{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T16:11:49Z","timestamp":1726762309801},"reference-count":49,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Fusion"],"published-print":{"date-parts":[[2021,9]]},"DOI":"10.1016\/j.inffus.2021.02.016","type":"journal-article","created":{"date-parts":[[2021,3,1]],"date-time":"2021-03-01T17:50:44Z","timestamp":1614621044000},"page":"11-21","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":21,"special_numbering":"C","title":["An analysis model of diagnosis and treatment for COVID-19 pandemic based on medical information fusion"],"prefix":"10.1016","volume":"73","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-3725-2936","authenticated-orcid":false,"given":"Fang","family":"Hu","sequence":"first","affiliation":[]},{"given":"Mingfang","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Jing","family":"Sun","sequence":"additional","affiliation":[]},{"given":"Xiong","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Jifen","family":"Liu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"5","key":"10.1016\/j.inffus.2021.02.016_b1","doi-asserted-by":"crossref","DOI":"10.1016\/j.ijantimicag.2020.105955","article-title":"The epidemiology, diagnosis and treatment of COVID-19","volume":"55","author":"Zhai","year":"2020","journal-title":"Int. J. Antimicrob. Ag."},{"key":"10.1016\/j.inffus.2021.02.016_b2","series-title":"Blockchain-federated-learning and deep learning models for COVID-19 detection using CT imaging","author":"Kumar","year":"2020"},{"issue":"10","key":"10.1016\/j.inffus.2021.02.016_b3","doi-asserted-by":"crossref","first-page":"719","DOI":"10.1038\/s41551-018-0305-z","article-title":"Artificial intelligence in healthcare","volume":"2","author":"Yu","year":"2018","journal-title":"Nat. Biomed. Eng."},{"issue":"2","key":"10.1016\/j.inffus.2021.02.016_b4","doi-asserted-by":"crossref","first-page":"94","DOI":"10.7861\/futurehosp.6-2-94","article-title":"The potential for artificial intelligence in healthcare","volume":"6","author":"Davenport","year":"2019","journal-title":"Future Healthc. J."},{"issue":"4","key":"10.1016\/j.inffus.2021.02.016_b5","doi-asserted-by":"crossref","DOI":"10.2196\/16749","article-title":"Symptom distribution regularity of insomnia: Network and spectral clustering analysis","volume":"8","author":"Hu","year":"2020","journal-title":"JMIR Med. Inform."},{"issue":"1","key":"10.1016\/j.inffus.2021.02.016_b6","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s40249-020-00646-x","article-title":"Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review","volume":"9","author":"Adhikari","year":"2020","journal-title":"Infect. Dis. Poverty"},{"key":"10.1016\/j.inffus.2021.02.016_b7","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2020.103795","article-title":"Application of deep learning technique to manage covid-19 in routine clinical practice using ct images: Results of 10 convolutional neural networks","volume":"121","author":"Ardakani","year":"2020","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.inffus.2021.02.016_b8","first-page":"1","article-title":"Potentially highly potent drugs for 2019-ncov","author":"Nguyen","year":"2020","journal-title":"BioRxiv"},{"key":"10.1016\/j.inffus.2021.02.016_b9","series-title":"Potential neutralizing antibodies discovered for novel corona virus using machine learning","author":"Magar","year":"2020"},{"key":"10.1016\/j.inffus.2021.02.016_b10","series-title":"Mapping the landscape of artificial intelligence applications against covid-19","author":"Bullock","year":"2020"},{"key":"10.1016\/j.inffus.2021.02.016_b11","doi-asserted-by":"crossref","first-page":"1037","DOI":"10.1038\/s41591-020-0916-2","article-title":"Real-time tracking of self-reported symptoms to predict potential covid-19","volume":"26","author":"Menni","year":"2020","journal-title":"Nat. Med."},{"issue":"5","key":"10.1016\/j.inffus.2021.02.016_b12","doi-asserted-by":"crossref","first-page":"848","DOI":"10.1002\/oby.22809","article-title":"A new symptom of covid-19: Loss of taste and smell","volume":"28","author":"Gautier","year":"2020","journal-title":"Obesity"},{"issue":"6","key":"10.1016\/j.inffus.2021.02.016_b13","doi-asserted-by":"crossref","first-page":"1143","DOI":"10.1136\/gutjnl-2020-320891","article-title":"Sars-cov-2 induced diarrhoea as onset symptom in patient with covid-19","volume":"69","author":"Song","year":"2020","journal-title":"Gut"},{"issue":"2","key":"10.1016\/j.inffus.2021.02.016_b14","doi-asserted-by":"crossref","first-page":"E113","DOI":"10.1148\/radiol.2020200527","article-title":"Essentials for radiologists on covid-19: an update\u2014radiology scientific expert panel","volume":"296","author":"Kanne","year":"2020","journal-title":"Radiology"},{"key":"10.1016\/j.inffus.2021.02.016_b15","doi-asserted-by":"crossref","first-page":"109581","DOI":"10.1109\/ACCESS.2020.3001973","article-title":"Artificial intelligence and covid-19: Deep learning approaches for diagnosis and treatment","volume":"8","author":"Jamshidi","year":"2020","journal-title":"IEEE Access"},{"issue":"03","key":"10.1016\/j.inffus.2021.02.016_b16","doi-asserted-by":"crossref","first-page":"737","DOI":"10.1142\/S0192415X20500378","article-title":"Covid-19: An update on the epidemiological, clinical, preventive and therapeutic evidence and guidelines of integrative chinese\u2013western medicine for the management of 2019 novel coronavirus disease","volume":"48","author":"Chan","year":"2020","journal-title":"Amer. J. Chin. Med."},{"key":"10.1016\/j.inffus.2021.02.016_b17","series-title":"Efficient estimation of word representations in vector space","author":"Mikolov","year":"2013"},{"key":"10.1016\/j.inffus.2021.02.016_b18","series-title":"Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"855","article-title":"Node2vec: Scalable feature learning for networks","author":"Grover","year":"2016"},{"issue":"2","key":"10.1016\/j.inffus.2021.02.016_b19","doi-asserted-by":"crossref","first-page":"298","DOI":"10.21136\/CMJ.1973.101168","article-title":"Algebraic connectivity of graphs","volume":"23","author":"Fiedler","year":"1973","journal-title":"Czechoslovak Math. J."},{"issue":"4","key":"10.1016\/j.inffus.2021.02.016_b20","doi-asserted-by":"crossref","first-page":"395","DOI":"10.1007\/s11222-007-9033-z","article-title":"A tutorial on spectral clustering","volume":"17","author":"Von\u00a0Luxburg","year":"2007","journal-title":"Stat. Comput."},{"issue":"1","key":"10.1016\/j.inffus.2021.02.016_b21","doi-asserted-by":"crossref","first-page":"58","DOI":"10.5582\/ddt.2020.01012","article-title":"Discovering drugs to treat coronavirus disease 2019 (covid-19)","volume":"14","author":"Dong","year":"2020","journal-title":"Drug Discov. Ther."},{"key":"10.1016\/j.inffus.2021.02.016_b22","doi-asserted-by":"crossref","first-page":"2282","DOI":"10.1056\/NEJMp2009457","article-title":"Drug evaluation during the Covid-19 pandemic","volume":"382","author":"Rome","year":"2020","journal-title":"New Engl. J. Med."},{"key":"10.1016\/j.inffus.2021.02.016_b23","article-title":"Traditional chinese medicine for COVID-19 treatment","volume":"155","author":"Ren","year":"2020","journal-title":"Pharmacol. Res."},{"issue":"7","key":"10.1016\/j.inffus.2021.02.016_b24","doi-asserted-by":"crossref","first-page":"1192","DOI":"10.1016\/j.apsb.2020.05.007","article-title":"Analysis on herbal medicines utilized for treatment of COVID-19","volume":"10","author":"Luo","year":"2020","journal-title":"Acta Pharm. Sin. B"},{"key":"10.1016\/j.inffus.2021.02.016_b25","series-title":"Covid_mtnet: covid-19 detection with multi-task deep learning approaches","author":"Alom","year":"2020"},{"key":"10.1016\/j.inffus.2021.02.016_b26","series-title":"Rapid ai development cycle for the coronavirus (covid-19) pandemic: Initial results for automated detection & patient monitoring using deep learning ct image analysis","author":"Gozes","year":"2020"},{"key":"10.1016\/j.inffus.2021.02.016_b27","article-title":"De novo design of new chemical entities (nces) for sars-cov-2 using artificial intelligence","author":"Bung","year":"2020","journal-title":"ChemRxiv"},{"key":"10.1016\/j.inffus.2021.02.016_b28","doi-asserted-by":"crossref","first-page":"155","DOI":"10.1016\/j.inffus.2019.06.021","article-title":"A multi-sensor data fusion enabled ensemble approach for medical data from body sensor networks","volume":"53","author":"Muzammal","year":"2020","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2021.02.016_b29","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1016\/j.jnca.2018.05.007","article-title":"Pea: Parallel electrocardiogram-based authentication for smart healthcare systems","volume":"117","author":"Zhang","year":"2018","journal-title":"J. Netw. Comput. Appl."},{"issue":"3","key":"10.1016\/j.inffus.2021.02.016_b30","doi-asserted-by":"crossref","DOI":"10.1016\/j.imr.2020.100465","article-title":"Herbal medicine for the management of covid-19 during the medical observation period: A review of guidelines","volume":"9","author":"Ang","year":"2020","journal-title":"Integr. Med. Res."},{"key":"10.1016\/j.inffus.2021.02.016_b31","series-title":"Representation learning on graphs: Methods and applications","author":"Hamilton","year":"2017"},{"key":"10.1016\/j.inffus.2021.02.016_b32","doi-asserted-by":"crossref","unstructured":"C. Meng, R. Cheng, S. Maniu, P. Senellart, W. Zhang, Discovering meta-paths in large heterogeneous information networks, in: Proceedings of the 24th International Conference on World Wide Web, 2015, pp. 754\u2013764.","DOI":"10.1145\/2736277.2741123"},{"issue":"10","key":"10.1016\/j.inffus.2021.02.016_b33","doi-asserted-by":"crossref","first-page":"10216","DOI":"10.1109\/TVT.2019.2936792","article-title":"Heterogeneous information network-based content caching in the internet of vehicles","volume":"68","author":"Zhang","year":"2019","journal-title":"IEEE Trans. Veh. Technol."},{"issue":"2","key":"10.1016\/j.inffus.2021.02.016_b34","doi-asserted-by":"crossref","first-page":"357","DOI":"10.1109\/TKDE.2018.2833443","article-title":"Heterogeneous information network embedding for recommendation","volume":"31","author":"Shi","year":"2018","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"2","key":"10.1016\/j.inffus.2021.02.016_b35","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1137\/S003614450342480","article-title":"The structure and function of complex networks","volume":"45","author":"Newman","year":"2003","journal-title":"SIAM Rev."},{"issue":"9","key":"10.1016\/j.inffus.2021.02.016_b36","doi-asserted-by":"crossref","first-page":"813","DOI":"10.1016\/j.physleta.2018.12.005","article-title":"Computing communities in complex networks using the dirichlet processing gaussian mixture model with spectral clustering","volume":"383","author":"Hu","year":"2019","journal-title":"Phys. Lett. A"},{"issue":"03","key":"10.1016\/j.inffus.2021.02.016_b37","doi-asserted-by":"crossref","DOI":"10.1142\/S0217984914502686","article-title":"Multi-index algorithm of identifying important nodes in complex networks based on linear discriminant analysis","volume":"29","author":"Hu","year":"2015","journal-title":"Modern Phys. Lett. B"},{"issue":"3","key":"10.1016\/j.inffus.2021.02.016_b38","doi-asserted-by":"crossref","first-page":"215","DOI":"10.1016\/0378-8733(78)90021-7","article-title":"Centrality in social networks conceptual clarification","volume":"1","author":"Freeman","year":"1978","journal-title":"Social Networks"},{"issue":"4","key":"10.1016\/j.inffus.2021.02.016_b39","doi-asserted-by":"crossref","first-page":"555","DOI":"10.1016\/j.socnet.2007.04.002","article-title":"Some unique properties of eigenvector centrality","volume":"29","author":"Bonacich","year":"2007","journal-title":"Social Networks"},{"key":"10.1016\/j.inffus.2021.02.016_b40","series-title":"Annual Symposium on Theoretical Aspects of Computer Science","first-page":"533","article-title":"Centrality measures based on current flow","author":"Brandes","year":"2005"},{"issue":"4","key":"10.1016\/j.inffus.2021.02.016_b41","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/1734213.1734219","article-title":"Routing betweenness centrality","volume":"57","author":"Dolev","year":"2010","journal-title":"J. ACM"},{"key":"10.1016\/j.inffus.2021.02.016_b42","article-title":"Community detection in complex networks using node2vec with spectral clustering","volume":"545","author":"Hu","year":"2019","journal-title":"Physica A"},{"issue":"3","key":"10.1016\/j.inffus.2021.02.016_b43","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevE.74.036104","article-title":"Finding community structure in networks using the eigenvectors of matrices","volume":"74","author":"Newman","year":"2006","journal-title":"Phys. Rev. E"},{"key":"10.1016\/j.inffus.2021.02.016_b44","series-title":"Long-tail relation extraction via knowledge graph embeddings and graph convolution networks","author":"Zhang","year":"2019"},{"issue":"23","key":"10.1016\/j.inffus.2021.02.016_b45","doi-asserted-by":"crossref","first-page":"8577","DOI":"10.1073\/pnas.0601602103","article-title":"Modularity and community structure in networks","volume":"103","author":"Newman","year":"2006","journal-title":"Proc. Natl. Acad. Sci."},{"issue":"09","key":"10.1016\/j.inffus.2021.02.016_b46","doi-asserted-by":"crossref","first-page":"P09008","DOI":"10.1088\/1742-5468\/2005\/09\/P09008","article-title":"Comparing community structure identification","volume":"2005","author":"Danon","year":"2005","journal-title":"J. Stat. Mech. Theory Exp."},{"issue":"383","key":"10.1016\/j.inffus.2021.02.016_b47","doi-asserted-by":"crossref","first-page":"553","DOI":"10.1080\/01621459.1983.10478008","article-title":"A method for comparing two hierarchical clusterings","volume":"78","author":"Fowlkes","year":"1983","journal-title":"J. Amer. Statist. Assoc."},{"key":"10.1016\/j.inffus.2021.02.016_b48","series-title":"International Symposium on Biometrics and Security Technologies","first-page":"193","article-title":"Comparative study of k-means and mini batch k-means clustering algorithms in android malware detection using network traffic analysis","author":"Feizollah","year":"2014"},{"issue":"1","key":"10.1016\/j.inffus.2021.02.016_b49","first-page":"4635","article-title":"Adjusting for chance clustering comparison measures","volume":"17","author":"Romano","year":"2016","journal-title":"J. Mach. Learn. Res."}],"container-title":["Information Fusion"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1566253521000415?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1566253521000415?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,4,15]],"date-time":"2023-04-15T07:52:50Z","timestamp":1681545170000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1566253521000415"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,9]]},"references-count":49,"alternative-id":["S1566253521000415"],"URL":"https:\/\/doi.org\/10.1016\/j.inffus.2021.02.016","relation":{},"ISSN":["1566-2535"],"issn-type":[{"value":"1566-2535","type":"print"}],"subject":[],"published":{"date-parts":[[2021,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"An analysis model of diagnosis and treatment for COVID-19 pandemic based on medical information fusion","name":"articletitle","label":"Article Title"},{"value":"Information Fusion","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.inffus.2021.02.016","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Published by Elsevier B.V.","name":"copyright","label":"Copyright"}]}}