j.inffus.2022.12.026_b54","doi-asserted-by":"crossref","first-page":"1606","DOI":"10.1109\/LGRS.2016.2597271","article-title":"Nonlinear IHS: A promising method for pan-sharpening","volume":"12","author":"Ghahremani","year":"2016","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"10.1016\/j.inffus.2022.12.026_b55","doi-asserted-by":"crossref","first-page":"177","DOI":"10.1016\/j.inffus.2010.09.003","article-title":"Fusion of multispectral and panchromatic images based on support value transform and adaptive principal component analysis","volume":"13","author":"Yang","year":"2012","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2022.12.026_b56","doi-asserted-by":"crossref","first-page":"150","DOI":"10.1016\/j.inffus.2015.06.006","article-title":"Combining the spectral PCA and spatial PCA fusion methods by an optimal filter","volume":"27","author":"Shahdoosti","year":"2016","journal-title":"Inf. Fusion"},{"issue":"12","key":"10.1016\/j.inffus.2022.12.026_b57","doi-asserted-by":"crossref","first-page":"2295","DOI":"10.1109\/LGRS.2017.2762427","article-title":"Image fusion of spectrally nonoverlapping imagery using SPCA and MTF-based filters","volume":"14","author":"Kim","year":"2017","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"3","key":"10.1016\/j.inffus.2022.12.026_b58","doi-asserted-by":"crossref","first-page":"442","DOI":"10.1109\/LGRS.2018.2873654","article-title":"Restoration of pansharpened images by conditional filtering in the PCA domain","volume":"16","author":"Duran","year":"2019","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"10","key":"10.1016\/j.inffus.2022.12.026_b59","doi-asserted-by":"crossref","first-page":"3230","DOI":"10.1109\/TGRS.2007.901007","article-title":"Improving component substitution pansharpening through multivariate regression of MS+Pan data","volume":"45","author":"Aiazzi","year":"2007","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"4","key":"10.1016\/j.inffus.2022.12.026_b60","doi-asserted-by":"crossref","first-page":"781","DOI":"10.1109\/LGRS.2014.2361834","article-title":"Novel adaptive component-substitution-based pan-sharpening using particle swarm optimization","volume":"12","author":"Wang","year":"2015","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"4","key":"10.1016\/j.inffus.2022.12.026_b61","doi-asserted-by":"crossref","first-page":"2096","DOI":"10.1109\/TGRS.2014.2354471","article-title":"Pansharpening of multispectral images based on nonlocal parameter optimization","volume":"53","author":"Garzelli","year":"2015","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"6","key":"10.1016\/j.inffus.2022.12.026_b62","doi-asserted-by":"crossref","first-page":"826","DOI":"10.1109\/LGRS.2017.2682122","article-title":"Pansharpening of clustered MS and pan images considering mixed pixels","volume":"14","author":"Shahdoosti","year":"2017","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"12","key":"10.1016\/j.inffus.2022.12.026_b63","doi-asserted-by":"crossref","first-page":"4994","DOI":"10.1109\/JSTARS.2018.2851791","article-title":"Band dependent spatial details injection based on collaborative representation for pansharpening","volume":"11","author":"Imani","year":"2018","journal-title":"IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens."},{"issue":"9","key":"10.1016\/j.inffus.2022.12.026_b64","doi-asserted-by":"crossref","first-page":"6421","DOI":"10.1109\/TGRS.2019.2906073","article-title":"Robust band-dependent spatial-detail approaches for panchromatic sharpening","volume":"57","author":"Vivone","year":"2019","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"7","key":"10.1016\/j.inffus.2022.12.026_b65","doi-asserted-by":"crossref","first-page":"3418","DOI":"10.1109\/TIP.2018.2819501","article-title":"Full scale regression-based injection coefficients for panchromatic sharpening","volume":"27","author":"Vivone","year":"2018","journal-title":"IEEE Trans. Image Process."},{"issue":"9","key":"10.1016\/j.inffus.2022.12.026_b66","doi-asserted-by":"crossref","first-page":"6152","DOI":"10.1109\/TGRS.2020.2974806","article-title":"Pansharpening: Context-based generalized Laplacian pyramids by robust regression","volume":"58","author":"Vivone","year":"2020","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"1","key":"10.1016\/j.inffus.2022.12.026_b67","doi-asserted-by":"crossref","first-page":"102","DOI":"10.1109\/LGRS.2019.2914093","article-title":"A pansharpening approach based on multiple linear regression estimation of injection coefficients","volume":"17","author":"Restaino","year":"2020","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"10.1016\/j.inffus.2022.12.026_b68","doi-asserted-by":"crossref","first-page":"7779","DOI":"10.1109\/TIP.2020.3007824","article-title":"A data-driven model-based regression applied to panchromatic sharpening","volume":"29","author":"Addesso","year":"2020","journal-title":"IEEE Trans. Image Process."},{"issue":"10","key":"10.1016\/j.inffus.2022.12.026_b69","doi-asserted-by":"crossref","first-page":"2376","DOI":"10.1109\/TGRS.2005.856106","article-title":"Introduction of sensor spectral response into image fusion methods. Application to wavelet-based methods","volume":"43","author":"Otazu","year":"2005","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b70","doi-asserted-by":"crossref","first-page":"2315","DOI":"10.3390\/rs11192315","article-title":"Fast reproducible pansharpening based on instrument and acquisition modeling: AWLP revisited","volume":"11","author":"Vivone","year":"2019","journal-title":"Remote Sens."},{"issue":"6","key":"10.1016\/j.inffus.2022.12.026_b71","doi-asserted-by":"crossref","first-page":"892","DOI":"10.1109\/LGRS.2016.2552379","article-title":"Pan-sharpening by multilevel interband structure modeling","volume":"13","author":"Lu","year":"2016","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"6","key":"10.1016\/j.inffus.2022.12.026_b72","doi-asserted-by":"crossref","first-page":"3124","DOI":"10.1109\/TGRS.2014.2369056","article-title":"Pansharpening: MTF-adjusted pansharpening approach based on coupled multiresolution decompositions","volume":"53","author":"Kallel","year":"2015","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b73","doi-asserted-by":"crossref","first-page":"5466","DOI":"10.1109\/JSTARS.2020.3022857","article-title":"Pansharpening based on low-rank fuzzy fusion and detail supplement","volume":"13","author":"Yang","year":"2020","journal-title":"IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens."},{"issue":"5","key":"10.1016\/j.inffus.2022.12.026_b74","doi-asserted-by":"crossref","first-page":"1323","DOI":"10.1109\/TGRS.2008.916211","article-title":"Pansharpening: An efficient pan-sharpening method via a combined adaptive PCA approach and contourlets","volume":"46","author":"Shah","year":"2008","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"5","key":"10.1016\/j.inffus.2022.12.026_b75","doi-asserted-by":"crossref","first-page":"1806","DOI":"10.1109\/JSTARS.2014.2306332","article-title":"A pan-sharpening based on the non-subsampled contourlet transform: Application to worldview-2 imagery","volume":"47","author":"El-Mezouar","year":"2014","journal-title":"IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens."},{"issue":"6","key":"10.1016\/j.inffus.2022.12.026_b76","doi-asserted-by":"crossref","first-page":"3210","DOI":"10.1109\/TGRS.2014.2371812","article-title":"An edge preserving multiresolution fusion: Use of contourlet transform and MRF prior","volume":"53","author":"Upla","year":"2015","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"12","key":"10.1016\/j.inffus.2022.12.026_b77","doi-asserted-by":"crossref","first-page":"5715","DOI":"10.1109\/JSTARS.2016.2584142","article-title":"Refined pan-sharpening with NSCT and hierarchical sparse autoencoder","volume":"9","author":"Li","year":"2016","journal-title":"IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b78","doi-asserted-by":"crossref","first-page":"268","DOI":"10.1016\/j.neucom.2015.01.050","article-title":"High quality multi-spectral and panchromatic image fusion technologies based on curvelet transform","volume":"159","author":"Dong","year":"2015","journal-title":"Neurocomputing"},{"issue":"3","key":"10.1016\/j.inffus.2022.12.026_b79","article-title":"Synthesized pansharpening using curvelet transform and adaptive neuro-fuzzy inference system","volume":"13","author":"Devulapalli","year":"2019","journal-title":"J. Appli. Remote Sensing"},{"key":"10.1016\/j.inffus.2022.12.026_b80","doi-asserted-by":"crossref","first-page":"213","DOI":"10.1016\/j.inffus.2014.02.005","article-title":"Pansharpening of multispectral images using the nonseparable framelet lifting transform with high vanishing moments","volume":"20","author":"Shi","year":"2014","journal-title":"Inf. Fusion"},{"issue":"7","key":"10.1016\/j.inffus.2022.12.026_b81","doi-asserted-by":"crossref","first-page":"5121","DOI":"10.1109\/TGRS.2019.2897010","article-title":"Random walks for pansharpening in complex tight framelet domain","volume":"57","author":"Wang","year":"2019","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"8","key":"10.1016\/j.inffus.2022.12.026_b82","doi-asserted-by":"crossref","first-page":"1417","DOI":"10.1007\/s12524-019-01006-5","article-title":"A framelet-based SFIM method to pan-sharpen THEOS imagery","volume":"47","author":"Zhao","year":"2019","journal-title":"J. Indian Soc. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b83","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1016\/j.neucom.2012.10.025","article-title":"A novel algorithm of remote sensing image fusion based on shearlets and PCNN","volume":"117","author":"Shi","year":"2013","journal-title":"Neurocomputing"},{"key":"10.1016\/j.inffus.2022.12.026_b84","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1007\/s11220-015-0125-0","article-title":"Remote sensing image fusion method based on nonsubsampled shearlet transform and sparse representation","volume":"16","author":"Moonon","year":"2015","journal-title":"Sens. Imaging"},{"key":"10.1016\/j.inffus.2022.12.026_b85","doi-asserted-by":"crossref","first-page":"4573","DOI":"10.1109\/ACCESS.2016.2599403","article-title":"Remote sensing image fusion based on adaptive IHS and multiscale guided filter","volume":"4","author":"Yang","year":"2016","journal-title":"IEEE Access"},{"issue":"10","key":"10.1016\/j.inffus.2022.12.026_b86","doi-asserted-by":"crossref","first-page":"5734","DOI":"10.1109\/TGRS.2015.2429691","article-title":"Pansharpening with multiscale normalized nonlocal means filter: A two-step approach","volume":"53","author":"Yin","year":"2015","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b87","doi-asserted-by":"crossref","first-page":"573","DOI":"10.1007\/s11831-016-9182-3","article-title":"Computational mechanisms of pulse-coupled neural networks: A comprehensive review","volume":"24","author":"Zhan","year":"2017","journal-title":"Arch. Computa. Methods Eng."},{"issue":"4","key":"10.1016\/j.inffus.2022.12.026_b88","doi-asserted-by":"crossref","first-page":"1289","DOI":"10.1109\/TIT.2006.871582","article-title":"Compressed sensing","volume":"52","author":"Donoho","year":"2006","journal-title":"IEEE Trans. Inform. Theory"},{"key":"10.1016\/j.inffus.2022.12.026_b89","doi-asserted-by":"crossref","first-page":"134","DOI":"10.1109\/TIP.2020.3032036","article-title":"Fast roughness minimizing image restoration under mixed Poisson-Gaussian noise","volume":"30","author":"Ghulyani","year":"2021","journal-title":"IEEE Trans. Image Process."},{"issue":"2","key":"10.1016\/j.inffus.2022.12.026_b90","doi-asserted-by":"crossref","first-page":"738","DOI":"10.1109\/TGRS.2010.2067219","article-title":"A new pan-sharpening method using a compressed sensing technique","volume":"49","author":"Li","year":"2011","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"1","key":"10.1016\/j.inffus.2022.12.026_b91","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1137\/S003614450037906X","article-title":"Atomic decomposition by basis pursuit","volume":"43","author":"Chen","year":"2001","journal-title":"SIAM Rev."},{"issue":"9","key":"10.1016\/j.inffus.2022.12.026_b92","doi-asserted-by":"crossref","first-page":"4779","DOI":"10.1109\/TGRS.2012.2230332","article-title":"Remote sensing image fusion via sparse representations over learned dictionaries","volume":"51","author":"Li","year":"2013","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"4","key":"10.1016\/j.inffus.2022.12.026_b93","doi-asserted-by":"crossref","first-page":"629","DOI":"10.1109\/LGRS.2011.2177063","article-title":"A practical compressed sensing-based pan-sharpening method","volume":"9","author":"Jiang","year":"2012","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"1","key":"10.1016\/j.inffus.2022.12.026_b94","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1109\/LGRS.2013.2256875","article-title":"Sparse representation based pansharpening using trained dictionary","volume":"11","author":"Cheng","year":"2014","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"4","key":"10.1016\/j.inffus.2022.12.026_b95","doi-asserted-by":"crossref","first-page":"2194","DOI":"10.1109\/TGRS.2015.2497309","article-title":"A compressed-sensing-based pan-sharpening method for spectral distortion reduction","volume":"54","author":"Ghahremani","year":"2016","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"5","key":"10.1016\/j.inffus.2022.12.026_b96","doi-asserted-by":"crossref","first-page":"2827","DOI":"10.1109\/TGRS.2012.2213604","article-title":"A sparse image fusion algorithm with application to pan-sharpening","volume":"51","author":"Zhu","year":"2013","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b97","doi-asserted-by":"crossref","first-page":"557","DOI":"10.3390\/rs11050557","article-title":"Fusion of multispectral and panchromatic images via spatial weighted neighbor embedding","volume":"11","author":"Zhang","year":"2019","journal-title":"Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b98","doi-asserted-by":"crossref","first-page":"320","DOI":"10.1016\/j.neucom.2014.11.054","article-title":"Distributed compressed sensing-based pan-sharpening with hybrid dictionary","volume":"155","author":"Wang","year":"2015","journal-title":"Neurocomputing"},{"issue":"9","key":"10.1016\/j.inffus.2022.12.026_b99","doi-asserted-by":"crossref","first-page":"4330","DOI":"10.1109\/TIP.2018.2839531","article-title":"A variational pansharpening approach based on reproducible kernel Hilbert space and Heaviside function","volume":"27","author":"Deng","year":"2018","journal-title":"IEEE Trans. Image Process."},{"issue":"7","key":"10.1016\/j.inffus.2022.12.026_b100","doi-asserted-by":"crossref","first-page":"2448","DOI":"10.1109\/JSTARS.2018.2835573","article-title":"An efficient pan sharpening via texture based dictionary learning and sparse representation","volume":"11","author":"Ayas","year":"2008","journal-title":"IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens."},{"issue":"2","key":"10.1016\/j.inffus.2022.12.026_b101","doi-asserted-by":"crossref","first-page":"1117","DOI":"10.1109\/TGRS.2018.2864750","article-title":"Convolution structure sparse coding for fusion of panchromatic and multispectral images","volume":"57","author":"Zhang","year":"2019","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"1","key":"10.1016\/j.inffus.2022.12.026_b102","doi-asserted-by":"crossref","first-page":"301","DOI":"10.1109\/TIP.2015.2495260","article-title":"Efficient algorithms for convolutional sparse representations","volume":"25","author":"Wohlberg","year":"2016","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.inffus.2022.12.026_b103","doi-asserted-by":"crossref","first-page":"426","DOI":"10.1109\/JSTARS.2020.3043521","article-title":"Fusion of panchromatic and multispectral images using multiscale convolution sparse decomposition","volume":"14","author":"Zhang","year":"2021","journal-title":"IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b104","doi-asserted-by":"crossref","first-page":"259","DOI":"10.1016\/0167-2789(92)90242-F","article-title":"Nonlinear total variation based noise removal algorithms","volume":"60","author":"Rudin","year":"1992","journal-title":"Physica D"},{"issue":"1","key":"10.1016\/j.inffus.2022.12.026_b105","doi-asserted-by":"crossref","first-page":"318","DOI":"10.1109\/LGRS.2013.2257669","article-title":"A new pansharpening algorithm based on total variation","volume":"11","author":"Palsson","year":"2014","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"8","key":"10.1016\/j.inffus.2022.12.026_b106","doi-asserted-by":"crossref","first-page":"1269","DOI":"10.1109\/LGRS.2018.2836951","article-title":"A new variational model in texture space for pansharpening","volume":"15","author":"Lotfi","year":"2018","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"12","key":"10.1016\/j.inffus.2022.12.026_b107","doi-asserted-by":"crossref","first-page":"5726","DOI":"10.1109\/JSTARS.2016.2537925","article-title":"A new geometry enforcing variational model for pan-sharpening","volume":"9","author":"Liu","year":"2016","journal-title":"IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b108","doi-asserted-by":"crossref","first-page":"76","DOI":"10.1016\/j.inffus.2018.11.014","article-title":"The fusion of panchromatic and multispectral remote sensing images via tensor-based sparse modeling and hyper-Laplacian prior","volume":"52","author":"Deng","year":"2019","journal-title":"Inf. Fusion"},{"issue":"7","key":"10.1016\/j.inffus.2022.12.026_b109","doi-asserted-by":"crossref","first-page":"2822","DOI":"10.1109\/TIP.2013.2258355","article-title":"A variational approach for pan-sharpening","volume":"22","author":"Fang","year":"2013","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.inffus.2022.12.026_b110","series-title":"IEEE CVPR","first-page":"10265","article-title":"A variational pan-sharpening with local gradient constraints","author":"Fu","year":"2019"},{"issue":"5","key":"10.1016\/j.inffus.2022.12.026_b111","doi-asserted-by":"crossref","first-page":"2840","DOI":"10.1109\/TGRS.2018.2878007","article-title":"Pansharpening for cloud-contaminated very high-resolution remote sensing images","volume":"57","author":"Meng","year":"2019","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"1","key":"10.1016\/j.inffus.2022.12.026_b112","doi-asserted-by":"crossref","first-page":"227","DOI":"10.1109\/TIP.2018.2866954","article-title":"High-quality bayesian pansharpening","volume":"28","author":"Wang","year":"2019","journal-title":"IEEE Trans. Image Process."},{"issue":"11","key":"10.1016\/j.inffus.2022.12.026_b113","doi-asserted-by":"crossref","first-page":"4213","DOI":"10.1109\/TIP.2015.2456415","article-title":"SIRF: Simultaneous satellite image registration and fusion in a unified framework","volume":"24","author":"Chen","year":"2015","journal-title":"IEEE Trans. Image Process."},{"issue":"4","key":"10.1016\/j.inffus.2022.12.026_b114","doi-asserted-by":"crossref","first-page":"2235","DOI":"10.1109\/TGRS.2015.2497966","article-title":"Spatial-hessian-feature-guided variational model for pan-sharpening","volume":"54","author":"Liu","year":"2016","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"11","key":"10.1016\/j.inffus.2022.12.026_b115","doi-asserted-by":"crossref","first-page":"4589","DOI":"10.1109\/JSTARS.2019.2953140","article-title":"Multicomponent driven consistency priors for simultaneous decomposition and pansharpening","volume":"12","author":"Liu","year":"2019","journal-title":"IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b116","doi-asserted-by":"crossref","first-page":"1180","DOI":"10.1109\/LSP.2020.3007325","article-title":"A variational pansharpening method based on gradient sparse representation","volume":"27","author":"Tian","year":"2020","journal-title":"IEEE Signal Process. Lett."},{"key":"10.1016\/j.inffus.2022.12.026_b117","series-title":"NIPS","first-page":"2080","article-title":"Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization","author":"Wright","year":"2009"},{"key":"10.1016\/j.inffus.2022.12.026_b118","series-title":"ICML","first-page":"33","article-title":"Godec: Randomized low-rank and sparse matrix decomposition in noisy case","author":"Zhou","year":"2011"},{"issue":"12","key":"10.1016\/j.inffus.2022.12.026_b119","doi-asserted-by":"crossref","first-page":"4793","DOI":"10.1109\/JSTARS.2014.2347072","article-title":"Pansharpening based on low-rank and sparse decomposition","volume":"7","author":"Rong","year":"2014","journal-title":"IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens."},{"issue":"4","key":"10.1016\/j.inffus.2022.12.026_b120","doi-asserted-by":"crossref","first-page":"656","DOI":"10.1109\/LGRS.2019.2926681","article-title":"Model-based reduced-rank pansharpening","volume":"17","author":"Palsson","year":"2020","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"9","key":"10.1016\/j.inffus.2022.12.026_b121","doi-asserted-by":"crossref","first-page":"4160","DOI":"10.1109\/TIP.2014.2333661","article-title":"A new pansharpening method based on spatial and spectral sparsity priors","volume":"23","author":"He","year":"2014","journal-title":"IEEE Trans. Image Process."},{"issue":"3","key":"10.1016\/j.inffus.2022.12.026_b122","doi-asserted-by":"crossref","first-page":"1788","DOI":"10.1109\/TGRS.2017.2768386","article-title":"A variational pan-sharpening method based on spatial fractional-order geometry and spectral-spatial low-rank priors","volume":"56","author":"Liu","year":"2018","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b123","doi-asserted-by":"crossref","first-page":"2649","DOI":"10.1109\/JSTARS.2021.3058158","article-title":"Exploiting low-rank and sparse properties in strided convolution matrix for pansharpening","volume":"14","author":"Zhang","year":"2021","journal-title":"IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b124","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1016\/j.inffus.2013.11.004","article-title":"Fusion of multispectral and panchromatic images via sparse representation and local autoregressive model","volume":"20","author":"Wang","year":"2014","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2022.12.026_b125","doi-asserted-by":"crossref","first-page":"251","DOI":"10.1016\/j.inffus.2019.06.025","article-title":"Gradient structural similarity based gradient filtering for multi-modal image fusion","volume":"53","author":"Fu","year":"2020","journal-title":"Inf. Fusion"},{"issue":"6","key":"10.1016\/j.inffus.2022.12.026_b126","doi-asserted-by":"crossref","first-page":"917","DOI":"10.1109\/LGRS.2018.2817561","article-title":"Incorporating an adaptive image prior model into Bayesian fusion of multispectral and panchromatic images","volume":"15","author":"Khademi","year":"2018","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"2","key":"10.1016\/j.inffus.2022.12.026_b127","doi-asserted-by":"crossref","first-page":"761","DOI":"10.1137\/130928625","article-title":"A nonlocal variational model for pansharpening image fusion","volume":"7","author":"Duran","year":"2014","journal-title":"SIAM J. Imag. Sci."},{"issue":"12","key":"10.1016\/j.inffus.2022.12.026_b128","doi-asserted-by":"crossref","first-page":"5740","DOI":"10.1109\/JSTARS.2015.2475754","article-title":"Fusion of panchromatic and multispectral images via coupled sparse non-negative matrix factorization","volume":"9","author":"Zhang","year":"2016","journal-title":"IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b129","series-title":"NIPS","first-page":"1106","article-title":"ImageNet classification with deep convolutional neural networks","author":"Krizhevsky","year":"2012"},{"key":"10.1016\/j.inffus.2022.12.026_b130","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"LeCun","year":"2015","journal-title":"Nature"},{"key":"10.1016\/j.inffus.2022.12.026_b131","doi-asserted-by":"crossref","first-page":"323","DOI":"10.1016\/j.inffus.2021.06.008","article-title":"Image fusion meets deep learning: A survey and perspective","volume":"76","author":"Zhang","year":"2021","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2022.12.026_b132","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1016\/j.inffus.2021.05.008","article-title":"A review of uncertainty quantification in deep learning: Techniques, applications and challenges","volume":"76","author":"Abdar","year":"2021","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2022.12.026_b133","doi-asserted-by":"crossref","first-page":"232","DOI":"10.1016\/j.inffus.2021.09.018","article-title":"A tutorial on the segmentation of metallographic images: Taxonomy, new MetalDAM dataset, deep learning-based ensemble model, experimental analysis and challenges","volume":"78","author":"Luengo","year":"2022","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2022.12.026_b134","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1016\/j.inffus.2020.10.014","article-title":"Lights and shadows in evolutionary deep learning: Taxonomy, critical methodological analysis, cases of study, learned lessons, recommendations and challenges","volume":"67","author":"Martinez","year":"2021","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2022.12.026_b135","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1016\/j.inffus.2020.09.006","article-title":"A survey on deep learning in medicine: Why, how and when?","volume":"66","author":"Piccialli","year":"2021","journal-title":"Inf. Fusion"},{"issue":"7","key":"10.1016\/j.inffus.2022.12.026_b136","doi-asserted-by":"crossref","first-page":"3142","DOI":"10.1109\/TIP.2017.2662206","article-title":"Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising","volume":"26","author":"Zhang","year":"2017","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.inffus.2022.12.026_b137","series-title":"IEEE CVPR","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"},{"issue":"2","key":"10.1016\/j.inffus.2022.12.026_b138","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1109\/TPAMI.2015.2439281","article-title":"Image super-resolution using deep convolutional networks","volume":"38","author":"Dong","year":"2016","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2022.12.026_b139","series-title":"IEEE CVPR","first-page":"3338","article-title":"Neural blind deconvolution using deep priors","author":"Ren","year":"2020"},{"key":"10.1016\/j.inffus.2022.12.026_b140","doi-asserted-by":"crossref","first-page":"594","DOI":"10.3390\/rs8070594","article-title":"Pansharpening by convolutional neural networks","volume":"8","author":"Masi","year":"2016","journal-title":"Remote Sens."},{"issue":"8","key":"10.1016\/j.inffus.2022.12.026_b141","doi-asserted-by":"crossref","first-page":"5443","DOI":"10.1109\/TGRS.2018.2817393","article-title":"Target-adaptive CNN-based pansharpening","volume":"56","author":"Scarpa","year":"2018","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b142","series-title":"IEEE ICCV","first-page":"5449","article-title":"PanNet: A deep network architecture for pan-sharpening","author":"Yang","year":"2017"},{"issue":"5","key":"10.1016\/j.inffus.2022.12.026_b143","doi-asserted-by":"crossref","first-page":"2090","DOI":"10.1109\/TNNLS.2020.2996498","article-title":"Deep multiscale detail networks for multiband spectral image sharpening","volume":"32","author":"Fu","year":"2021","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"10","key":"10.1016\/j.inffus.2022.12.026_b144","doi-asserted-by":"crossref","first-page":"1795","DOI":"10.1109\/LGRS.2017.2736020","article-title":"Boosting the accuracy of multispectral image pansharpening by learning a deep residual network","volume":"14","author":"Wei","year":"2017","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"10.1016\/j.inffus.2022.12.026_b145","doi-asserted-by":"crossref","first-page":"257","DOI":"10.1016\/j.isprsjprs.2020.03.006","article-title":"A differential information residual convolutional neural network for pansharpening","volume":"163","author":"Jiang","year":"2020","journal-title":"ISPRS J. Photogram. Remote Sens."},{"issue":"6","key":"10.1016\/j.inffus.2022.12.026_b146","doi-asserted-by":"crossref","first-page":"4984","DOI":"10.1109\/TGRS.2020.3019835","article-title":"Two stages pan-sharpening details injection approach based on very deep residual networks","volume":"59","author":"Benzenati","year":"2021","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b147","doi-asserted-by":"crossref","first-page":"364","DOI":"10.1016\/j.neucom.2018.05.103","article-title":"Pixel-wise regression using U-net and its application on pansharpening","volume":"312","author":"Yao","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.inffus.2022.12.026_b148","series-title":"IEEE ICCV","first-page":"14687","article-title":"Dynamic cross feature fusion for remote sensing pansharpening","author":"Wu","year":"2021"},{"key":"10.1016\/j.inffus.2022.12.026_b149","doi-asserted-by":"crossref","DOI":"10.1109\/LGRS.2022.3225974","article-title":"HLF-net: Pansharpening based on high- and low-frequency fusion networks","volume":"19","author":"Diao","year":"2022","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"3","key":"10.1016\/j.inffus.2022.12.026_b150","doi-asserted-by":"crossref","first-page":"978","DOI":"10.1109\/JSTARS.2018.2794888","article-title":"A multiscale and multidepth convolutional neural network for remote sensing imagery pan-sharpening","volume":"11","author":"Yuan","year":"2018","journal-title":"IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens."},{"issue":"3","key":"10.1016\/j.inffus.2022.12.026_b151","doi-asserted-by":"crossref","first-page":"2231","DOI":"10.1109\/TGRS.2020.3007884","article-title":"Pan-sharpening via multiscale dynamic convolutional neural network","volume":"59","author":"Hu","year":"2021","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b152","doi-asserted-by":"crossref","DOI":"10.1109\/TGRS.2021.3074624","article-title":"Multibranch feature extraction and feature multiplexing network for pansharpening","volume":"60","author":"Lei","year":"2022","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"4","key":"10.1016\/j.inffus.2022.12.026_b153","doi-asserted-by":"crossref","first-page":"1188","DOI":"10.1109\/JSTARS.2019.2898574","article-title":"Pansharpening via detail injection based convolutional neural networks","volume":"12","author":"He","year":"2019","journal-title":"IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens."},{"issue":"8","key":"10.1016\/j.inffus.2022.12.026_b154","doi-asserted-by":"crossref","first-page":"6995","DOI":"10.1109\/TGRS.2020.3031366","article-title":"Detail injection-based deep convolutional neural networks for pansharpening","volume":"59","author":"Deng","year":"2021","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b155","article-title":"NLRNet: An efficient nonlocal attention resnet for pansharpening","volume":"60","author":"Lei","year":"2022","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b156","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1016\/j.neucom.2020.02.083","article-title":"Texture feed based convolutional neural network for pansharpening","volume":"398","author":"Imani","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.inffus.2022.12.026_b157","doi-asserted-by":"crossref","first-page":"158","DOI":"10.1016\/j.inffus.2021.09.002","article-title":"Laplacian pyramid networks: A new approach for multispectral pansharpening","volume":"78","author":"Jin","year":"2022","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2022.12.026_b158","doi-asserted-by":"crossref","first-page":"110","DOI":"10.1016\/j.inffus.2020.04.006","article-title":"Pan-GAN: An unsupervised pan-sharpening method for remote sensing image fusion","volume":"62","author":"Ma","year":"2020","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2022.12.026_b159","series-title":"IEEE ICIP","first-page":"873","article-title":"PSGAN: A generative adversarial network for remote sensing image","author":"Liu","year":"2018"},{"key":"10.1016\/j.inffus.2022.12.026_b160","series-title":"NIPS","first-page":"2672","article-title":"Generative adversarial nets","author":"Goodfellow","year":"2014"},{"issue":"9","key":"10.1016\/j.inffus.2022.12.026_b161","doi-asserted-by":"crossref","first-page":"1573","DOI":"10.1109\/LGRS.2019.2949745","article-title":"Residual encoder\u2013decoder conditional generative adversarial network for pansharpening","volume":"17","author":"Shao","year":"2020","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"10.1016\/j.inffus.2022.12.026_b162","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.inffus.2019.07.010","article-title":"Remote sensing image fusion based on two-stream fusion network","volume":"55","author":"Liu","year":"2020","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2022.12.026_b163","doi-asserted-by":"crossref","first-page":"5455","DOI":"10.1109\/JSTARS.2020.3021074","article-title":"A two-stream multiscale deep learning architecture for pan-sharpening","volume":"13","author":"Wei","year":"2020","journal-title":"IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens."},{"issue":"4","key":"10.1016\/j.inffus.2022.12.026_b164","doi-asserted-by":"crossref","first-page":"3486","DOI":"10.1109\/TGRS.2020.3010441","article-title":"Rethinking CNN-based pansharpening: Guided colorization of panchromatic images via GANs","volume":"21","author":"Ozcelik","year":"2021","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b165","doi-asserted-by":"crossref","first-page":"1674","DOI":"10.3390\/rs12101674","article-title":"Two-path network with feedback connections for pan-sharpening in remote sensing","volume":"12","author":"Fu","year":"2020","journal-title":"Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b166","doi-asserted-by":"crossref","first-page":"2608","DOI":"10.3390\/rs11222608","article-title":"Going deeper with densely connected convolutional neural networks for multispectral pansharpening","volume":"11","author":"Wang","year":"2020","journal-title":"Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b167","article-title":"Spatial and spectral extraction network with adaptive feature fusion for pansharpening","volume":"60","author":"Zhang","year":"2022","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"8","key":"10.1016\/j.inffus.2022.12.026_b168","doi-asserted-by":"crossref","first-page":"5549","DOI":"10.1109\/TGRS.2019.2900419","article-title":"Pan-sharpening using an efficient bidirectional pyramid network","volume":"57","author":"Zhang","year":"2019","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b169","doi-asserted-by":"crossref","first-page":"4295","DOI":"10.1109\/JSTARS.2020.3008047","article-title":"Pansharpening via unsupervised convolutional neural networks","volume":"13","author":"Luo","year":"2020","journal-title":"IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b170","article-title":"Dual-stream convolutional neural network with residual information enhancement for pansharpening","volume":"60","author":"Yang","year":"2022","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b171","series-title":"ECCV","first-page":"87","article-title":"Guided deep decoder: Unsupervised image pair fusion","author":"Uezato","year":"2020"},{"key":"10.1016\/j.inffus.2022.12.026_b172","doi-asserted-by":"crossref","first-page":"3576","DOI":"10.1109\/JSTARS.2022.3171423","article-title":"Pansharpening via triplet attention network with information interaction","volume":"15","author":"Diao","year":"2022","journal-title":"IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b173","doi-asserted-by":"crossref","DOI":"10.1109\/TGRS.2022.3205626","article-title":"MCANet: A multidimensional channel attention residual neural network for pansharpening","volume":"60","author":"Lei","year":"2022","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b174","article-title":"Attention-based and staged iterative networks for pansharpening of remote sensing images","volume":"60","author":"Su","year":"2022","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b175","article-title":"Pansharpening via super-resolution iterative residual network with a cross-scale learning strategy","volume":"60","author":"Chen","year":"2022","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b176","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1016\/j.inffus.2022.10.010","article-title":"P2Sharpen: A progressive pansharpening network with deep spectral transformation","volume":"91","author":"Zhang","year":"2023","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2022.12.026_b177","article-title":"MetaPan: Unsupervised adaptation with meta-learning for multispectral pansharpening","volume":"19","author":"Wang","year":"2022","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"5","key":"10.1016\/j.inffus.2022.12.026_b178","doi-asserted-by":"crossref","first-page":"1037","DOI":"10.1109\/LGRS.2014.2376034","article-title":"A new pan-sharpening method with deep neural networks","volume":"12","author":"Huang","year":"2015","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"10.1016\/j.inffus.2022.12.026_b179","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1016\/j.isprsjprs.2018.01.016","article-title":"Pan-sharpening via deep metric learning","volume":"145","author":"Xing","year":"2018","journal-title":"ISPRS J. Photogram. Remote Sens."},{"issue":"5","key":"10.1016\/j.inffus.2022.12.026_b180","doi-asserted-by":"crossref","first-page":"4120","DOI":"10.1109\/TGRS.2020.3022482","article-title":"SDPNet: A deep network for pan-sharpening with enhanced information representation","volume":"59","author":"Xu","year":"2021","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b181","first-page":"1","article-title":"A survey on vision transformer","author":"Han","year":"2022","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell. Early Access"},{"key":"10.1016\/j.inffus.2022.12.026_b182","doi-asserted-by":"crossref","first-page":"1736","DOI":"10.3390\/rs14071736","article-title":"Multiscale spatial\u2013spectral interaction transformer for pan-sharpening","volume":"14","author":"Zhang","year":"2022","journal-title":"Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b183","doi-asserted-by":"crossref","first-page":"624","DOI":"10.3390\/rs14030624","article-title":"Pan-sharpening based on CNN+ pyramid transformer by using no-reference loss","volume":"14","author":"Li","year":"2022","journal-title":"Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b184","doi-asserted-by":"crossref","DOI":"10.1109\/TGRS.2022.3199210","article-title":"Effective pan-sharpening with transformer and invertible neural network","volume":"60","author":"Zhou","year":"2022","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b185","series-title":"AAAI","first-page":"1","article-title":"Pan-sharpening with customized transformer and invertible neural network","author":"Zhou","year":"2022"},{"key":"10.1016\/j.inffus.2022.12.026_b186","doi-asserted-by":"crossref","DOI":"10.1109\/TGRS.2022.3168465","article-title":"Vision transformer for pansharpening","volume":"60","author":"Meng","year":"2022","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b187","article-title":"Pan-sharpening based on transformer with redundancy reduction","volume":"19","author":"Zhang","year":"2022","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"10.1016\/j.inffus.2022.12.026_b188","series-title":"Panformer: A transformer based model for pan-sharpening","first-page":"1","author":"Zhou","year":"2022"},{"key":"10.1016\/j.inffus.2022.12.026_b189","doi-asserted-by":"crossref","DOI":"10.1109\/TGRS.2021.3089868","article-title":"VP-net: An interpretable deep network for variational pansharpening","volume":"60","author":"Tian","year":"2022","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b190","series-title":"IEEE CVPR","first-page":"1366","article-title":"Deep gradient projection networks for pan-sharpening","author":"Xu","year":"2021"},{"key":"10.1016\/j.inffus.2022.12.026_b191","doi-asserted-by":"crossref","DOI":"10.1109\/TGRS.2021.3088313","article-title":"PSCSC-net: A deep coupled convolutional sparse coding network for pansharpening","volume":"60","author":"Yin","year":"2022","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b192","series-title":"AAAI","first-page":"1","article-title":"Proximal PanNet: A model-based deep network for pansharpening","author":"Cao","year":"2022"},{"key":"10.1016\/j.inffus.2022.12.026_b193","doi-asserted-by":"crossref","DOI":"10.1109\/LGRS.2021.3077183","article-title":"Optimization algorithm unfolding deep networks of detail injection model for pansharpening","volume":"19","author":"Feng","year":"2022","journal-title":"IEEE Geosci. Remote Sens. Lett"},{"key":"10.1016\/j.inffus.2022.12.026_b194","doi-asserted-by":"crossref","DOI":"10.1109\/TGRS.2021.3139190","article-title":"Panchromatic side sparsity model-based deep unfolding network for pansharpening","volume":"60","author":"Yin","year":"2022","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"3","key":"10.1016\/j.inffus.2022.12.026_b195","doi-asserted-by":"crossref","first-page":"1247","DOI":"10.1109\/TGRS.2015.2476513","article-title":"Quantitative quality evaluation of pansharpened imagery: Consistency versus synthesis","volume":"54","author":"Palsson","year":"2016","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b196","article-title":"Align deep features for oriented object detection","volume":"60","author":"Han","year":"2022","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b197","doi-asserted-by":"crossref","first-page":"247","DOI":"10.1016\/j.inffus.2021.07.019","article-title":"Proposal-copula-based fusion of spaceborne and airborne SAR images for ship target detection","volume":"77","author":"Wang","year":"2022","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2022.12.026_b198","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1016\/j.inffus.2020.07.002","article-title":"Remote sensing image classification using subspace sensor fusion","volume":"64","author":"Rasti","year":"2020","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2022.12.026_b199","doi-asserted-by":"crossref","first-page":"116","DOI":"10.1016\/j.inffus.2019.12.013","article-title":"A dual-branch attention fusion deep network for multiresolution remote-sensing image classification","volume":"58","author":"Zhu","year":"2020","journal-title":"Inf. Fusion"},{"issue":"3","key":"10.1016\/j.inffus.2022.12.026_b200","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1109\/97.995823","article-title":"A universal image quality index","volume":"9","author":"Wang","year":"2002","journal-title":"IEEE Signal Process. Lett."},{"issue":"4","key":"10.1016\/j.inffus.2022.12.026_b201","doi-asserted-by":"crossref","first-page":"743","DOI":"10.1080\/014311698215973","article-title":"A wavelet transform method to merge landsat TM and SPOT panchromatic data?","volume":"19","author":"Zhou","year":"1998","journal-title":"Int. J. Remote Sens."},{"issue":"4","key":"10.1016\/j.inffus.2022.12.026_b202","doi-asserted-by":"crossref","first-page":"600","DOI":"10.1109\/TIP.2003.819861","article-title":"Image quality assessment: From error visibility to structural similarity","volume":"13","author":"Wang","year":"2004","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.inffus.2022.12.026_b203","unstructured":"R.H. Yuhas, A.F. Goetz, J.W. Boardman, Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm, in: Proc. Summaries 3rd Annu. JPL Airborne Geosci. Workshop, 1992, pp. 147\u2013149."},{"issue":"6","key":"10.1016\/j.inffus.2022.12.026_b204","doi-asserted-by":"crossref","first-page":"1672","DOI":"10.1109\/TGRS.2006.869923","article-title":"A new intensity-hue-saturation fusion approach to image fusion with a tradeoff parameter","volume":"44","author":"Choi","year":"2006","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b205","series-title":"IEEE IGARSS","first-page":"509","article-title":"Spectral information divergence for hyperspectral image analysis","author":"Chang","year":"1999"},{"issue":"4","key":"10.1016\/j.inffus.2022.12.026_b206","doi-asserted-by":"crossref","first-page":"313","DOI":"10.1109\/LGRS.2004.836784","article-title":"A global quality measurement of pan-sharpened multispectral imagery","volume":"1","author":"Alparone","year":"2004","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"10.1016\/j.inffus.2022.12.026_b207","unstructured":"L. Wald, Quality of high resolution synthesized images: Is there a simple criterion?, in: Proc. 3rd Conf. Fusion Earth Data, 2000, pp. 99\u2013105."},{"issue":"2","key":"10.1016\/j.inffus.2022.12.026_b208","doi-asserted-by":"crossref","first-page":"193","DOI":"10.14358\/PERS.74.2.193","article-title":"Multispectral and panchromatic data fusion assessment without reference","volume":"74","author":"Alparone","year":"2008","journal-title":"Photogramm. Eng. Remote Sens."},{"issue":"11","key":"10.1016\/j.inffus.2022.12.026_b209","doi-asserted-by":"crossref","first-page":"3880","DOI":"10.1109\/TGRS.2009.2029094","article-title":"Pansharpening quality assessment using the modulation transfer functions of instruments","volume":"47","author":"Khan","year":"2009","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b210","doi-asserted-by":"crossref","first-page":"9292","DOI":"10.3390\/rs70709292","article-title":"Joint quality measure for evaluation of pansharpening accuracy","volume":"7","author":"Palubinskas","year":"2015","journal-title":"Remote Sens."},{"issue":"8","key":"10.1016\/j.inffus.2022.12.026_b211","doi-asserted-by":"crossref","first-page":"4820","DOI":"10.1109\/TGRS.2018.2839564","article-title":"A Bayesian procedure for full-resolution quality assessment of pansharpened products","volume":"56","author":"Vivone","year":"2018","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"3","key":"10.1016\/j.inffus.2022.12.026_b212","doi-asserted-by":"crossref","first-page":"437","DOI":"10.1109\/LGRS.2018.2876629","article-title":"A combiner-based full resolution quality assessment index for pansharpening","volume":"16","author":"Vivone","year":"2019","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"12","key":"10.1016\/j.inffus.2022.12.026_b213","doi-asserted-by":"crossref","first-page":"6344","DOI":"10.1109\/TGRS.2015.2436699","article-title":"Full-scale assessment of pansharpening through polynomial fitting of multiscale measurements","volume":"53","author":"Carl","year":"2015","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2022.12.026_b214","doi-asserted-by":"crossref","first-page":"40388","DOI":"10.1109\/ACCESS.2019.2905615","article-title":"No-reference quality assessment for pansharpened images via opinion-unaware learning","volume":"7","author":"Zhou","year":"2019","journal-title":"IEEE Access"},{"issue":"12","key":"10.1016\/j.inffus.2022.12.026_b215","doi-asserted-by":"crossref","first-page":"7405","DOI":"10.1109\/TGRS.2016.2601622","article-title":"Learning rotation invariant convolutional neural networks for object detection in VHR optical remote sensing images","volume":"54","author":"Cheng","year":"2016","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"1","key":"10.1016\/j.inffus.2022.12.026_b216","doi-asserted-by":"crossref","first-page":"228","DOI":"10.1109\/TGRS.2017.2745507","article-title":"Optimal segmentation of high-resolution remote sensing image by combining superpixels with the minimum spanning tree","volume":"56","author":"Wang","year":"2018","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"1","key":"10.1016\/j.inffus.2022.12.026_b217","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1109\/LGRS.2009.2029248","article-title":"Analysis of the effects of pansharpening in change detection on VHR images","volume":"7","author":"Bovolo","year":"2010","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"10.1016\/j.inffus.2022.12.026_b218","doi-asserted-by":"crossref","first-page":"292","DOI":"10.1016\/j.inffus.2022.08.018","article-title":"Supervised-unsupervised combined deep convolutional neural networks for high-fidelity pansharpening","volume":"89","author":"Liu","year":"2023","journal-title":"Inf. Fusion"},{"issue":"3","key":"10.1016\/j.inffus.2022.12.026_b219","doi-asserted-by":"crossref","first-page":"521","DOI":"10.1109\/TPAMI.2018.2883941","article-title":"ADMM-CSNet: A deep learning approach for image compressive sensing","volume":"42","author":"Yang","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2022.12.026_b220","series-title":"IEEE CVPR","first-page":"1661","article-title":"DNU: Deep non-local unrolling for computational spectral imaging","author":"Wang","year":"2020"},{"key":"10.1016\/j.inffus.2022.12.026_b221","unstructured":"Y. Xie, Z. Xu, J. Zhang, Z. Wang, et al., Self-supervised learning of graph neural networks: A unified review, IEEE Trans. Pattern Anal. Mach. Intell. Early Access 1\u201320."},{"key":"10.1016\/j.inffus.2022.12.026_b222","unstructured":"W. Diao, F. Zhang, J. Sun, Y. Xing, K. Zhang, L. Bruzzone, ZeRGAN: Zero-reference GAN for fusion of multispectral and panchromatic images, IEEE Trans. Neural Netw. Learn. Syst. Early Access 1\u201316."}],"container-title":["Information Fusion"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1566253522002755?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1566253522002755?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,24]],"date-time":"2024-05-24T16:38:29Z","timestamp":1716568709000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1566253522002755"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,5]]},"references-count":222,"alternative-id":["S1566253522002755"],"URL":"https:\/\/doi.org\/10.1016\/j.inffus.2022.12.026","relation":{},"ISSN":["1566-2535"],"issn-type":[{"value":"1566-2535","type":"print"}],"subject":[],"published":{"date-parts":[[2023,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Panchromatic and multispectral image fusion for remote sensing and earth observation: Concepts, taxonomy, literature review, evaluation methodologies and challenges ahead","name":"articletitle","label":"Article Title"},{"value":"Information Fusion","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.inffus.2022.12.026","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 The Author(s). Published by Elsevier B.V.","name":"copyright","label":"Copyright"}]}}