{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,14]],"date-time":"2025-04-14T21:53:15Z","timestamp":1744667595585,"version":"3.37.3"},"reference-count":523,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100017691","name":"Guangxi Key Research and Development Program","doi-asserted-by":"publisher","award":["2020BAB113"],"id":[{"id":"10.13039\/501100017691","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100019091","name":"Key Research and Development Program of Hunan Province of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100019091","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61773295"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003819","name":"Natural Science Foundation of Hubei Province","doi-asserted-by":"publisher","award":["2019CFA037"],"id":[{"id":"10.13039\/501100003819","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Fusion"],"published-print":{"date-parts":[[2021,9]]},"DOI":"10.1016\/j.inffus.2021.02.012","type":"journal-article","created":{"date-parts":[[2021,3,1]],"date-time":"2021-03-01T07:03:00Z","timestamp":1614582180000},"page":"22-71","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":343,"special_numbering":"C","title":["A review of multimodal image matching: Methods and applications"],"prefix":"10.1016","volume":"73","author":[{"given":"Xingyu","family":"Jiang","sequence":"first","affiliation":[]},{"given":"Jiayi","family":"Ma","sequence":"additional","affiliation":[]},{"given":"Guobao","family":"Xiao","sequence":"additional","affiliation":[]},{"given":"Zhenfeng","family":"Shao","sequence":"additional","affiliation":[]},{"given":"Xiaojie","family":"Guo","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"11","key":"10.1016\/j.inffus.2021.02.012_b1","doi-asserted-by":"crossref","first-page":"977","DOI":"10.1016\/S0262-8856(03)00137-9","article-title":"Image registration methods: a survey","volume":"21","author":"Zitova","year":"2003","journal-title":"Image Vis. Comput."},{"key":"10.1016\/j.inffus.2021.02.012_b2","first-page":"1","article-title":"Image matching from handcrafted to deep features: A survey","author":"Ma","year":"2020","journal-title":"Int. J. Comput. Vis."},{"key":"10.1016\/j.inffus.2021.02.012_b3","series-title":"Proceedings of the European Conference on Computer Vision","first-page":"724","article-title":"Evaluating local features for day-night matching","author":"Zhou","year":"2016"},{"issue":"1","key":"10.1016\/j.inffus.2021.02.012_b4","doi-asserted-by":"crossref","first-page":"256","DOI":"10.1109\/TMM.2018.2839885","article-title":"Learning-based tone mapping operator for efficient image matching","volume":"21","author":"Rana","year":"2018","journal-title":"IEEE Trans. Multimed."},{"key":"10.1016\/j.inffus.2021.02.012_b5","doi-asserted-by":"crossref","unstructured":"Z. Luo, T. Shen, L. Zhou, J. Zhang, Y. Yao, S. Li, T. Fang, L. Quan, ContextDesc: Local descriptor augmentation with cross-modality context, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 2527\u20132536.","DOI":"10.1109\/CVPR.2019.00263"},{"key":"10.1016\/j.inffus.2021.02.012_b6","doi-asserted-by":"crossref","first-page":"5216","DOI":"10.1109\/TIP.2020.2980210","article-title":"Cross-weather image alignment via latent generative model with intensity consistency","volume":"29","author":"Zhou","year":"2020","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.inffus.2021.02.012_b7","doi-asserted-by":"crossref","unstructured":"T. Naseer, L. Spinello, W. Burgard, C. Stachniss, Robust visual robot localization across seasons using network flows, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2014, pp. 2564\u20132570.","DOI":"10.1609\/aaai.v28i1.9057"},{"key":"10.1016\/j.inffus.2021.02.012_b8","doi-asserted-by":"crossref","unstructured":"A. Shrivastava, T. Malisiewicz, A. Gupta, A.A. Efros, Data-driven visual similarity for cross-domain image matching, in: Proceedings of the 2011 SIGGRAPH Asia Conference, 2011, pp. 1\u201310.","DOI":"10.1145\/2024156.2024188"},{"issue":"2","key":"10.1016\/j.inffus.2021.02.012_b9","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/2591009","article-title":"Painting-to-3D model alignment via discriminative visual elements","volume":"33","author":"Aubry","year":"2014","journal-title":"ACM Trans. Graph."},{"key":"10.1016\/j.inffus.2021.02.012_b10","doi-asserted-by":"crossref","unstructured":"X. Wei, T. Zhang, Y. Li, Y. Zhang, F. Wu, Multi-modality cross attention network for image and sentence matching, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020, pp. 10941\u201310950.","DOI":"10.1109\/CVPR42600.2020.01095"},{"key":"10.1016\/j.inffus.2021.02.012_b11","doi-asserted-by":"crossref","unstructured":"X. Wang, Q. Huang, A. Celikyilmaz, J. Gao, D. Shen, Y.-F. Wang, W.Y. Wang, L. Zhang, Reinforced cross-modal matching and self-supervised imitation learning for vision-language navigation in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 6629\u20136638.","DOI":"10.1109\/CVPR.2019.00679"},{"key":"10.1016\/j.inffus.2021.02.012_b12","doi-asserted-by":"crossref","unstructured":"C. Liu, Z. Mao, T. Zhang, H. Xie, B. Wang, Y. Zhang, Graph structured network for image-text matching, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020, pp. 10921\u201310930.","DOI":"10.1109\/CVPR42600.2020.01093"},{"key":"10.1016\/j.inffus.2021.02.012_b13","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1016\/j.inffus.2018.02.004","article-title":"Infrared and visible image fusion methods and applications: A survey","volume":"45","author":"Ma","year":"2019","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2021.02.012_b14","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1016\/j.inffus.2013.12.002","article-title":"Medical image fusion: A survey of the state of the art","volume":"19","author":"James","year":"2014","journal-title":"Inf. Fusion"},{"issue":"7","key":"10.1016\/j.inffus.2021.02.012_b15","doi-asserted-by":"crossref","first-page":"1026","DOI":"10.1109\/LGRS.2019.2892432","article-title":"A post-classification comparison method for SAR and optical images change detection","volume":"16","author":"Wan","year":"2019","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"10.1016\/j.inffus.2021.02.012_b16","series-title":"Proceedings of the International Conference on Robotics and Automation Engineering","first-page":"126","article-title":"Image registration between visible and infrared images for electrical equipment inspection robots based on quadrilateral features","author":"Chen","year":"2017"},{"issue":"9","key":"10.1016\/j.inffus.2021.02.012_b17","doi-asserted-by":"crossref","first-page":"904","DOI":"10.3390\/rs9090904","article-title":"A small UAV based multi-temporal image registration for dynamic agricultural terrace monitoring","volume":"9","author":"Wei","year":"2017","journal-title":"Remote Sens."},{"key":"10.1016\/j.inffus.2021.02.012_b18","doi-asserted-by":"crossref","first-page":"94","DOI":"10.1016\/j.inffus.2020.10.008","article-title":"Image retrieval from remote sensing big data: A survey","volume":"67","author":"Li","year":"2021","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2021.02.012_b19","doi-asserted-by":"crossref","unstructured":"A. Wu, W.-S. Zheng, H.-X. Yu, S. Gong, J. Lai, Rgb-infrared cross-modality person re-identification, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 5380\u20135389.","DOI":"10.1109\/ICCV.2017.575"},{"key":"10.1016\/j.inffus.2021.02.012_b20","doi-asserted-by":"crossref","first-page":"579","DOI":"10.1109\/TIP.2019.2928126","article-title":"Learning modality-specific representations for visible-infrared person re-identification","volume":"29","author":"Feng","year":"2019","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.inffus.2021.02.012_b21","doi-asserted-by":"crossref","unstructured":"G. Wang, T. Zhang, J. Cheng, S. Liu, Y. Yang, Z. Hou, Rgb-infrared cross-modality person reidentification via joint pixel and feature alignment, in: Proceedings of the IEEE International Conference on Computer Vision, 2019, pp. 3623\u20133632.","DOI":"10.1109\/ICCV.2019.00372"},{"key":"10.1016\/j.inffus.2021.02.012_b22","doi-asserted-by":"crossref","unstructured":"S. Choi, S. Lee, Y. Kim, T. Kim, C. Kim, Hi-cmd: Hierarchical cross-modality disentanglement for visible-infrared person re-identification, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020, pp. 10257\u201310266.","DOI":"10.1109\/CVPR42600.2020.01027"},{"key":"10.1016\/j.inffus.2021.02.012_b23","doi-asserted-by":"crossref","first-page":"19199","DOI":"10.1109\/ACCESS.2019.2895905","article-title":"Visible\/infrared combined 3D reconstruction scheme based on nonrigid registration of multi-modality images with mixed features","volume":"7","author":"Ma","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.inffus.2021.02.012_b24","series-title":"Proceedings of the\u00a0IEEE International Conference on Robotics and Automation","first-page":"1643","article-title":"Seqslam: Visual route-based navigation for sunny summer days and stormy winter nights","author":"Milford","year":"2012"},{"key":"10.1016\/j.inffus.2021.02.012_b25","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1016\/j.isprsjprs.2017.08.006","article-title":"Camera pose refinement by matching uncertain 3D building models with thermal infrared image sequences for high quality texture extraction","volume":"132","author":"Iwaszczuk","year":"2017","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"issue":"2","key":"10.1016\/j.inffus.2021.02.012_b26","doi-asserted-by":"crossref","first-page":"101","DOI":"10.3857\/roj.2017.00325","article-title":"Deformable image registration in radiation therapy","volume":"35","author":"Oh","year":"2017","journal-title":"Radiat. Oncol. J."},{"issue":"22","key":"10.1016\/j.inffus.2021.02.012_b27","doi-asserted-by":"crossref","first-page":"R323","DOI":"10.1088\/0031-9155\/60\/22\/R323","article-title":"Radiotherapy planning using MRI","volume":"60","author":"Schmidt","year":"2015","journal-title":"Phys. Med. Biol."},{"issue":"1","key":"10.1016\/j.inffus.2021.02.012_b28","doi-asserted-by":"crossref","first-page":"8","DOI":"10.1007\/s00138-020-01060-x","article-title":"Deep learning in medical image registration: a survey","volume":"31","author":"Haskins","year":"2020","journal-title":"Mach. Vis. Appl."},{"issue":"7","key":"10.1016\/j.inffus.2021.02.012_b29","doi-asserted-by":"crossref","first-page":"1153","DOI":"10.1109\/TMI.2013.2265603","article-title":"Deformable medical image registration: A survey","volume":"32","author":"Sotiras","year":"2013","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.inffus.2021.02.012_b30","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6560\/ab843e","article-title":"Deep learning in medical image registration: a review","author":"Fu","year":"2020","journal-title":"Phys. Med. Biol."},{"issue":"3","key":"10.1016\/j.inffus.2021.02.012_b31","doi-asserted-by":"crossref","first-page":"642","DOI":"10.1016\/j.media.2010.03.005","article-title":"A review of 3D\/2d registration methods for image-guided interventions","volume":"16","author":"Markelj","year":"2012","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.inffus.2021.02.012_b32","doi-asserted-by":"crossref","first-page":"101","DOI":"10.1016\/j.media.2017.04.010","article-title":"Slice-to-volume medical image registration: A survey","volume":"39","author":"Ferrante","year":"2017","journal-title":"Med. Image Anal."},{"issue":"1\u20132","key":"10.1016\/j.inffus.2021.02.012_b33","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1007\/s11517-005-0016-y","article-title":"Breast image registration techniques: a survey","volume":"44","author":"Guo","year":"2006","journal-title":"Med. Biol. Eng. Comput."},{"issue":"2","key":"10.1016\/j.inffus.2021.02.012_b34","doi-asserted-by":"crossref","first-page":"R1","DOI":"10.1088\/0031-9155\/61\/2\/R1","article-title":"A review of biomechanically informed breast image registration","volume":"61","author":"Hipwell","year":"2016","journal-title":"Phys. Med. Biol."},{"issue":"4","key":"10.1016\/j.inffus.2021.02.012_b35","doi-asserted-by":"crossref","first-page":"427","DOI":"10.1109\/TMI.2007.892508","article-title":"Brain functional localization: a survey of image registration techniques","volume":"26","author":"Gholipour","year":"2007","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.inffus.2021.02.012_b36","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.media.2016.05.005","article-title":"Vascular image registration techniques: A living review","volume":"35","author":"Matl","year":"2017","journal-title":"Med. Image Anal."},{"issue":"2","key":"10.1016\/j.inffus.2021.02.012_b37","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1109\/MSP.2009.935387","article-title":"A survey of medical image registration on multicore and the GPU","volume":"27","author":"Shams","year":"2010","journal-title":"IEEE Signal Process. Mag."},{"issue":"3","key":"10.1016\/j.inffus.2021.02.012_b38","first-page":"188","article-title":"A survey of GPU-based medical image computing techniques","volume":"2","author":"Shi","year":"2012","journal-title":"Quant. Imaging Med. Surg."},{"key":"10.1016\/j.inffus.2021.02.012_b39","doi-asserted-by":"crossref","unstructured":"S. Dawn, V. Saxena, B. Sharma, Remote sensing image registration techniques: A survey, in: Proceedings of the International Conference on Image and Signal Processing, 2010, pp. 103\u2013112.","DOI":"10.1007\/978-3-642-13681-8_13"},{"key":"10.1016\/j.inffus.2021.02.012_b40","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1016\/j.isprsjprs.2017.05.007","article-title":"Feature matching evaluation for multimodal correspondence","volume":"129","author":"Gesto-Diaz","year":"2017","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.inffus.2021.02.012_b41","series-title":"Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"1115","article-title":"The correlation ratio as a new similarity measure for multimodal image registration","author":"Roche","year":"1998"},{"issue":"8","key":"10.1016\/j.inffus.2021.02.012_b42","doi-asserted-by":"crossref","first-page":"1849","DOI":"10.1109\/TGRS.2002.802501","article-title":"An automated parallel image registration technique based on the correlation of wavelet features","volume":"40","author":"Le\u00a0Moigne","year":"2002","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"1","key":"10.1016\/j.inffus.2021.02.012_b43","doi-asserted-by":"crossref","first-page":"26","DOI":"10.1016\/j.media.2007.06.004","article-title":"Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain","volume":"12","author":"Avants","year":"2008","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.inffus.2021.02.012_b44","series-title":"Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Vol. 2","first-page":"II","article-title":"Image matching by normalized cross-correlation","author":"Zhao","year":"2006"},{"issue":"6","key":"10.1016\/j.inffus.2021.02.012_b45","doi-asserted-by":"crossref","first-page":"1347","DOI":"10.1109\/TUFFC.2010.1554","article-title":"A fast normalized cross-correlation calculation method for motion estimation","volume":"57","author":"Luo","year":"2010","journal-title":"IEEE Trans. Ultrason. Ferroelectr. Freq. Control"},{"issue":"1","key":"10.1016\/j.inffus.2021.02.012_b46","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1016\/S1361-8415(01)80004-9","article-title":"Multi-modal volume registration by maximization of mutual information","volume":"1","author":"Wells\u00a0III","year":"1996","journal-title":"Med. Image Anal."},{"issue":"2","key":"10.1016\/j.inffus.2021.02.012_b47","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1023\/A:1007958904918","article-title":"Alignment by maximization of mutual information","volume":"24","author":"Viola","year":"1997","journal-title":"Int. J. Comput. Vis."},{"issue":"1","key":"10.1016\/j.inffus.2021.02.012_b48","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1016\/S0031-3203(98)00091-0","article-title":"An overlap invariant entropy measure of 3D medical image alignment","volume":"32","author":"Studholme","year":"1999","journal-title":"Pattern Recognit."},{"issue":"8","key":"10.1016\/j.inffus.2021.02.012_b49","doi-asserted-by":"crossref","first-page":"843","DOI":"10.1109\/42.938252","article-title":"A bound on mutual information for image registration","volume":"20","author":"Skouson","year":"2001","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"1","key":"10.1016\/j.inffus.2021.02.012_b50","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1109\/TMI.2009.2021843","article-title":"Nonrigid image registration using conditional mutual information","volume":"29","author":"Loeckx","year":"2009","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"5","key":"10.1016\/j.inffus.2021.02.012_b51","doi-asserted-by":"crossref","first-page":"626","DOI":"10.1109\/TMI.2006.872745","article-title":"Deformation-based mapping of volume change from serial brain MRI in the presence of local tissue contrast change","volume":"25","author":"Studholme","year":"2006","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.inffus.2021.02.012_b52","series-title":"Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"525","article-title":"Multi-modal image registration by minimising kullback-leibler distance","author":"Chung","year":"2002"},{"key":"10.1016\/j.inffus.2021.02.012_b53","series-title":"Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"255","article-title":"Learning based non-rigid multi-modal image registration using Kullback-Leibler divergence","author":"Guetter","year":"2005"},{"key":"10.1016\/j.inffus.2021.02.012_b54","series-title":"International Workshop on Medical Imaging and Virtual Reality","first-page":"228","article-title":"Learning-based 2d\/3D rigid registration using jensen-Shannon divergence for image-guided surgery","author":"Liao","year":"2006"},{"year":"1998","series-title":"Image matching as a diffusion process: an analogy with maxwell\u2019s demons","author":"Thirion","key":"10.1016\/j.inffus.2021.02.012_b55"},{"issue":"2","key":"10.1016\/j.inffus.2021.02.012_b56","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1007\/s10851-005-3621-3","article-title":"A full curvature based algorithm for image registration","volume":"24","author":"Henn","year":"2006","journal-title":"J. Math. Imaging Vision"},{"key":"10.1016\/j.inffus.2021.02.012_b57","series-title":"International Symposium on Visual Computing","first-page":"1101","article-title":"Approximated curvature penalty in non-rigid registration using pairwise mrfs","author":"Glocker","year":"2009"},{"issue":"10","key":"10.1016\/j.inffus.2021.02.012_b58","doi-asserted-by":"crossref","first-page":"1435","DOI":"10.1109\/83.536892","article-title":"Deformable templates using large deformation kinematics","volume":"5","author":"Christensen","year":"1996","journal-title":"IEEE Trans. Image Process."},{"issue":"3","key":"10.1016\/j.inffus.2021.02.012_b59","doi-asserted-by":"crossref","first-page":"213","DOI":"10.1023\/A:1008001603737","article-title":"Diffeomorphisms groups and pattern matching in image analysis","volume":"28","author":"Trouv\u00e9","year":"1998","journal-title":"Int. J. Comput. Vis."},{"issue":"8","key":"10.1016\/j.inffus.2021.02.012_b60","doi-asserted-by":"crossref","first-page":"1357","DOI":"10.1109\/83.855431","article-title":"Landmark matching via large deformation diffeomorphisms","volume":"9","author":"Joshi","year":"2000","journal-title":"IEEE Trans. Image Process."},{"issue":"8","key":"10.1016\/j.inffus.2021.02.012_b61","doi-asserted-by":"crossref","first-page":"1006","DOI":"10.1109\/TMI.2004.831228","article-title":"Constructing diffeomorphic representations for the groupwise analysis of nonrigid registrations of medical images","volume":"23","author":"Marsland","year":"2004","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"3","key":"10.1016\/j.inffus.2021.02.012_b62","doi-asserted-by":"crossref","first-page":"529","DOI":"10.1109\/TIP.2005.863114","article-title":"A comparative study of transformation functions for nonrigid image registration","volume":"15","author":"Zagorchev","year":"2006","journal-title":"IEEE Trans. Image Process."},{"issue":"6","key":"10.1016\/j.inffus.2021.02.012_b63","doi-asserted-by":"crossref","first-page":"567","DOI":"10.1109\/34.24792","article-title":"Principal warps: Thin-plate splines and the decomposition of deformations","volume":"11","author":"Bookstein","year":"1989","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2021.02.012_b64","series-title":"Biennial International Conference on Information Processing in Medical Imaging","first-page":"326","article-title":"Thin-plate splines and the atlas problem for biomedical images","author":"Bookstein","year":"1991"},{"key":"10.1016\/j.inffus.2021.02.012_b65","doi-asserted-by":"crossref","unstructured":"T.W. Sederberg, S.R. Parry, Free-form deformation of solid geometric models, in: Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, 1986, pp. 151\u2013160.","DOI":"10.1145\/15886.15903"},{"issue":"6","key":"10.1016\/j.inffus.2021.02.012_b66","doi-asserted-by":"crossref","first-page":"727","DOI":"10.1109\/42.650870","article-title":"Automatic registration and alignment on a template of cardiac stress and rest reoriented SPECT images","volume":"16","author":"Declerck","year":"1997","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"8","key":"10.1016\/j.inffus.2021.02.012_b67","doi-asserted-by":"crossref","first-page":"712","DOI":"10.1109\/42.796284","article-title":"Nonrigid registration using free-form deformations: application to breast MR images","volume":"18","author":"Rueckert","year":"1999","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"11","key":"10.1016\/j.inffus.2021.02.012_b68","doi-asserted-by":"crossref","first-page":"1427","DOI":"10.1109\/TIP.2003.813139","article-title":"Fast parametric elastic image registration","volume":"12","author":"Kybic","year":"2003","journal-title":"IEEE Trans. Image Process."},{"issue":"2","key":"10.1016\/j.inffus.2021.02.012_b69","doi-asserted-by":"crossref","first-page":"271","DOI":"10.1109\/TMI.2007.905820","article-title":"A fast nonrigid image registration with constraints on the Jacobian using large scale constrained optimization","volume":"27","author":"Sdika","year":"2008","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"3","key":"10.1016\/j.inffus.2021.02.012_b70","doi-asserted-by":"crossref","first-page":"317","DOI":"10.1109\/42.585766","article-title":"A physics-based coordinate transformation for 3-d image matching","volume":"16","author":"Davis","year":"1997","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"7","key":"10.1016\/j.inffus.2021.02.012_b71","doi-asserted-by":"crossref","first-page":"568","DOI":"10.1109\/42.932742","article-title":"Consistent image registration","volume":"20","author":"Christensen","year":"2001","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"4","key":"10.1016\/j.inffus.2021.02.012_b72","doi-asserted-by":"crossref","first-page":"254","DOI":"10.1002\/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO;2-G","article-title":"Nonlinear spatial normalization using basis functions","volume":"7","author":"Ashburner","year":"1999","journal-title":"Human Brain Mapp."},{"issue":"5","key":"10.1016\/j.inffus.2021.02.012_b73","doi-asserted-by":"crossref","first-page":"388","DOI":"10.1109\/42.925292","article-title":"Hierarchical estimation of a dense deformation field for 3-d robust registration","volume":"20","author":"Hellier","year":"2001","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"6","key":"10.1016\/j.inffus.2021.02.012_b74","doi-asserted-by":"crossref","first-page":"507","DOI":"10.1016\/j.media.2005.04.001","article-title":"Polyrigid and polyaffine transformations: a novel geometrical tool to deal with non-rigid deformations\u2013application to the registration of histological slices","volume":"9","author":"Arsigny","year":"2005","journal-title":"Med. Image Anal."},{"issue":"1","key":"10.1016\/j.inffus.2021.02.012_b75","doi-asserted-by":"crossref","first-page":"S40","DOI":"10.1016\/j.neuroimage.2008.10.050","article-title":"Evolutions equations in computational anatomy","volume":"45","author":"Younes","year":"2009","journal-title":"NeuroImage"},{"issue":"2","key":"10.1016\/j.inffus.2021.02.012_b76","first-page":"8","article-title":"Survey of medical image registration","volume":"1","author":"Mani","year":"2013","journal-title":"J. Biomed. Eng. Technol."},{"year":"2015","series-title":"Flows in Networks","author":"Ford\u00a0Jr","key":"10.1016\/j.inffus.2021.02.012_b77"},{"year":"2014","series-title":"Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference","author":"Pearl","key":"10.1016\/j.inffus.2021.02.012_b78"},{"issue":"8","key":"10.1016\/j.inffus.2021.02.012_b79","doi-asserted-by":"crossref","first-page":"1436","DOI":"10.1109\/TPAMI.2007.1061","article-title":"Approximate labeling via graph cuts based on linear programming","volume":"29","author":"Komodakis","year":"2007","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"1","key":"10.1016\/j.inffus.2021.02.012_b80","doi-asserted-by":"crossref","first-page":"14","DOI":"10.1016\/j.cviu.2008.06.007","article-title":"Performance vs computational efficiency for optimizing single and dynamic MRFs: Setting the state of the art with primal-dual strategies","volume":"112","author":"Komodakis","year":"2008","journal-title":"Comput. Vis. Image Underst."},{"issue":"11","key":"10.1016\/j.inffus.2021.02.012_b81","doi-asserted-by":"crossref","first-page":"1421","DOI":"10.1109\/TMI.2002.803111","article-title":"HAMMER: hierarchical attribute matching mechanism for elastic registration","volume":"21","author":"Shen","year":"2002","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"4","key":"10.1016\/j.inffus.2021.02.012_b82","doi-asserted-by":"crossref","first-page":"1790","DOI":"10.1016\/j.neuroimage.2004.04.020","article-title":"Deformable registration of cortical structures via hybrid volumetric and surface warping","volume":"22","author":"Liu","year":"2004","journal-title":"NeuroImage"},{"issue":"3","key":"10.1016\/j.inffus.2021.02.012_b83","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1109\/TEVC.2004.826068","article-title":"An approach to multimodal biomedical image registration utilizing particle swarm optimization","volume":"8","author":"Wachowiak","year":"2004","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"9","key":"10.1016\/j.inffus.2021.02.012_b84","doi-asserted-by":"crossref","first-page":"1340","DOI":"10.1016\/j.cviu.2011.05.006","article-title":"A comparative study of state-of-the-art evolutionary image registration methods for 3D modeling","volume":"115","author":"Santamar\u00eda","year":"2011","journal-title":"Comput. Vis. Image Underst."},{"key":"10.1016\/j.inffus.2021.02.012_b85","series-title":"Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"649","article-title":"Unsupervised deep feature learning for deformable registration of mr brain images","author":"Wu","year":"2013"},{"issue":"7","key":"10.1016\/j.inffus.2021.02.012_b86","doi-asserted-by":"crossref","first-page":"1505","DOI":"10.1109\/TBME.2015.2496253","article-title":"Scalable high-performance image registration framework by unsupervised deep feature representations learning","volume":"63","author":"Wu","year":"2015","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"3","key":"10.1016\/j.inffus.2021.02.012_b87","doi-asserted-by":"crossref","first-page":"248","DOI":"10.1080\/21681163.2015.1135299","article-title":"Deep similarity learning for multimodal medical images","volume":"6","author":"Cheng","year":"2018","journal-title":"Comput. Methods Biomech. Biomed. Eng. Imaging Vis."},{"issue":"3","key":"10.1016\/j.inffus.2021.02.012_b88","doi-asserted-by":"crossref","first-page":"417","DOI":"10.1007\/s11548-018-1875-7","article-title":"Learning deep similarity metric for 3D MR\u2013TRUS image registration","volume":"14","author":"Haskins","year":"2019","journal-title":"Int. J. Comput. Assist. Radiol. Surg."},{"key":"10.1016\/j.inffus.2021.02.012_b89","series-title":"Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"10","article-title":"A deep metric for multimodal registration","author":"Simonovsky","year":"2016"},{"issue":"1","key":"10.1016\/j.inffus.2021.02.012_b90","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1007\/s11548-018-1888-2","article-title":"Combining MRF-based deformable registration and deep binary 3D-cnn descriptors for large lung motion estimation in COPD patients","volume":"14","author":"Blendowski","year":"2019","journal-title":"Int. J. Comput. Assist. Radiol. Surg."},{"year":"2016","series-title":"An artificial agent for robust image registration","author":"Liao","key":"10.1016\/j.inffus.2021.02.012_b91"},{"key":"10.1016\/j.inffus.2021.02.012_b92","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"240","article-title":"Multimodal image registration with deep context reinforcement learning","author":"Ma","year":"2017"},{"key":"10.1016\/j.inffus.2021.02.012_b93","doi-asserted-by":"crossref","unstructured":"J. Krebs, T. Mansi, H. Delingette, L. Zhang, F.C. Ghesu, S. Miao, A.K. Maier, N. Ayache, R. Liao, A. Kamen, Robust non-rigid registration through agent-based action learning, in: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2017, pp. 344\u2013352.","DOI":"10.1007\/978-3-319-66182-7_40"},{"year":"2017","series-title":"Dilated fcn for multi-agent 2d\/3d medical image registration","author":"Miao","key":"10.1016\/j.inffus.2021.02.012_b94"},{"key":"10.1016\/j.inffus.2021.02.012_b95","series-title":"Deep Learning and Data Labeling for Medical Applications","first-page":"48","article-title":"Fast predictive image registration","author":"Yang","year":"2016"},{"key":"10.1016\/j.inffus.2021.02.012_b96","series-title":"Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"266","article-title":"Svf-net: Learning deformable image registration using shape matching","author":"Roh\u00e9","year":"2017"},{"year":"2018","series-title":"Real-time deep registration with geodesic loss","author":"Salehi","key":"10.1016\/j.inffus.2021.02.012_b97"},{"key":"10.1016\/j.inffus.2021.02.012_b98","series-title":"BIOIMAGING","first-page":"140","article-title":"An automated method for generating training sets for deep learning based image registration","author":"Ito","year":"2018"},{"issue":"2","key":"10.1016\/j.inffus.2021.02.012_b99","doi-asserted-by":"crossref","DOI":"10.1117\/1.JMI.5.2.021204","article-title":"Pairwise domain adaptation module for CNN-based 2-d\/3-d registration","volume":"5","author":"Zheng","year":"2018","journal-title":"J. Med. Imaging"},{"key":"10.1016\/j.inffus.2021.02.012_b100","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"223","article-title":"Training CNNs for image registration from few samples with model-based data augmentation","author":"Uzunova","year":"2017"},{"year":"2017","series-title":"Uncertainty quantification, image synthesis and deformation prediction for image registration","author":"Yang","key":"10.1016\/j.inffus.2021.02.012_b101"},{"issue":"6","key":"10.1016\/j.inffus.2021.02.012_b102","doi-asserted-by":"crossref","first-page":"1348","DOI":"10.1109\/TMI.2018.2827462","article-title":"Low-dose CT image denoising using a generative adversarial network with wasserstein distance and perceptual loss","volume":"37","author":"Yang","year":"2018","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.inffus.2021.02.012_b103","series-title":"Bildverarbeitung F\u00fcr Die Medizin 2019","first-page":"309","article-title":"Enhancing label-driven deep deformable image registration with local distance metrics for state-of-the-art cardiac motion tracking","author":"Hering","year":"2019"},{"key":"10.1016\/j.inffus.2021.02.012_b104","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2019.101545","article-title":"Adversarial learning for mono-or multi-modal registration","volume":"58","author":"Fan","year":"2019","journal-title":"Med. Image Anal."},{"year":"2019","series-title":"Deep learning in medical image registration: A survey","author":"Haskins","key":"10.1016\/j.inffus.2021.02.012_b105"},{"key":"10.1016\/j.inffus.2021.02.012_b106","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"774","article-title":"Adversarial deformation regularization for training image registration neural networks","author":"Hu","year":"2018"},{"key":"10.1016\/j.inffus.2021.02.012_b107","series-title":"Advances in Neural Information Processing Systems","first-page":"2672","article-title":"Generative adversarial nets","author":"Goodfellow","year":"2014"},{"key":"10.1016\/j.inffus.2021.02.012_b108","series-title":"International Workshop on Machine Learning in Medical Imaging","first-page":"197","article-title":"Adversarial image registration with application for MR and TRUS image fusion","author":"Yan","year":"2018"},{"key":"10.1016\/j.inffus.2021.02.012_b109","series-title":"Proceedings of the International Conference on Information Processing in Medical Imaging","first-page":"249","article-title":"Unsupervised deformable registration for multi-modal images via disentangled representations","author":"Qin","year":"2019"},{"key":"10.1016\/j.inffus.2021.02.012_b110","series-title":"Advances in Neural Information Processing Systems","first-page":"2017","article-title":"Spatial transformer networks","author":"Jaderberg","year":"2015"},{"key":"10.1016\/j.inffus.2021.02.012_b111","series-title":"International Workshop on Machine Learning in Medical Imaging","first-page":"55","article-title":"Deep learning based inter-modality image registration supervised by intra-modality similarity","author":"Cao","year":"2018"},{"key":"10.1016\/j.inffus.2021.02.012_b112","series-title":"2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)","first-page":"1449","article-title":"Deformable medical image registration using generative adversarial networks","author":"Mahapatra","year":"2018"},{"key":"10.1016\/j.inffus.2021.02.012_b113","series-title":"Simulation, Image Processing, and Ultrasound Systems for Assisted Diagnosis and Navigation","first-page":"152","article-title":"Deformable mri-ultrasound registration using 3d convolutional neural network","author":"Sun","year":"2018"},{"year":"2018","series-title":"Inverse-consistent deep networks for unsupervised deformable image registration","author":"Zhang","key":"10.1016\/j.inffus.2021.02.012_b114"},{"key":"10.1016\/j.inffus.2021.02.012_b115","series-title":"Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"739","article-title":"Adversarial similarity network for evaluating image alignment in deep learning based registration","author":"Fan","year":"2018"},{"key":"10.1016\/j.inffus.2021.02.012_b116","series-title":"Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support","first-page":"249","article-title":"Ssemnet: Serial-section electron microscopy image registration using a spatial transformer network with learned features","author":"Yoo","year":"2017"},{"year":"2019","series-title":"Zero shot learning for multi-modal real time image registration","author":"Kori","key":"10.1016\/j.inffus.2021.02.012_b117"},{"key":"10.1016\/j.inffus.2021.02.012_b118","doi-asserted-by":"crossref","unstructured":"C.G. Harris, M. Stephens, et al. A combined corner and edge detector, in: Proceedings of the Alvey Vision Conference, 1988, pp. 147\u2013151.","DOI":"10.5244\/C.2.23"},{"issue":"1","key":"10.1016\/j.inffus.2021.02.012_b119","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1023\/A:1007963824710","article-title":"SUSAN\u2014A new approach to low level image processing","volume":"23","author":"Smith","year":"1997","journal-title":"Int. J. Comput. Vis."},{"key":"10.1016\/j.inffus.2021.02.012_b120","doi-asserted-by":"crossref","unstructured":"E. Rublee, V. Rabaud, K. Konolige, G.R. Bradski, Orb: An efficient alternative to sift or surf, in: Proceedings of the IEEE International Conference on Computer Vision, 2011, pp. 2564\u20132571.","DOI":"10.1109\/ICCV.2011.6126544"},{"issue":"2","key":"10.1016\/j.inffus.2021.02.012_b121","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1023\/B:VISI.0000029664.99615.94","article-title":"Distinctive image features from scale-invariant keypoints","volume":"60","author":"Lowe","year":"2004","journal-title":"Int. J. Comput. Vis."},{"key":"10.1016\/j.inffus.2021.02.012_b122","doi-asserted-by":"crossref","unstructured":"H. Bay, T. Tuytelaars, L. Van\u00a0Gool, Surf: Speeded up robust features, in: Proceedings of the European Conference on Computer Vision, 2006, pp. 404\u2013417.","DOI":"10.1007\/11744023_32"},{"key":"10.1016\/j.inffus.2021.02.012_b123","doi-asserted-by":"crossref","unstructured":"K.M. Yi, E. Trulls, V. Lepetit, P. Fua, Lift: Learned invariant feature transform, in: Proceedings of the European Conference on Computer Vision, 2016, pp. 467\u2013483.","DOI":"10.1007\/978-3-319-46466-4_28"},{"key":"10.1016\/j.inffus.2021.02.012_b124","series-title":"Readings in Computer Vision","first-page":"184","article-title":"A computational approach to edge detection","author":"Canny","year":"1987"},{"issue":"7","key":"10.1016\/j.inffus.2021.02.012_b125","doi-asserted-by":"crossref","first-page":"629","DOI":"10.1109\/34.56205","article-title":"Scale-space and edge detection using anisotropic diffusion","volume":"12","author":"Perona","year":"1990","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2021.02.012_b126","doi-asserted-by":"crossref","unstructured":"S. Xie, Z. Tu, Holistically-nested edge detection, in: ProceedingsoftheIEEEInternationalConferenceon ComputerVision, 2015, pp. 1395\u20131403.","DOI":"10.1109\/ICCV.2015.164"},{"key":"10.1016\/j.inffus.2021.02.012_b127","doi-asserted-by":"crossref","unstructured":"J. He, S. Zhang, M. Yang, Y. Shan, T. Huang, Bi-directional cascade network for perceptual edge detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 3828\u20133837.","DOI":"10.1109\/CVPR.2019.00395"},{"issue":"10","key":"10.1016\/j.inffus.2021.02.012_b128","doi-asserted-by":"crossref","first-page":"761","DOI":"10.1016\/j.imavis.2004.02.006","article-title":"Robust wide-baseline stereo from maximally stable extremal regions","volume":"22","author":"Matas","year":"2004","journal-title":"Image Vis. Comput."},{"issue":"1\u20132","key":"10.1016\/j.inffus.2021.02.012_b129","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1007\/s11263-005-3848-x","article-title":"A comparison of affine region detectors","volume":"65","author":"Mikolajczyk","year":"2005","journal-title":"Int. J. Comput. Vis."},{"issue":"11","key":"10.1016\/j.inffus.2021.02.012_b130","doi-asserted-by":"crossref","first-page":"2316","DOI":"10.1109\/TPAMI.2011.133","article-title":"Are MSER features really interesting?","volume":"33","author":"Kimmel","year":"2011","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2021.02.012_b131","series-title":"Advances in Neural Information Processing Systems","first-page":"831","article-title":"Shape context: A new descriptor for shape matching and object recognition","author":"Belongie","year":"2001"},{"issue":"7","key":"10.1016\/j.inffus.2021.02.012_b132","doi-asserted-by":"crossref","first-page":"2589","DOI":"10.1109\/TGRS.2011.2109389","article-title":"Automatic image registration through image segmentation and SIFT","volume":"49","author":"Goncalves","year":"2011","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"3","key":"10.1016\/j.inffus.2021.02.012_b133","doi-asserted-by":"crossref","first-page":"772","DOI":"10.1016\/j.patcog.2014.09.005","article-title":"Non-rigid visible and infrared face registration via regularized Gaussian fields criterion","volume":"48","author":"Ma","year":"2015","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.inffus.2021.02.012_b134","doi-asserted-by":"crossref","first-page":"9","DOI":"10.5194\/isprs-annals-III-1-9-2016","article-title":"Hopc: A novel similarity metric based on geometric structural properties for multi-modal remote sensing image matching","volume":"3","author":"Ye","year":"2016","journal-title":"ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci."},{"issue":"9","key":"10.1016\/j.inffus.2021.02.012_b135","doi-asserted-by":"crossref","first-page":"5368","DOI":"10.1109\/TGRS.2018.2815523","article-title":"Sar and optical image registration using nonlinear diffusion and phase congruency structural descriptor","volume":"56","author":"Fan","year":"2018","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"1","key":"10.1016\/j.inffus.2021.02.012_b136","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1109\/TPAMI.2008.275","article-title":"Faster and better: A machine learning approach to corner detection","volume":"32","author":"Rosten","year":"2010","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"1","key":"10.1016\/j.inffus.2021.02.012_b137","doi-asserted-by":"crossref","first-page":"63","DOI":"10.1109\/TMI.2015.2455416","article-title":"Image registration based on autocorrelation of local structure","volume":"35","author":"Li","year":"2015","journal-title":"IEEE Trans. Med. Imaging"},{"year":"1977","series-title":"Techniques towards automatic visual obstacle avoidance","author":"Moravec","key":"10.1016\/j.inffus.2021.02.012_b138"},{"year":"1993","series-title":"Good Features to Track","author":"Shi","key":"10.1016\/j.inffus.2021.02.012_b139"},{"issue":"7","key":"10.1016\/j.inffus.2021.02.012_b140","doi-asserted-by":"crossref","first-page":"1707","DOI":"10.1109\/TBME.2010.2042169","article-title":"A partial intensity invariant feature descriptor for multimodal retinal image registration","volume":"57","author":"Chen","year":"2010","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"10.1016\/j.inffus.2021.02.012_b141","doi-asserted-by":"crossref","first-page":"64107","DOI":"10.1109\/ACCESS.2018.2877642","article-title":"Infrared and visible image registration based on scale-invariant piifd feature and locality preserving matching","volume":"6","author":"Du","year":"2018","journal-title":"IEEE Access"},{"key":"10.1016\/j.inffus.2021.02.012_b142","series-title":"Proceedings of the IEEE International Geoscience and Remote Sensing Symposium","first-page":"1007","article-title":"Sar and optical images registration using shape context","author":"Huang","year":"2010"},{"issue":"11","key":"10.1016\/j.inffus.2021.02.012_b143","doi-asserted-by":"crossref","first-page":"9059","DOI":"10.1109\/TGRS.2019.2924684","article-title":"Fast and robust matching for multimodal remote sensing image registration","volume":"57","author":"Ye","year":"2019","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2021.02.012_b144","doi-asserted-by":"crossref","unstructured":"E. Rosten, T. Drummond, Machine learning for high-speed corner detection, in: Proceedings of the European Conference on Computer Vision, 2006, pp. 430\u2013443.","DOI":"10.1007\/11744023_34"},{"key":"10.1016\/j.inffus.2021.02.012_b145","doi-asserted-by":"crossref","unstructured":"E. Mair, G.D. Hager, D. Burschka, M. Suppa, G. Hirzinger, Adaptive and generic corner detection based on the accelerated segment test, in: Proceedings of the European Conference on Computer Vision, 2010, pp. 183\u2013196.","DOI":"10.1007\/978-3-642-15552-9_14"},{"key":"10.1016\/j.inffus.2021.02.012_b146","doi-asserted-by":"crossref","unstructured":"J. Aldana-Iuit, D. Mishkin, O. Chum, J. Matas, In the saddle: chasing fast and repeatable features, in: Proceedings of the International Conference on Pattern Recognition, 2016, pp. 675\u2013680.","DOI":"10.1109\/ICPR.2016.7899712"},{"key":"10.1016\/j.inffus.2021.02.012_b147","doi-asserted-by":"crossref","unstructured":"X. Zhang, Q. Hu, M. Ai, X. Ren, A multitemporal uav images registration approach using phase congruency, in: Proceedings of the IEEE International Conference on Geoinformatics, 2018, pp. 1\u20136.","DOI":"10.1109\/GEOINFORMATICS.2018.8557189"},{"key":"10.1016\/j.inffus.2021.02.012_b148","doi-asserted-by":"crossref","first-page":"3296","DOI":"10.1109\/TIP.2019.2959244","article-title":"Rift: Multi-modal image matching based on radiation-variation insensitive feature transform","volume":"29","author":"Li","year":"2019","journal-title":"IEEE Trans. Image Process."},{"issue":"5","key":"10.1016\/j.inffus.2021.02.012_b149","doi-asserted-by":"crossref","first-page":"997","DOI":"10.3390\/s19050997","article-title":"Automatic and robust infrared-visible image sequence registration via spatio-temporal association","volume":"19","author":"Zhao","year":"2019","journal-title":"Sensors"},{"issue":"9","key":"10.1016\/j.inffus.2021.02.012_b150","doi-asserted-by":"crossref","first-page":"4167","DOI":"10.1109\/TIP.2012.2200493","article-title":"Performance comparisons of contour-based corner detectors","volume":"21","author":"Awrangjeb","year":"2012","journal-title":"IEEE Trans. Image Process."},{"issue":"12","key":"10.1016\/j.inffus.2021.02.012_b151","doi-asserted-by":"crossref","first-page":"1376","DOI":"10.1109\/34.735812","article-title":"Robust image corner detection through curvature scale space","volume":"20","author":"Mokhtarian","year":"1998","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"6","key":"10.1016\/j.inffus.2021.02.012_b152","doi-asserted-by":"crossref","first-page":"1442","DOI":"10.1109\/TIP.2010.2041415","article-title":"Piecewise approximation of contours through scale-space selection of dominant points","volume":"19","author":"Pinheiro","year":"2010","journal-title":"IEEE Trans. Image Process."},{"issue":"3","key":"10.1016\/j.inffus.2021.02.012_b153","doi-asserted-by":"crossref","first-page":"244","DOI":"10.1016\/S0146-664X(72)80017-0","article-title":"An iterative procedure for the polygonal approximation of plane curves","volume":"1","author":"Ramer","year":"1972","journal-title":"Comput. Graph. Image Process."},{"issue":"6","key":"10.1016\/j.inffus.2021.02.012_b154","doi-asserted-by":"crossref","first-page":"1059","DOI":"10.1109\/TMM.2008.2001384","article-title":"Robust image corner detection based on the chord-to-point distance accumulation technique","volume":"10","author":"Awrangjeb","year":"2008","journal-title":"IEEE Trans. Multimed."},{"issue":"9","key":"10.1016\/j.inffus.2021.02.012_b155","doi-asserted-by":"crossref","first-page":"940","DOI":"10.1109\/T-C.1975.224342","article-title":"An improved method of angle detection on digital curves","volume":"100","author":"Rosenfeld","year":"1975","journal-title":"IEEE Trans. Comput."},{"issue":"3","key":"10.1016\/j.inffus.2021.02.012_b156","doi-asserted-by":"crossref","first-page":"440","DOI":"10.1016\/j.cag.2007.01.021","article-title":"Corner detection by sliding rectangles along planar curves","volume":"31","author":"Masood","year":"2007","journal-title":"Comput. Graph."},{"issue":"4","key":"10.1016\/j.inffus.2021.02.012_b157","doi-asserted-by":"crossref","first-page":"1207","DOI":"10.1016\/j.patcog.2009.10.017","article-title":"Corner detection based on gradient correlation matrices of planar curves","volume":"43","author":"Zhang","year":"2010","journal-title":"Pattern Recognit."},{"issue":"11","key":"10.1016\/j.inffus.2021.02.012_b158","doi-asserted-by":"crossref","first-page":"2207","DOI":"10.1109\/TPAMI.2015.2396074","article-title":"Laplacian scale-space behavior of planar curve corners","volume":"37","author":"Zhang","year":"2015","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"2","key":"10.1016\/j.inffus.2021.02.012_b159","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1023\/A:1008045108935","article-title":"Feature detection with automatic scale selection","volume":"30","author":"Lindeberg","year":"1998","journal-title":"Int. J. Comput. Vis."},{"key":"10.1016\/j.inffus.2021.02.012_b160","doi-asserted-by":"crossref","unstructured":"D.G. Lowe, et al. Object recognition from local scale-invariant features. in: Proceedings of the IEEE International Conference on Computer Vision, 1999, pp. 1150\u20131157.","DOI":"10.1109\/ICCV.1999.790410"},{"issue":"2","key":"10.1016\/j.inffus.2021.02.012_b161","doi-asserted-by":"crossref","first-page":"438","DOI":"10.1137\/080732730","article-title":"ASIFT: A new framework for fully affine invariant image comparison","volume":"2","author":"Morel","year":"2009","journal-title":"SIAM J. Imaging Sci."},{"key":"10.1016\/j.inffus.2021.02.012_b162","doi-asserted-by":"crossref","unstructured":"M. Agrawal, K. Konolige, M.R. Blas, Censure: Center surround extremas for realtime feature detection and matching, in: Proceedings of the European Conference on Computer Vision, 2008, pp. 102\u2013115.","DOI":"10.1007\/978-3-540-88693-8_8"},{"issue":"2","key":"10.1016\/j.inffus.2021.02.012_b163","doi-asserted-by":"crossref","first-page":"172","DOI":"10.1007\/s11263-013-0622-3","article-title":"Sifer: scale-invariant feature detector with error resilience","volume":"104","author":"Mainali","year":"2013","journal-title":"Int. J. Comput. Vis."},{"key":"10.1016\/j.inffus.2021.02.012_b164","doi-asserted-by":"crossref","unstructured":"H. Deng, W. Zhang, E. Mortensen, T. Dietterich, L. Shapiro, Principal curvature-based region detector for object recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2007, pp. 1\u20138.","DOI":"10.1109\/CVPR.2007.382972"},{"issue":"4","key":"10.1016\/j.inffus.2021.02.012_b165","doi-asserted-by":"crossref","first-page":"524","DOI":"10.1016\/j.cviu.2011.12.002","article-title":"A sparse curvature-based detector of affine invariant blobs","volume":"116","author":"Ferraz","year":"2012","journal-title":"Comput. Vis. Image Underst."},{"key":"10.1016\/j.inffus.2021.02.012_b166","doi-asserted-by":"crossref","unstructured":"P.-E. Forss\u00e9n, Maximally stable colour regions for recognition and matching, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2007, pp. 1-8.","DOI":"10.1109\/CVPR.2007.383120"},{"issue":"1","key":"10.1016\/j.inffus.2021.02.012_b167","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1023\/B:VISI.0000020671.28016.e8","article-title":"Matching widely separated views based on affine invariant regions","volume":"59","author":"Tuytelaars","year":"2004","journal-title":"Int. J. Comput. Vis."},{"issue":"3","key":"10.1016\/j.inffus.2021.02.012_b168","doi-asserted-by":"crossref","first-page":"1118","DOI":"10.1109\/TIP.2018.2872906","article-title":"Msfd: Multi-scale segmentation-based feature detection for wide-baseline scene reconstruction","volume":"28","author":"Mustafa","year":"2018","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.inffus.2021.02.012_b169","doi-asserted-by":"crossref","first-page":"736","DOI":"10.1016\/j.neucom.2014.08.003","article-title":"A survey of recent advances in visual feature detection","volume":"149","author":"Li","year":"2015","journal-title":"Neurocomputing"},{"issue":"1","key":"10.1016\/j.inffus.2021.02.012_b170","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1186\/1687-5281-2013-25","article-title":"An efficient approach for robust multimodal retinal image registration based on UR-SIFT features and PIIFD descriptors","volume":"2013","author":"Ghassabi","year":"2013","journal-title":"EURASIP J. Image Video Process."},{"key":"10.1016\/j.inffus.2021.02.012_b171","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"329","article-title":"A robust outlier elimination approach for multimodal retina image registration","author":"Ong","year":"2015"},{"issue":"7","key":"10.1016\/j.inffus.2021.02.012_b172","doi-asserted-by":"crossref","first-page":"838","DOI":"10.1016\/j.cageo.2007.10.005","article-title":"A fast and fully automatic registration approach based on point features for multi-source remote-sensing images","volume":"34","author":"Yu","year":"2008","journal-title":"Comput. Geosci."},{"issue":"11","key":"10.1016\/j.inffus.2021.02.012_b173","doi-asserted-by":"crossref","first-page":"4516","DOI":"10.1109\/TGRS.2011.2144607","article-title":"Uniform robust scale-invariant feature matching for optical remote sensing images","volume":"49","author":"Sedaghat","year":"2011","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2021.02.012_b174","doi-asserted-by":"crossref","unstructured":"H. Sun, L. Lei, H. Zou, C. Wang, Multimodal remote sensing image registration using multiscale self-similarities, in: Proceedings of the IEEE International Conference on Computer Vision in Remote Sensing, 2012, pp. 199\u2013202.","DOI":"10.1109\/CVRS.2012.6421260"},{"issue":"4","key":"10.1016\/j.inffus.2021.02.012_b175","doi-asserted-by":"crossref","first-page":"657","DOI":"10.1109\/LGRS.2012.2216500","article-title":"Registration of optical and SAR satellite images by exploring the spatial relationship of the improved SIFT","volume":"10","author":"Fan","year":"2012","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"10.1016\/j.inffus.2021.02.012_b176","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1016\/j.isprsjprs.2014.01.009","article-title":"A local descriptor based registration method for multispectral remote sensing images with non-linear intensity differences","volume":"90","author":"Ye","year":"2014","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"issue":"15","key":"10.1016\/j.inffus.2021.02.012_b177","doi-asserted-by":"crossref","first-page":"3997","DOI":"10.1080\/01431161.2015.1070321","article-title":"An automatic optical and SAR image registration method with iterative level set segmentation and SIFT","volume":"36","author":"Xu","year":"2015","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.inffus.2021.02.012_b178","first-page":"1","article-title":"Real-time adaptive visible and infrared image registration based on morphological gradient and C_SIFT","author":"Zeng","year":"2019","journal-title":"J. Real-Time Image Process."},{"issue":"2","key":"10.1016\/j.inffus.2021.02.012_b179","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1016\/S0262-8856(97)00056-5","article-title":"Fast corner detection","volume":"16","author":"Trajkovi\u0107","year":"1998","journal-title":"Image Vis. Comput."},{"key":"10.1016\/j.inffus.2021.02.012_b180","series-title":"Joint Pattern Recognition Symposium","first-page":"151","article-title":"Training for task specific keypoint detection","author":"Strecha","year":"2009"},{"key":"10.1016\/j.inffus.2021.02.012_b181","doi-asserted-by":"crossref","unstructured":"W. Hartmann, M. Havlena, K. Schindler, Predicting matchability, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 9\u201316.","DOI":"10.1109\/CVPR.2014.9"},{"key":"10.1016\/j.inffus.2021.02.012_b182","doi-asserted-by":"crossref","unstructured":"Y. Verdie, K. Yi, P. Fua, V. Lepetit, Tilde: a temporally invariant learned detector, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 5279\u20135288.","DOI":"10.1109\/CVPR.2015.7299165"},{"key":"10.1016\/j.inffus.2021.02.012_b183","doi-asserted-by":"crossref","unstructured":"X. Zhang, F.X. Yu, S. Karaman, S.-F. Chang, Learning discriminative and transformation covariant local feature detectors, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 6818\u20136826.","DOI":"10.1109\/CVPR.2017.523"},{"key":"10.1016\/j.inffus.2021.02.012_b184","doi-asserted-by":"crossref","unstructured":"L. Zhang, S. Rusinkiewicz, Learning to detect features in texture images, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 6325\u20136333.","DOI":"10.1109\/CVPR.2018.00662"},{"key":"10.1016\/j.inffus.2021.02.012_b185","doi-asserted-by":"crossref","unstructured":"D. DeTone, T. Malisiewicz, A. Rabinovich, Superpoint: Self-supervised interest point detection and description, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018, pp. 224\u2013236.","DOI":"10.1109\/CVPRW.2018.00060"},{"key":"10.1016\/j.inffus.2021.02.012_b186","doi-asserted-by":"crossref","unstructured":"K. Lenc, A. Vedaldi, Learning covariant feature detectors, in: Proceedings of the European Conference on Computer Vision, 2016, pp. 100\u2013117.","DOI":"10.1007\/978-3-319-49409-8_11"},{"key":"10.1016\/j.inffus.2021.02.012_b187","doi-asserted-by":"crossref","unstructured":"N. Savinov, A. Seki, L. Ladicky, T. Sattler, M. Pollefeys, Quad-networks: unsupervised learning to rank for interest point detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1822\u20131830.","DOI":"10.1109\/CVPR.2017.418"},{"key":"10.1016\/j.inffus.2021.02.012_b188","series-title":"Advances in Neural Information Processing Systems","first-page":"6234","article-title":"Lf-net: learning local features from images","author":"Ono","year":"2018"},{"key":"10.1016\/j.inffus.2021.02.012_b189","doi-asserted-by":"crossref","unstructured":"G. Georgakis, S. Karanam, Z. Wu, J. Ernst, J. Koseck\u00e1, End-to-end learning of keypoint detector and descriptor for pose invariant 3d matching, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1965\u20131973.","DOI":"10.1109\/CVPR.2018.00210"},{"year":"2019","series-title":"Key. Net: Keypoint detection by handcrafted and learned cnn filters","author":"Laguna","key":"10.1016\/j.inffus.2021.02.012_b190"},{"key":"10.1016\/j.inffus.2021.02.012_b191","doi-asserted-by":"crossref","unstructured":"X. Shen, C. Wang, X. Li, Z. Yu, J. Li, C. Wen, M. Cheng, Z. He, Rf-net: An end-to-end image matching network based on receptive field, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 8132\u20138140.","DOI":"10.1109\/CVPR.2019.00832"},{"key":"10.1016\/j.inffus.2021.02.012_b192","doi-asserted-by":"crossref","unstructured":"M. Dusmanu, I. Rocco, T. Pajdla, M. Pollefeys, J. Sivic, A. Torii, T. Sattler, D2-net: A trainable cnn for joint description and detection of local features, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 8092\u20138101.","DOI":"10.1109\/CVPR.2019.00828"},{"year":"2019","series-title":"R2d2: Repeatable and reliable detector and descriptor","author":"Revaud","key":"10.1016\/j.inffus.2021.02.012_b193"},{"year":"2018","series-title":"Large scale evaluation of local image feature detectors on homography datasets","author":"Lenc","key":"10.1016\/j.inffus.2021.02.012_b194"},{"key":"10.1016\/j.inffus.2021.02.012_b195","doi-asserted-by":"crossref","unstructured":"J. Komorowski, K. Czarnota, T. Trzcinski, L. Dabala, S. Lynen, Interest point detectors stability evaluation on apolloscape dataset, in: Proceedings of the European Conference on Computer Vision, 2018, pp. 1\u201313.","DOI":"10.1007\/978-3-030-11021-5_45"},{"issue":"2","key":"10.1016\/j.inffus.2021.02.012_b196","doi-asserted-by":"crossref","first-page":"232","DOI":"10.1109\/LGRS.2017.2781741","article-title":"Remote sensing image registration using convolutional neural network features","volume":"15","author":"Ye","year":"2018","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"7","key":"10.1016\/j.inffus.2021.02.012_b197","doi-asserted-by":"crossref","first-page":"4834","DOI":"10.1109\/TGRS.2019.2893310","article-title":"A novel two-step registration method for remote sensing images based on deep and local features","volume":"57","author":"Ma","year":"2019","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2021.02.012_b198","doi-asserted-by":"crossref","unstructured":"N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2005, pp. 886\u2013893.","DOI":"10.1109\/CVPR.2005.177"},{"key":"10.1016\/j.inffus.2021.02.012_b199","doi-asserted-by":"crossref","unstructured":"A.E. Abdel-Hakim, A.A. Farag, Csift: A sift descriptor with color invariant characteristics, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2006, pp. 1978\u20131983.","DOI":"10.1109\/CVPR.2006.95"},{"key":"10.1016\/j.inffus.2021.02.012_b200","doi-asserted-by":"crossref","unstructured":"R. Arandjelovi\u0107, A. Zisserman, Three things everyone should know to improve object retrieval, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 2911\u20132918.","DOI":"10.1109\/CVPR.2012.6248018"},{"key":"10.1016\/j.inffus.2021.02.012_b201","doi-asserted-by":"crossref","unstructured":"J. Dong, S. Soatto, Domain-size pooling in local descriptors: Dsp-sift, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 5097\u20135106.","DOI":"10.1109\/CVPR.2015.7299145"},{"key":"10.1016\/j.inffus.2021.02.012_b202","unstructured":"F. Tang, S.H. Lim, N.L. Chang, H. Tao, A novel feature descriptor invariant to complex brightness changes, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 2631\u20132638."},{"key":"10.1016\/j.inffus.2021.02.012_b203","doi-asserted-by":"crossref","unstructured":"M. Toews, W. Wells, Sift-rank: Ordinal description for invariant feature correspondence, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 172\u2013177.","DOI":"10.1109\/CVPR.2009.5206849"},{"issue":"10","key":"10.1016\/j.inffus.2021.02.012_b204","doi-asserted-by":"crossref","first-page":"2031","DOI":"10.1109\/TPAMI.2011.277","article-title":"Rotationally invariant descriptors using intensity order pooling","volume":"34","author":"Fan","year":"2011","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"5","key":"10.1016\/j.inffus.2021.02.012_b205","doi-asserted-by":"crossref","first-page":"643","DOI":"10.1016\/j.pnsc.2008.06.029","article-title":"Real-time multi-modal rigid registration based on a novel symmetric-SIFT descriptor","volume":"19","author":"Chen","year":"2009","journal-title":"Prog. Nat. Sci."},{"key":"10.1016\/j.inffus.2021.02.012_b206","series-title":"2011 International Conference on Digital Image Computing: Techniques and Applications","first-page":"197","article-title":"Improved symmetric-sift for multi-modal image registration","author":"Hossain","year":"2011"},{"key":"10.1016\/j.inffus.2021.02.012_b207","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1016\/j.isprsjprs.2015.06.003","article-title":"Distinctive order based self-similarity descriptor for multi-sensor remote sensing image matching","volume":"108","author":"Sedaghat","year":"2015","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.inffus.2021.02.012_b208","doi-asserted-by":"crossref","unstructured":"M. Calonder, V. Lepetit, C. Strecha, P. Fua, Brief: Binary robust independent elementary features, in: Proceedings of the European Conference on Computer Vision, 2010, pp. 778\u2013792.","DOI":"10.1007\/978-3-642-15561-1_56"},{"key":"10.1016\/j.inffus.2021.02.012_b209","doi-asserted-by":"crossref","unstructured":"S. Leutenegger, M. Chli, R. Siegwart, Brisk: Binary robust invariant scalable keypoints, in: Proceedings of the IEEE International Conference on Computer Vision, 2011, pp. 2548\u20132555.","DOI":"10.1109\/ICCV.2011.6126542"},{"key":"10.1016\/j.inffus.2021.02.012_b210","doi-asserted-by":"crossref","unstructured":"A. Alahi, R. Ortiz, P. Vandergheynst, Freak: Fast retina keypoint, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 510\u2013517.","DOI":"10.1109\/CVPR.2012.6247715"},{"key":"10.1016\/j.inffus.2021.02.012_b211","unstructured":"Y. Ke, R. Sukthankar, et al. Pca-sift: A more distinctive representation for local image descriptors, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2004, pp. 506\u2013513."},{"issue":"2","key":"10.1016\/j.inffus.2021.02.012_b212","first-page":"338","article-title":"Learning linear discriminant projections for dimensionality reduction of image descriptors","volume":"33","author":"Cai","year":"2010","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"1","key":"10.1016\/j.inffus.2021.02.012_b213","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1109\/TPAMI.2010.54","article-title":"Discriminative learning of local image descriptors","volume":"33","author":"Brown","year":"2010","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2021.02.012_b214","doi-asserted-by":"crossref","unstructured":"B. Kulis, K. Grauman, Kernelized locality-sensitive hashing for scalable image search, in: Proceedings of the IEEE International Conference on Computer Vision, 2009, pp. 2130\u20132137.","DOI":"10.1109\/ICCV.2009.5459466"},{"key":"10.1016\/j.inffus.2021.02.012_b215","series-title":"Advances in Neural Information Processing Systems","first-page":"1753","article-title":"Spectral hashing","author":"Weiss","year":"2009"},{"issue":"12","key":"10.1016\/j.inffus.2021.02.012_b216","doi-asserted-by":"crossref","first-page":"2916","DOI":"10.1109\/TPAMI.2012.193","article-title":"Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval","volume":"35","author":"Gong","year":"2012","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2021.02.012_b217","doi-asserted-by":"crossref","unstructured":"T. Trzcinski, V. Lepetit, Efficient discriminative projections for compact binary descriptors, in: Proceedings of the European Conference on Computer Vision, 2012, pp. 228\u2013242.","DOI":"10.1007\/978-3-642-33718-5_17"},{"key":"10.1016\/j.inffus.2021.02.012_b218","doi-asserted-by":"crossref","unstructured":"T. Trzcinski, M. Christoudias, P. Fua, V. Lepetit, Boosting binary keypoint descriptors, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 2874\u20132881.","DOI":"10.1109\/CVPR.2013.370"},{"key":"10.1016\/j.inffus.2021.02.012_b219","doi-asserted-by":"crossref","unstructured":"J.L. Schonberger, H. Hardmeier, T. Sattler, M. Pollefeys, Comparative evaluation of hand-crafted and learned local features, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1482\u20131491.","DOI":"10.1109\/CVPR.2017.736"},{"issue":"Feb","key":"10.1016\/j.inffus.2021.02.012_b220","first-page":"207","article-title":"Distance metric learning for large margin nearest neighbor classification","volume":"10","author":"Weinberger","year":"2009","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.inffus.2021.02.012_b221","doi-asserted-by":"crossref","unstructured":"S. Zagoruyko, N. Komodakis, Learning to compare image patches via convolutional neural networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 4353\u20134361.","DOI":"10.1109\/CVPR.2015.7299064"},{"key":"10.1016\/j.inffus.2021.02.012_b222","unstructured":"X. Han, T. Leung, Y. Jia, R. Sukthankar, A.C. Berg, Matchnet: Unifying feature and metric learning for patch-based matching, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3279\u20133286."},{"key":"10.1016\/j.inffus.2021.02.012_b223","doi-asserted-by":"crossref","unstructured":"J. Wang, F. Zhou, S. Wen, X. Liu, Y. Lin, Deep metric learning with angular loss, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2593\u20132601.","DOI":"10.1109\/ICCV.2017.283"},{"key":"10.1016\/j.inffus.2021.02.012_b224","doi-asserted-by":"crossref","unstructured":"E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, F. Moreno-Noguer, Discriminative learning of deep convolutional feature point descriptors, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 118\u2013126.","DOI":"10.1109\/ICCV.2015.22"},{"key":"10.1016\/j.inffus.2021.02.012_b225","doi-asserted-by":"crossref","unstructured":"V. Balntas, E. Riba, D. Ponsa, K. Mikolajczyk, Learning local feature descriptors with triplets and shallow convolutional neural networks, in: Proceedings of the British Machine Vision Conference, 2016, pp. 1\u201311.","DOI":"10.5244\/C.30.119"},{"year":"2016","series-title":"PN-Net: Conjoined triple deep network for learning local image descriptors","author":"Balntas","key":"10.1016\/j.inffus.2021.02.012_b226"},{"key":"10.1016\/j.inffus.2021.02.012_b227","series-title":"Advances in Neural Information Processing Systems","first-page":"4826","article-title":"Working hard to know your neighbor\u2019s margins: Local descriptor learning loss","author":"Mishchuk","year":"2017"},{"key":"10.1016\/j.inffus.2021.02.012_b228","doi-asserted-by":"crossref","unstructured":"X. Wei, Y. Zhang, Y. Gong, N. Zheng, Kernelized subspace pooling for deep local descriptors, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1867\u20131875.","DOI":"10.1109\/CVPR.2018.00200"},{"key":"10.1016\/j.inffus.2021.02.012_b229","doi-asserted-by":"crossref","unstructured":"Y. Tian, X. Yu, B. Fan, F. Wu, H. Heijnen, V. Balntas, Sosnet: Second order similarity regularization for local descriptor learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 11016\u201311025.","DOI":"10.1109\/CVPR.2019.01127"},{"key":"10.1016\/j.inffus.2021.02.012_b230","doi-asserted-by":"crossref","first-page":"148","DOI":"10.1016\/j.isprsjprs.2017.12.012","article-title":"A deep learning framework for remote sensing image registration","volume":"145","author":"Wang","year":"2018","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.inffus.2021.02.012_b231","series-title":"Advances in Neural Information Processing Systems","first-page":"2414","article-title":"Universal correspondence network","author":"Choy","year":"2016"},{"key":"10.1016\/j.inffus.2021.02.012_b232","doi-asserted-by":"crossref","unstructured":"K. Han, R.S. Rezende, B. Ham, K.-Y.K. Wong, M. Cho, C. Schmid, J. Ponce, Scnet: Learning semantic correspondence, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 1831\u20131840.","DOI":"10.1109\/ICCV.2017.203"},{"key":"10.1016\/j.inffus.2021.02.012_b233","series-title":"Advances in Neural Information Processing Systems","first-page":"1087","article-title":"Neural nearest neighbors networks","author":"Pl\u00f6tz","year":"2018"},{"key":"10.1016\/j.inffus.2021.02.012_b234","doi-asserted-by":"crossref","unstructured":"Y.-C. Chen, P.-H. Huang, L.-Y. Yu, J.-B. Huang, M.-H. Yang, Y.-Y. Lin, Deep semantic matching with foreground detection and cycle-consistency, in: Proceedings of the Asian Conference on Computer Vision, 2018, pp. 347\u2013362.","DOI":"10.1007\/978-3-030-20893-6_22"},{"key":"10.1016\/j.inffus.2021.02.012_b235","series-title":"Advances in Neural Information Processing Systems","first-page":"6126","article-title":"Recurrent transformer networks for semantic correspondence","author":"Kim","year":"2018"},{"issue":"10","key":"10.1016\/j.inffus.2021.02.012_b236","doi-asserted-by":"crossref","first-page":"1615","DOI":"10.1109\/TPAMI.2005.188","article-title":"A performance evaluation of local descriptors","volume":"27","author":"Mikolajczyk","year":"2005","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"2","key":"10.1016\/j.inffus.2021.02.012_b237","doi-asserted-by":"crossref","first-page":"657","DOI":"10.1016\/j.ejor.2005.09.032","article-title":"A survey for the quadratic assignment problem","volume":"176","author":"Loiola","year":"2007","journal-title":"European J. Oper. Res."},{"issue":"4","key":"10.1016\/j.inffus.2021.02.012_b238","doi-asserted-by":"crossref","first-page":"341","DOI":"10.1007\/BF02575586","article-title":"A note on the derivation of maximal common subgraphs of two directed or undirected graphs","volume":"9","author":"Levi","year":"1973","journal-title":"Calcolo"},{"year":"2006","series-title":"Mining Graph Data","author":"Cook","key":"10.1016\/j.inffus.2021.02.012_b239"},{"key":"10.1016\/j.inffus.2021.02.012_b240","article-title":"Groups, graphs, algorithms: The graph isomorphism problem","author":"Babai","year":"2018","journal-title":"Proc. Internat. Congr. Math."},{"key":"10.1016\/j.inffus.2021.02.012_b241","doi-asserted-by":"crossref","unstructured":"M. Leordeanu, M. Hebert, A spectral technique for correspondence problems using pairwise constraints, in: Proceedings of the IEEE International Conference on Computer Vision, 2005, pp. 1482\u20131489.","DOI":"10.1109\/ICCV.2005.20"},{"key":"10.1016\/j.inffus.2021.02.012_b242","series-title":"Advances in Neural Information Processing Systems","first-page":"313","article-title":"Balanced graph matching","author":"Cour","year":"2007"},{"key":"10.1016\/j.inffus.2021.02.012_b243","doi-asserted-by":"crossref","unstructured":"H. Liu, S. Yan, Common visual pattern discovery via spatially coherent correspondences, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp. 1609\u20131616.","DOI":"10.1109\/CVPR.2010.5539780"},{"issue":"2","key":"10.1016\/j.inffus.2021.02.012_b244","doi-asserted-by":"crossref","first-page":"736","DOI":"10.1016\/j.patcog.2013.08.024","article-title":"A sparse nonnegative matrix factorization technique for graph matching problems","volume":"47","author":"Jiang","year":"2014","journal-title":"Pattern Recognit."},{"issue":"1","key":"10.1016\/j.inffus.2021.02.012_b245","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1109\/TPAMI.2012.51","article-title":"A probabilistic approach to spectral graph matching","volume":"35","author":"Egozi","year":"2012","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"5","key":"10.1016\/j.inffus.2021.02.012_b246","doi-asserted-by":"crossref","first-page":"695","DOI":"10.1109\/34.6778","article-title":"An eigendecomposition approach to weighted graph matching problems","volume":"10","author":"Umeyama","year":"1988","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"4","key":"10.1016\/j.inffus.2021.02.012_b247","doi-asserted-by":"crossref","first-page":"515","DOI":"10.1109\/TPAMI.2004.1265866","article-title":"An eigenspace projection clustering method for inexact graph matching","volume":"26","author":"Caelli","year":"2004","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"1","key":"10.1016\/j.inffus.2021.02.012_b248","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1023\/A:1009795911987","article-title":"Semidefinite programming relaxations for the quadratic assignment problem","volume":"2","author":"Zhao","year":"1998","journal-title":"J. Comb. Optim."},{"key":"10.1016\/j.inffus.2021.02.012_b249","doi-asserted-by":"crossref","unstructured":"C. Schellewald, C. Schn\u00f6rr, Probabilistic subgraph matching based on convex relaxation, in: Proceedings of the International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, 2005, pp. 171\u2013186.","DOI":"10.1007\/11585978_12"},{"key":"10.1016\/j.inffus.2021.02.012_b250","series-title":"Computer Graphics Forum, Vol. 34","first-page":"115","article-title":"Tight relaxation of quadratic matching","author":"Kezurer","year":"2015"},{"issue":"5","key":"10.1016\/j.inffus.2021.02.012_b251","doi-asserted-by":"crossref","first-page":"522","DOI":"10.1109\/34.211474","article-title":"A linear programming approach for the weighted graph matching problem","volume":"15","author":"Almohamad","year":"1993","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2021.02.012_b252","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1090\/dimacs\/016\/02","article-title":"Improved linear programming-based lower bounds for the quadratic assignment problem","volume":"16","author":"Adams","year":"1994","journal-title":"DIMACS Ser. Discrete Math. Theoret. Comput. Sci."},{"key":"10.1016\/j.inffus.2021.02.012_b253","doi-asserted-by":"crossref","unstructured":"P. Swoboda, J. Kuske, B. Savchynskyy, A dual ascent framework for lagrangean decomposition of combinatorial problems, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1596\u20131606.","DOI":"10.1109\/CVPR.2017.526"},{"key":"10.1016\/j.inffus.2021.02.012_b254","doi-asserted-by":"crossref","unstructured":"Q. Chen, V. Koltun, Robust nonrigid registration by convex optimization, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 2039\u20132047.","DOI":"10.1109\/ICCV.2015.236"},{"key":"10.1016\/j.inffus.2021.02.012_b255","doi-asserted-by":"crossref","unstructured":"P. Swoboda, C. Rother, H. Abu\u00a0Alhaija, D. Kainmuller, B. Savchynskyy, A study of lagrangean decompositions and dual ascent solvers for graph matching, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1607\u20131616.","DOI":"10.1109\/CVPR.2017.747"},{"issue":"2","key":"10.1016\/j.inffus.2021.02.012_b256","doi-asserted-by":"crossref","first-page":"259","DOI":"10.1109\/TPAMI.2012.105","article-title":"A dual decomposition approach to feature correspondence","volume":"35","author":"Torresani","year":"2012","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2021.02.012_b257","doi-asserted-by":"crossref","unstructured":"Z. Zhang, Q. Shi, J. McAuley, W. Wei, Y. Zhang, A. Van Den\u00a0Hengel, Pairwise matching through max-weight bipartite belief propagation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 1202\u20131210.","DOI":"10.1109\/CVPR.2016.135"},{"issue":"12","key":"10.1016\/j.inffus.2021.02.012_b258","doi-asserted-by":"crossref","first-page":"2227","DOI":"10.1109\/TPAMI.2008.245","article-title":"A path following algorithm for the graph matching problem","volume":"31","author":"Zaslavskiy","year":"2009","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"6","key":"10.1016\/j.inffus.2021.02.012_b259","doi-asserted-by":"crossref","first-page":"1258","DOI":"10.1109\/TPAMI.2013.223","article-title":"Gnccp\u2014Graduated nonconvexityand concavity procedure","volume":"36","author":"Liu","year":"2014","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"4","key":"10.1016\/j.inffus.2021.02.012_b260","doi-asserted-by":"crossref","first-page":"377","DOI":"10.1109\/34.491619","article-title":"A graduated assignment algorithm for graph matching","volume":"18","author":"Gold","year":"1996","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2021.02.012_b261","doi-asserted-by":"crossref","unstructured":"Y. Tian, J. Yan, H. Zhang, Y. Zhang, X. Yang, H. Zha, On the convergence of graph matching: Graduated assignment revisited, in: Proceedings of the European Conference on Computer Vision, 2012, pp. 821\u2013835.","DOI":"10.1007\/978-3-642-33712-3_59"},{"key":"10.1016\/j.inffus.2021.02.012_b262","series-title":"Advances in Neural Information Processing Systems","first-page":"3187","article-title":"Graph matching via multiplicative update algorithm","author":"Jiang","year":"2017"},{"key":"10.1016\/j.inffus.2021.02.012_b263","doi-asserted-by":"crossref","unstructured":"T. Yu, J. Yan, B. Li, Determinant regularization for gradient-efficient graph matching, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020.","DOI":"10.1109\/CVPR42600.2020.00715"},{"key":"10.1016\/j.inffus.2021.02.012_b264","doi-asserted-by":"crossref","unstructured":"M. Cho, J. Lee, K.M. Lee, Reweighted random walks for graph matching, in: Proceedings of the European Conference on Computer vision, 2010, pp. 492\u2013505.","DOI":"10.1007\/978-3-642-15555-0_36"},{"key":"10.1016\/j.inffus.2021.02.012_b265","doi-asserted-by":"crossref","unstructured":"J. Lee, M. Cho, K.M. Lee, A graph matching algorithm using data-driven markov chain monte carlo sampling, in: Proceedings of the International Conference on Pattern Recognition, 2010, pp. 2816\u20132819.","DOI":"10.1109\/ICPR.2010.690"},{"key":"10.1016\/j.inffus.2021.02.012_b266","doi-asserted-by":"crossref","unstructured":"Y. Suh, M. Cho, K.M. Lee, Graph matching via sequential monte carlo, in: Proceedings of the European Conference on Computer Vision, 2012, pp. 624\u2013637.","DOI":"10.1007\/978-3-642-33712-3_45"},{"key":"10.1016\/j.inffus.2021.02.012_b267","doi-asserted-by":"crossref","unstructured":"J. Yan, Y. Tian, H. Zha, X. Yang, Y. Zhang, S.M. Chu, Joint optimization for consistent multiple graph matching, in: Proceedings of the IEEE International Conference on Computer Vision, 2013, pp. 1649\u20131656.","DOI":"10.1109\/ICCV.2013.207"},{"issue":"6","key":"10.1016\/j.inffus.2021.02.012_b268","doi-asserted-by":"crossref","first-page":"1228","DOI":"10.1109\/TPAMI.2015.2477832","article-title":"Multi-graph matching via affinity optimization with graduated consistency regularization","volume":"38","author":"Yan","year":"2015","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2021.02.012_b269","doi-asserted-by":"crossref","unstructured":"P. Swoboda, A. Mokarian, C. Theobalt, F. Bernard, et al. A convex relaxation for multi-graph matching, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 11156\u201311165.","DOI":"10.1109\/CVPR.2019.01141"},{"key":"10.1016\/j.inffus.2021.02.012_b270","doi-asserted-by":"crossref","unstructured":"F. Bernard, J. Thunberg, P. Swoboda, C. Theobalt, Hippi: Higher-order projected power iterations for scalable multi-matching, in: Proceedings of the IEEE International Conference on Computer Vision, 2019, pp. 10284\u201310293.","DOI":"10.1109\/ICCV.2019.01038"},{"key":"10.1016\/j.inffus.2021.02.012_b271","article-title":"Unifying offline and online multi-graph matching via finding shortest paths on supergraph","author":"Jiang","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2021.02.012_b272","doi-asserted-by":"crossref","unstructured":"J. Lee, M. Cho, K.M. Lee, Hyper-graph matching via reweighted random walks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2011, pp. 1633\u20131640.","DOI":"10.1109\/CVPR.2011.5995387"},{"key":"10.1016\/j.inffus.2021.02.012_b273","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"1","article-title":"Probabilistic graph and hypergraph matching","author":"Zass","year":"2008"},{"key":"10.1016\/j.inffus.2021.02.012_b274","doi-asserted-by":"crossref","unstructured":"J. Yan, C. Zhang, H. Zha, W. Liu, X. Yang, S.M. Chu, Discrete hyper-graph matching, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1520\u20131528.","DOI":"10.1109\/CVPR.2015.7298759"},{"issue":"6","key":"10.1016\/j.inffus.2021.02.012_b275","doi-asserted-by":"crossref","first-page":"1048","DOI":"10.1109\/TPAMI.2009.28","article-title":"Learning graph matching","volume":"31","author":"Caetano","year":"2009","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"1","key":"10.1016\/j.inffus.2021.02.012_b276","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1007\/s11263-011-0442-2","article-title":"Unsupervised learning for graph matching","volume":"96","author":"Leordeanu","year":"2012","journal-title":"Int. J. Comput. Vis."},{"key":"10.1016\/j.inffus.2021.02.012_b277","doi-asserted-by":"crossref","unstructured":"A. Zanfir, C. Sminchisescu, Deep learning of graph matching, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 2684\u20132693.","DOI":"10.1109\/CVPR.2018.00284"},{"key":"10.1016\/j.inffus.2021.02.012_b278","doi-asserted-by":"crossref","unstructured":"T. Wang, H. Liu, Y. Li, Y. Jin, X. Hou, H. Ling, Learning combinatorial solver for graph matching, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020.","DOI":"10.1109\/CVPR42600.2020.00759"},{"key":"10.1016\/j.inffus.2021.02.012_b279","series-title":"Sensor Fusion IV: Control Paradigms and Data Structures, Vol. 1611","first-page":"586","article-title":"Method for registration of 3-d shapes","author":"Besl","year":"1992"},{"key":"10.1016\/j.inffus.2021.02.012_b280","doi-asserted-by":"crossref","unstructured":"S. Granger, X. Pennec, Multi-scale em-icp: A fast and robust approach for surface registration, in: Proceedings of the European Conference on Computer Vision, 2002, pp. 418\u2013432.","DOI":"10.1007\/3-540-47979-1_28"},{"issue":"13\u201314","key":"10.1016\/j.inffus.2021.02.012_b281","doi-asserted-by":"crossref","first-page":"1145","DOI":"10.1016\/j.imavis.2003.09.004","article-title":"Robust registration of 2D and 3D point sets","volume":"21","author":"Fitzgibbon","year":"2003","journal-title":"Image Vis. Comput."},{"issue":"3","key":"10.1016\/j.inffus.2021.02.012_b282","doi-asserted-by":"crossref","first-page":"299","DOI":"10.1016\/j.imavis.2004.05.007","article-title":"Robust euclidean alignment of 3D point sets: the trimmed iterative closest point algorithm","volume":"23","author":"Chetverikov","year":"2005","journal-title":"Image Vis. Comput."},{"issue":"3","key":"10.1016\/j.inffus.2021.02.012_b283","doi-asserted-by":"crossref","first-page":"133","DOI":"10.1007\/s10514-013-9327-2","article-title":"Comparing ICP variants on real-world data sets","volume":"34","author":"Pomerleau","year":"2013","journal-title":"Auton. Robots"},{"issue":"8","key":"10.1016\/j.inffus.2021.02.012_b284","doi-asserted-by":"crossref","first-page":"1019","DOI":"10.1016\/S0031-3203(98)80010-1","article-title":"New algorithms for 2D and 3D point matching: Pose estimation and correspondence","volume":"31","author":"Gold","year":"1998","journal-title":"Pattern Recognit."},{"issue":"2\u20133","key":"10.1016\/j.inffus.2021.02.012_b285","doi-asserted-by":"crossref","first-page":"114","DOI":"10.1016\/S1077-3142(03)00009-2","article-title":"A new point matching algorithm for non-rigid registration","volume":"89","author":"Chui","year":"2003","journal-title":"Comput. Vis. Image Underst."},{"key":"10.1016\/j.inffus.2021.02.012_b286","doi-asserted-by":"crossref","unstructured":"M. Sofka, G. Yang, C.V. Stewart, Simultaneous covariance driven correspondence (cdc) and transformation estimation in the expectation maximization framework, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2007, pp. 1\u20138.","DOI":"10.1109\/CVPR.2007.383166"},{"issue":"12","key":"10.1016\/j.inffus.2021.02.012_b287","doi-asserted-by":"crossref","first-page":"2262","DOI":"10.1109\/TPAMI.2010.46","article-title":"Point set registration: Coherent point drift","volume":"32","author":"Myronenko","year":"2010","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"1","key":"10.1016\/j.inffus.2021.02.012_b288","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1109\/TIP.2015.2467217","article-title":"Non-rigid point set registration by preserving global and local structures","volume":"25","author":"Ma","year":"2016","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.inffus.2021.02.012_b289","doi-asserted-by":"crossref","unstructured":"S. Zhang, Y. Yang, K. Yang, Y. Luo, S.-H. Ong, Point set registration with global-local correspondence and transformation estimation, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2669\u20132677.","DOI":"10.1109\/ICCV.2017.291"},{"key":"10.1016\/j.inffus.2021.02.012_b290","doi-asserted-by":"crossref","unstructured":"Y. Tsin, T. Kanade, A correlation-based approach to robust point set registration, in: Proceedings of the European Conference on Computer Vision, 2004, pp. 558\u2013569.","DOI":"10.1007\/978-3-540-24672-5_44"},{"key":"10.1016\/j.inffus.2021.02.012_b291","doi-asserted-by":"crossref","unstructured":"D. Campbell, L. Petersson, An adaptive data representation for robust point-set registration and merging, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 4292\u20134300.","DOI":"10.1109\/ICCV.2015.488"},{"key":"10.1016\/j.inffus.2021.02.012_b292","article-title":"Point set registration for 3D range scans using fuzzy cluster-based metric and efficient global optimization","author":"Liao","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"5","key":"10.1016\/j.inffus.2021.02.012_b293","doi-asserted-by":"crossref","first-page":"762","DOI":"10.1109\/TPAMI.2005.108","article-title":"Precision range image registration using a robust surface interpenetration measure and enhanced genetic algorithms","volume":"27","author":"Silva","year":"2005","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"12","key":"10.1016\/j.inffus.2021.02.012_b294","doi-asserted-by":"crossref","first-page":"1598","DOI":"10.1016\/j.cviu.2011.05.008","article-title":"Stochastic global optimization for robust point set registration","volume":"115","author":"Papazov","year":"2011","journal-title":"Comput. Vis. Image Underst."},{"key":"10.1016\/j.inffus.2021.02.012_b295","doi-asserted-by":"crossref","unstructured":"H. Li, R. Hartley, The 3d-3d registration problem revisited, in: Proceedings of the IEEE International Conference on Computer Vision, 2007, pp. 1\u20138.","DOI":"10.1109\/ICCV.2007.4409077"},{"key":"10.1016\/j.inffus.2021.02.012_b296","doi-asserted-by":"crossref","unstructured":"A. Parra\u00a0Bustos, T.-J. Chin, D. Suter, Fast rotation search with stereographic projections for 3d registration, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 3930\u20133937.","DOI":"10.1109\/CVPR.2014.502"},{"key":"10.1016\/j.inffus.2021.02.012_b297","doi-asserted-by":"crossref","unstructured":"D. Campbell, L. Petersson, Gogma: Globally-optimal gaussian mixture alignment, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 5685\u20135694.","DOI":"10.1109\/CVPR.2016.613"},{"issue":"11","key":"10.1016\/j.inffus.2021.02.012_b298","doi-asserted-by":"crossref","first-page":"2241","DOI":"10.1109\/TPAMI.2015.2513405","article-title":"Go-ICP: A globally optimal solution to 3D ICP point-set registration","volume":"38","author":"Yang","year":"2016","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2021.02.012_b299","doi-asserted-by":"crossref","unstructured":"Y. Liu, C. Wang, Z. Song, M. Wang, Efficient global point cloud registration by matching rotation invariant features through translation search, in: Proceedings of the European Conference on Computer Vision, 2018, pp. 448\u2013463.","DOI":"10.1007\/978-3-030-01258-8_28"},{"issue":"4","key":"10.1016\/j.inffus.2021.02.012_b300","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1145\/2897824.2925913","article-title":"Point registration via efficient convex relaxation","volume":"35","author":"Maron","year":"2016","journal-title":"ACM Trans. Graph."},{"issue":"6","key":"10.1016\/j.inffus.2021.02.012_b301","doi-asserted-by":"crossref","first-page":"381","DOI":"10.1145\/358669.358692","article-title":"Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography","volume":"24","author":"Fischler","year":"1981","journal-title":"Commun. ACM"},{"key":"10.1016\/j.inffus.2021.02.012_b302","doi-asserted-by":"crossref","unstructured":"J.-C. Bazin, Y. Seo, M. Pollefeys, Globally optimal consensus set maximization through rotation search, in: Proceedings of the Asian Conference on Computer Vision, 2012, pp. 539\u2013551.","DOI":"10.1007\/978-3-642-37444-9_42"},{"key":"10.1016\/j.inffus.2021.02.012_b303","doi-asserted-by":"crossref","unstructured":"J. Ma, J. Zhao, J. Tian, Z. Tu, A.L. Yuille, Robust estimation of nonrigid transformation for point set registration, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 2147\u20132154.","DOI":"10.1109\/CVPR.2013.279"},{"issue":"5","key":"10.1016\/j.inffus.2021.02.012_b304","doi-asserted-by":"crossref","first-page":"433","DOI":"10.1109\/34.765655","article-title":"Using spin images for efficient object recognition in cluttered 3D scenes","volume":"21","author":"Johnson","year":"1999","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2021.02.012_b305","series-title":"Symposium on Geometry Processing, Vol. 2, Vienna, Austria","first-page":"5","article-title":"Robust global registration","author":"Gelfand","year":"2005"},{"key":"10.1016\/j.inffus.2021.02.012_b306","doi-asserted-by":"crossref","unstructured":"R.B. Rusu, N. Blodow, M. Beetz, Fast point feature histograms (fpfh) for 3d registration, in: Proceedings of the IEEE International Conference on Robotics and Automation, 2009, pp. 3212\u20133217.","DOI":"10.1109\/ROBOT.2009.5152473"},{"key":"10.1016\/j.inffus.2021.02.012_b307","unstructured":"P. Torr, A. Zisserman, Robust computation and parametrization of multiple view relations, in: Proceedings of the International Conference on Computer Vision, 1998, pp. 727\u2013732."},{"issue":"1","key":"10.1016\/j.inffus.2021.02.012_b308","doi-asserted-by":"crossref","first-page":"138","DOI":"10.1006\/cviu.1999.0832","article-title":"MLESAC: A new robust estimator with application to estimating image geometry","volume":"78","author":"Torr","year":"2000","journal-title":"Comput. Vis. Image Underst."},{"key":"10.1016\/j.inffus.2021.02.012_b309","unstructured":"K. Ni, H. Jin, F. Dellaert, Groupsac: Efficient consensus in the presence of groupings, in: Proceedings of the IEEE International Conference on Computer Vision, 2009, pp. 2193\u20132200."},{"issue":"8","key":"10.1016\/j.inffus.2021.02.012_b310","doi-asserted-by":"crossref","first-page":"2022","DOI":"10.1109\/TPAMI.2012.257","article-title":"Usac: a universal framework for random sample consensus","volume":"35","author":"Raguram","year":"2012","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2021.02.012_b311","doi-asserted-by":"crossref","unstructured":"D. Barath, J. Matas, J. Noskova, Magsac: marginalizing sample consensus, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 10197\u201310205.","DOI":"10.1109\/CVPR.2019.01044"},{"key":"10.1016\/j.inffus.2021.02.012_b312","unstructured":"D. Nasuto, J.M.B.R. Craddock, Napsac: High noise, high dimensional robust estimation-its in the bag, in: Proc. Brit. Mach. Vision Conf. 2002, pp. 458\u2013467."},{"key":"10.1016\/j.inffus.2021.02.012_b313","doi-asserted-by":"crossref","unstructured":"O. Chum, J. Matas, Matching with prosac-progressive sample consensus, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2005, pp. 220\u2013226.","DOI":"10.1109\/CVPR.2005.221"},{"key":"10.1016\/j.inffus.2021.02.012_b314","series-title":"Joint Pattern Recognition Symposium","first-page":"236","article-title":"Locally optimized RANSAC","author":"Chum","year":"2003"},{"key":"10.1016\/j.inffus.2021.02.012_b315","doi-asserted-by":"crossref","unstructured":"K. Lebeda, J. Matas, O. Chum, Fixing the locally optimized ransac-ful experimental evaluation, in: Proceedings of the British Machine Vision Conference, 2012, pp. 1\u201311.","DOI":"10.5244\/C.26.95"},{"year":"2019","series-title":"Progressive NAPSAC: sampling from gradually growing neighborhoods","author":"Barath","key":"10.1016\/j.inffus.2021.02.012_b316"},{"key":"10.1016\/j.inffus.2021.02.012_b317","doi-asserted-by":"crossref","unstructured":"D. Barath, J. Noskova, M. Ivashechkin, J. Matas, MAGSAC++, a fast, reliable and accurate robust estimator, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020, pp. 1304\u20131312.","DOI":"10.1109\/CVPR42600.2020.00138"},{"issue":"2","key":"10.1016\/j.inffus.2021.02.012_b318","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1007\/s11263-006-0017-9","article-title":"Fast non-rigid surface detection, registration and realistic augmentation","volume":"76","author":"Pilet","year":"2008","journal-title":"Int. J. Comput. Vis."},{"issue":"4","key":"10.1016\/j.inffus.2021.02.012_b319","doi-asserted-by":"crossref","first-page":"1706","DOI":"10.1109\/TIP.2014.2307478","article-title":"Robust point matching via vector field consensus","volume":"23","author":"Ma","year":"2014","journal-title":"IEEE Trans. Image Process."},{"issue":"5","key":"10.1016\/j.inffus.2021.02.012_b320","doi-asserted-by":"crossref","first-page":"1115","DOI":"10.1109\/TSP.2014.2388434","article-title":"Robust L2E estimation of transformation for non-rigid registration","volume":"63","author":"Ma","year":"2015","journal-title":"IEEE Trans. Signal Process."},{"key":"10.1016\/j.inffus.2021.02.012_b321","doi-asserted-by":"crossref","first-page":"128","DOI":"10.1016\/j.ins.2017.07.010","article-title":"Feature guided Gaussian mixture model with semi-supervised EM and local geometric constraint for retinal image registration","volume":"417","author":"Ma","year":"2017","journal-title":"Inform. Sci."},{"issue":"1","key":"10.1016\/j.inffus.2021.02.012_b322","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1109\/TPAMI.2008.265","article-title":"Direct estimation of nonrigid registrations with image-based self-occlusion reasoning","volume":"32","author":"Gay-Bellile","year":"2008","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"1","key":"10.1016\/j.inffus.2021.02.012_b323","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s11263-010-0318-x","article-title":"Rejecting mismatches by correspondence function","volume":"89","author":"Li","year":"2010","journal-title":"Int. J. Comput. Vis."},{"issue":"12","key":"10.1016\/j.inffus.2021.02.012_b324","doi-asserted-by":"crossref","first-page":"3519","DOI":"10.1016\/j.patcog.2013.05.017","article-title":"Regularized vector field learning with sparse approximation for mismatch removal","volume":"46","author":"Ma","year":"2013","journal-title":"Pattern Recognit."},{"issue":"12","key":"10.1016\/j.inffus.2021.02.012_b325","doi-asserted-by":"crossref","first-page":"6469","DOI":"10.1109\/TGRS.2015.2441954","article-title":"Robust feature matching for remote sensing image registration via locally linear transforming","volume":"53","author":"Ma","year":"2015","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2021.02.012_b326","doi-asserted-by":"crossref","DOI":"10.1109\/TNNLS.2018.2872528","article-title":"Nonrigid point set registration with robust transformation learning under manifold regularization","author":"Ma","year":"2019","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.inffus.2021.02.012_b327","doi-asserted-by":"crossref","first-page":"231","DOI":"10.1016\/j.patcog.2019.04.001","article-title":"Feature-guided Gaussian mixture model for image matching","volume":"92","author":"Ma","year":"2019","journal-title":"Pattern Recognit."},{"issue":"3","key":"10.1016\/j.inffus.2021.02.012_b328","doi-asserted-by":"crossref","first-page":"26","DOI":"10.1145\/2602142","article-title":"Feature matching with bounded distortion","volume":"33","author":"Lipman","year":"2014","journal-title":"ACM Trans. Graph."},{"key":"10.1016\/j.inffus.2021.02.012_b329","doi-asserted-by":"crossref","unstructured":"J. Bian, W.-Y. Lin, Y. Matsushita, S.-K. Yeung, T.-D. Nguyen, M.-M. Cheng, Gms: Grid-based motion statistics for fast, ultra-robust feature correspondence, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4181\u20134190.","DOI":"10.1109\/CVPR.2017.302"},{"issue":"5","key":"10.1016\/j.inffus.2021.02.012_b330","doi-asserted-by":"crossref","first-page":"512","DOI":"10.1007\/s11263-018-1117-z","article-title":"Locality preserving matching","volume":"127","author":"Ma","year":"2019","journal-title":"Int. J. Comput. Vis."},{"issue":"8","key":"10.1016\/j.inffus.2021.02.012_b331","doi-asserted-by":"crossref","first-page":"4435","DOI":"10.1109\/TGRS.2018.2820040","article-title":"Guided locality preserving feature matching for remote sensing image registration","volume":"56","author":"Ma","year":"2018","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"9","key":"10.1016\/j.inffus.2021.02.012_b332","doi-asserted-by":"crossref","first-page":"6462","DOI":"10.1109\/TGRS.2019.2906183","article-title":"Multiscale locality and rank preservation for robust feature matching of remote sensing images","volume":"57","author":"Jiang","year":"2019","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2021.02.012_b333","doi-asserted-by":"crossref","first-page":"736","DOI":"10.1109\/TIP.2019.2934572","article-title":"Robust feature matching using spatial clustering with heavy outliers","volume":"29","author":"Jiang","year":"2019","journal-title":"IEEE Trans. Image Process."},{"issue":"1","key":"10.1016\/j.inffus.2021.02.012_b334","doi-asserted-by":"crossref","first-page":"34","DOI":"10.1109\/TPAMI.2017.2652468","article-title":"Code: Coherence based decision boundaries for feature correspondence","volume":"40","author":"Lin","year":"2017","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2021.02.012_b335","series-title":"Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing","first-page":"2217","article-title":"Progressive filtering for feature matching","author":"Jiang","year":"2019"},{"key":"10.1016\/j.inffus.2021.02.012_b336","article-title":"Robust feature matching for remote sensing image registration via linear adaptive filtering","author":"Jiang","year":"2020","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2021.02.012_b337","doi-asserted-by":"crossref","DOI":"10.1109\/TIP.2020.2996092","article-title":"Progressive feature matching: Incremental graph construction and optimization","author":"Lee","year":"2020","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.inffus.2021.02.012_b338","doi-asserted-by":"crossref","unstructured":"E. Brachmann, A. Krull, S. Nowozin, J. Shotton, F. Michel, S. Gumhold, C. Rother, Dsac-differentiable ransac for camera localization, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 6684\u20136692.","DOI":"10.1109\/CVPR.2017.267"},{"key":"10.1016\/j.inffus.2021.02.012_b339","doi-asserted-by":"crossref","unstructured":"E. Brachmann, C. Rother, Neural-guided ransac: Learning where to sample model hypotheses, in: Proceedings of the IEEE International Conference on Computer Vision, 2019, pp. 4322\u20134331.","DOI":"10.1109\/ICCV.2019.00442"},{"key":"10.1016\/j.inffus.2021.02.012_b340","doi-asserted-by":"crossref","unstructured":"F. Kluger, E. Brachmann, H. Ackermann, C. Rother, M.Y. Yang, B. Rosenhahn, Consac: Robust multi-model fitting by conditional sample consensus, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020, pp. 4634\u20134643.","DOI":"10.1109\/CVPR42600.2020.00469"},{"key":"10.1016\/j.inffus.2021.02.012_b341","unstructured":"K. Moo\u00a0Yi, E. Trulls, Y. Ono, V. Lepetit, M. Salzmann, P. Fua, Learning to find good correspondences, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 2666\u20132674."},{"issue":"8","key":"10.1016\/j.inffus.2021.02.012_b342","doi-asserted-by":"crossref","first-page":"4045","DOI":"10.1109\/TIP.2019.2906490","article-title":"Lmr: Learning a two-class classifier for mismatch removal","volume":"28","author":"Ma","year":"2019","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.inffus.2021.02.012_b343","doi-asserted-by":"crossref","unstructured":"C. Zhao, Z. Cao, C. Li, X. Li, J. Yang, Nm-net: Mining reliable neighbors for robust feature correspondences, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 215\u2013224.","DOI":"10.1109\/CVPR.2019.00030"},{"key":"10.1016\/j.inffus.2021.02.012_b344","doi-asserted-by":"crossref","unstructured":"R. Ranftl, V. Koltun, Deep fundamental matrix estimation, in: Proceedings of the European Conference on Computer Vision, 2018, pp. 284\u2013299.","DOI":"10.1007\/978-3-030-01246-5_18"},{"key":"10.1016\/j.inffus.2021.02.012_b345","doi-asserted-by":"crossref","unstructured":"J. Zhang, D. Sun, Z. Luo, A. Yao, L. Zhou, T. Shen, Y. Chen, L. Quan, H. Liao, Learning two-view correspondences and geometry using order-aware network, in: Proceedings of the IEEE International Conference on Computer Vision, 2019, pp. 5845\u20135854.","DOI":"10.1109\/ICCV.2019.00594"},{"key":"10.1016\/j.inffus.2021.02.012_b346","doi-asserted-by":"crossref","unstructured":"P.-E. Sarlin, D. DeTone, T. Malisiewicz, A. Rabinovich, Superglue: Learning feature matching with graph neural networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020, pp. 4938\u20134947.","DOI":"10.1109\/CVPR42600.2020.00499"},{"issue":"10","key":"10.1016\/j.inffus.2021.02.012_b347","doi-asserted-by":"crossref","first-page":"1699","DOI":"10.1109\/JPROC.2003.817864","article-title":"Medical image registration using mutual information","volume":"91","author":"Maes","year":"2003","journal-title":"Proc. IEEE"},{"key":"10.1016\/j.inffus.2021.02.012_b348","series-title":"Information Processing in Medical Imaging, Vol. 3","first-page":"263","article-title":"Automated multi-modality image registration based on information theory","author":"Collignon","year":"1995"},{"issue":"2","key":"10.1016\/j.inffus.2021.02.012_b349","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1109\/42.563664","article-title":"Multimodality image registration by maximization of mutual information","volume":"16","author":"Maes","year":"1997","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.inffus.2021.02.012_b350","doi-asserted-by":"crossref","unstructured":"P.S. Reel, L.S. Dooley, K.C.P. Wong, A. B\u00f6rner, Multimodal retinal image registration using a fast principal component analysis hybrid-based similarity measure, in: Proceedings of the IEEE International Conference on Image Processing, 2013, pp. 1428\u20131432.","DOI":"10.1109\/ICIP.2013.6738293"},{"key":"10.1016\/j.inffus.2021.02.012_b351","series-title":"Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics","article-title":"On measures of entropy and information","author":"R\u00e9nyi","year":"1961"},{"issue":"5","key":"10.1016\/j.inffus.2021.02.012_b352","doi-asserted-by":"crossref","first-page":"1211","DOI":"10.1109\/TSP.2003.810305","article-title":"A generalized divergence measure for robust image registration","volume":"51","author":"He","year":"2003","journal-title":"IEEE Trans. Signal Process."},{"issue":"5","key":"10.1016\/j.inffus.2021.02.012_b353","doi-asserted-by":"crossref","first-page":"788","DOI":"10.1109\/TIP.2008.918951","article-title":"Using spanning graphs for efficient image registration","volume":"17","author":"Sabuncu","year":"2008","journal-title":"IEEE Trans. Image Process."},{"issue":"4","key":"10.1016\/j.inffus.2021.02.012_b354","doi-asserted-by":"crossref","first-page":"957","DOI":"10.1109\/TIP.2007.891772","article-title":"A new divergence measure for medical image registration","volume":"16","author":"Martin","year":"2007","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.inffus.2021.02.012_b355","series-title":"Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"950","article-title":"Robust computation of mutual information using spatially adaptive meshes","author":"Sundar","year":"2007"},{"issue":"10","key":"10.1016\/j.inffus.2021.02.012_b356","doi-asserted-by":"crossref","first-page":"1819","DOI":"10.1109\/TMI.2011.2150240","article-title":"A nonrigid registration framework using spatially encoded mutual information and free-form deformations","volume":"30","author":"Zhuang","year":"2011","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"8","key":"10.1016\/j.inffus.2021.02.012_b357","doi-asserted-by":"crossref","first-page":"1660","DOI":"10.1016\/j.patcog.2008.11.033","article-title":"Image registration using Markov random coefficient and geometric transformation fields","volume":"42","author":"Arce-Santana","year":"2009","journal-title":"Pattern Recognit."},{"issue":"1","key":"10.1016\/j.inffus.2021.02.012_b358","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1016\/j.media.2010.08.004","article-title":"A curvelet-based patient-specific prior for accurate multi-modal brain image rigid registration","volume":"15","author":"Freiman","year":"2011","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.inffus.2021.02.012_b359","doi-asserted-by":"crossref","first-page":"440","DOI":"10.1016\/j.ins.2014.10.051","article-title":"Non-rigid multi-modal medical image registration by combining L-BFGS-b with cat swarm optimization","volume":"316","author":"Yang","year":"2015","journal-title":"Inf. Sci."},{"issue":"6","key":"10.1016\/j.inffus.2021.02.012_b360","doi-asserted-by":"crossref","first-page":"1937","DOI":"10.1016\/j.patcog.2014.12.014","article-title":"Feature neighbourhood mutual information for multi-modal image registration: an application to eye fundus imaging","volume":"48","author":"Legg","year":"2015","journal-title":"Pattern Recognit."},{"issue":"10","key":"10.1016\/j.inffus.2021.02.012_b361","doi-asserted-by":"crossref","first-page":"1038","DOI":"10.1109\/42.959301","article-title":"Rigid registration of 3-d ultrasound with MR images: a new approach combining intensity and gradient information","volume":"20","author":"Roche","year":"2001","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"5","key":"10.1016\/j.inffus.2021.02.012_b362","doi-asserted-by":"crossref","first-page":"577","DOI":"10.1016\/j.media.2008.06.006","article-title":"Automatic CT-ultrasound registration for diagnostic imaging and image-guided intervention","volume":"12","author":"Wein","year":"2008","journal-title":"Med. Image Anal."},{"issue":"1","key":"10.1016\/j.inffus.2021.02.012_b363","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1016\/j.media.2007.06.005","article-title":"Non-rigid registration of multi-modal images using both mutual information and cross-correlation","volume":"12","author":"Andronache","year":"2008","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.inffus.2021.02.012_b364","unstructured":"A.K. Jain, F. Farrokhnia, Unsupervised texture segmentation using gabor filters, in: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings, 1990, pp. 14\u201319."},{"key":"10.1016\/j.inffus.2021.02.012_b365","series-title":"Proceedings of the Biennial International Conference on Information Processing in Medical Imaging","first-page":"504","article-title":"Robust nonrigid multimodal image registration using local frequency maps","author":"Jian","year":"2005"},{"issue":"4","key":"10.1016\/j.inffus.2021.02.012_b366","doi-asserted-by":"crossref","first-page":"622","DOI":"10.1016\/j.media.2010.07.002","article-title":"Dramms: Deformable registration via attribute matching and mutual-saliency weighting","volume":"15","author":"Ou","year":"2011","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.inffus.2021.02.012_b367","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"1","article-title":"Matching local self-similarities across images and videos","author":"Shechtman","year":"2007"},{"key":"10.1016\/j.inffus.2021.02.012_b368","doi-asserted-by":"crossref","first-page":"1423","DOI":"10.1016\/j.media.2012.05.008","article-title":"MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration","volume":"16","author":"Heinrich","year":"2012","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.inffus.2021.02.012_b369","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"187","article-title":"Towards realtime multimodal fusion for image-guided interventions using self-similarities","author":"Heinrich","year":"2013"},{"issue":"1","key":"10.1016\/j.inffus.2021.02.012_b370","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.media.2011.03.001","article-title":"Entropy and Laplacian images: Structural representations for multi-modal registration","volume":"16","author":"Wachinger","year":"2012","journal-title":"Med. Image Anal."},{"issue":"6","key":"10.1016\/j.inffus.2021.02.012_b371","doi-asserted-by":"crossref","first-page":"7599","DOI":"10.3390\/s130607599","article-title":"Two phase non-rigid multi-modal image registration using Weber local descriptor-based similarity metrics and normalized mutual information","volume":"13","author":"Yang","year":"2013","journal-title":"Sensors"},{"issue":"6","key":"10.1016\/j.inffus.2021.02.012_b372","doi-asserted-by":"crossref","first-page":"10562","DOI":"10.3390\/s140610562","article-title":"Diffusion maps for multimodal registration","volume":"14","author":"Piella","year":"2014","journal-title":"Sensors"},{"issue":"2","key":"10.1016\/j.inffus.2021.02.012_b373","doi-asserted-by":"crossref","first-page":"343","DOI":"10.1016\/j.media.2013.12.003","article-title":"Self-similarity weighted mutual information: a new nonrigid image registration metric","volume":"18","author":"Rivaz","year":"2014","journal-title":"Med. Image Anal."},{"issue":"3","key":"10.1016\/j.inffus.2021.02.012_b374","doi-asserted-by":"crossref","first-page":"708","DOI":"10.1109\/TMI.2013.2294630","article-title":"Nonrigid registration of ultrasound and MRI using contextual conditioned mutual information","volume":"33","author":"Rivaz","year":"2013","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.inffus.2021.02.012_b375","doi-asserted-by":"crossref","unstructured":"K. Kasiri, P. Fieguth, D.A. Clausi, Self-similarity measure for multi-modal image registration, in: Proceedings of the IEEE International Conference on Image Processing, 2016, pp. 4498\u20134502.","DOI":"10.1109\/ICIP.2016.7533211"},{"issue":"2","key":"10.1016\/j.inffus.2021.02.012_b376","doi-asserted-by":"crossref","first-page":"497","DOI":"10.1002\/mp.12049","article-title":"Fast and robust multimodal image registration using a local derivative pattern","volume":"44","author":"Jiang","year":"2017","journal-title":"Med. Phys."},{"key":"10.1016\/j.inffus.2021.02.012_b377","series-title":"2007 IEEE Conference on Computer Vision and Pattern Recognition","first-page":"1","article-title":"Keypoint descriptors for matching across multiple image modalities and non-linear intensity variations","author":"Kelman","year":"2007"},{"key":"10.1016\/j.inffus.2021.02.012_b378","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1016\/j.bspc.2015.03.004","article-title":"Robust point matching method for multimodal retinal image registration","volume":"19","author":"Wang","year":"2015","journal-title":"Biomed. Signal Process. Control"},{"issue":"2","key":"10.1016\/j.inffus.2021.02.012_b379","doi-asserted-by":"crossref","first-page":"410","DOI":"10.1364\/BOE.9.000410","article-title":"Multi-modal and multi-vendor retina image registration","volume":"9","author":"Li","year":"2018","journal-title":"Biomed. Opt. Express"},{"key":"10.1016\/j.inffus.2021.02.012_b380","series-title":"2009 IEEE Conference on Computer Vision and Pattern Recognition","first-page":"186","article-title":"Learning similarity measure for multi-modal 3D image registration","author":"Lee","year":"2009"},{"year":"2018","series-title":"Semi-supervised deep metrics for image registration","author":"Sedghi","key":"10.1016\/j.inffus.2021.02.012_b381"},{"key":"10.1016\/j.inffus.2021.02.012_b382","series-title":"Data Driven Treatment Response Assessment and Preterm, Perinatal, and Paediatric Image Analysis","first-page":"149","article-title":"Lstm spatial co-transformer networks for registration of 3D fetal US and mr brain images","author":"Wright","year":"2018"},{"year":"2018","series-title":"Learning Rigid Image Registration-Utilizing Convolutional Neural Networks for Medical Image Registration","author":"Sloan","key":"10.1016\/j.inffus.2021.02.012_b383"},{"key":"10.1016\/j.inffus.2021.02.012_b384","series-title":"2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)","first-page":"1070","article-title":"Label-driven weakly-supervised learning for multimodal deformable image registration","author":"Hu","year":"2018"},{"key":"10.1016\/j.inffus.2021.02.012_b385","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.media.2018.07.002","article-title":"Weakly-supervised convolutional neural networks for multimodal image registration","volume":"49","author":"Hu","year":"2018","journal-title":"Med. Image Anal."},{"year":"2019","series-title":"Fire: unsupervised bi-directional inter-modality registration using deep networks","author":"Wang","key":"10.1016\/j.inffus.2021.02.012_b386"},{"key":"10.1016\/j.inffus.2021.02.012_b387","doi-asserted-by":"crossref","unstructured":"P. Isola, J.-Y. Zhu, T. Zhou, A.A. Efros, Image-to-image translation with conditional adversarial networks, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1125\u20131134.","DOI":"10.1109\/CVPR.2017.632"},{"key":"10.1016\/j.inffus.2021.02.012_b388","series-title":"Advances in Neural Information Processing Systems","first-page":"700","article-title":"Unsupervised image-to-image translation networks","author":"Liu","year":"2017"},{"key":"10.1016\/j.inffus.2021.02.012_b389","doi-asserted-by":"crossref","unstructured":"Z. Yi, H. Zhang, P. Tan, M. Gong, Dualgan: Unsupervised dual learning for image-to-image translation, in: Proceedings of the IEEE international conference on computer vision, 2017, pp. 2849\u20132857.","DOI":"10.1109\/ICCV.2017.310"},{"key":"10.1016\/j.inffus.2021.02.012_b390","doi-asserted-by":"crossref","unstructured":"Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, J. Choo, Stargan: Unified generative adversarial networks for multi-domain image-to-image translation, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 8789\u20138797.","DOI":"10.1109\/CVPR.2018.00916"},{"key":"10.1016\/j.inffus.2021.02.012_b391","series-title":"Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"19","article-title":"Learning optimization updates for multimodal registration","author":"Guti\u00e9rrez-Becker","year":"2016"},{"issue":"1","key":"10.1016\/j.inffus.2021.02.012_b392","doi-asserted-by":"crossref","first-page":"5","DOI":"10.3390\/jimaging5010005","article-title":"Multi-modal medical image registration with full or partial data: a manifold learning approach","volume":"5","author":"Bashiri","year":"2019","journal-title":"J. Imaging"},{"issue":"2","key":"10.1016\/j.inffus.2021.02.012_b393","doi-asserted-by":"crossref","first-page":"939","DOI":"10.1109\/TGRS.2009.2034842","article-title":"Mutual-information-based registration of terrasar-x and ikonos imagery in urban areas","volume":"48","author":"Suri","year":"2009","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"11","key":"10.1016\/j.inffus.2021.02.012_b394","doi-asserted-by":"crossref","first-page":"3917","DOI":"10.1109\/TGRS.2008.2001685","article-title":"Efficient FFT-accelerated approach to invariant optical\u2013lidar registration","volume":"46","author":"Wong","year":"2008","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2021.02.012_b395","first-page":"87","article-title":"Exploring the optimal integration levels between SAR and optical data for better urban land cover mapping in the pearl river delta","volume":"64","author":"Zhang","year":"2018","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.inffus.2021.02.012_b396","series-title":"Proceedings of the IEEE International Geoscience and Remote Sensing Symposium","first-page":"5458","article-title":"Fusion of SAR and optical remote sensing data\u2014Challenges and recent trends","author":"Schmitt","year":"2017"},{"key":"10.1016\/j.inffus.2021.02.012_b397","doi-asserted-by":"crossref","unstructured":"D. Marcos, R. Hamid, D. Tuia, Geospatial correspondences for multimodal registration, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 5091\u20135100.","DOI":"10.1109\/CVPR.2016.550"},{"key":"10.1016\/j.inffus.2021.02.012_b398","series-title":"IEEE International Geoscience and Remote Sensing Symposium, Vol. 1","first-page":"104","article-title":"Similarity measures for multisensor remote sensing images","author":"Inglada","year":"2002"},{"issue":"18","key":"10.1016\/j.inffus.2021.02.012_b399","doi-asserted-by":"crossref","first-page":"3701","DOI":"10.1080\/0143116031000117047","article-title":"Mutual information-based image registration for remote sensing data","volume":"24","author":"Chen","year":"2003","journal-title":"Int. J. Remote Sens."},{"issue":"11","key":"10.1016\/j.inffus.2021.02.012_b400","doi-asserted-by":"crossref","first-page":"2445","DOI":"10.1109\/TGRS.2003.817664","article-title":"Performance of mutual information similarity measure for registration of multitemporal remote sensing images","volume":"41","author":"Chen","year":"2003","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"12","key":"10.1016\/j.inffus.2021.02.012_b401","doi-asserted-by":"crossref","first-page":"1495","DOI":"10.1109\/TIP.2003.819237","article-title":"Multiresolution registration of remote sensing imagery by optimization of mutual information using a stochastic gradient","volume":"12","author":"Cole-Rhodes","year":"2003","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.inffus.2021.02.012_b402","series-title":"Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Vol. 5","first-page":"3542","article-title":"Registration of high resolution SAR and optical images based on multiple features","author":"Yang","year":"2005"},{"key":"10.1016\/j.inffus.2021.02.012_b403","series-title":"Proceedings of the European Conference on Synthetic Aperture Radar","first-page":"1","article-title":"Registration of metric resolution SAR and optical images in urban areas","author":"Lehureau","year":"2008"},{"key":"10.1016\/j.inffus.2021.02.012_b404","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1016\/j.isprsjprs.2016.10.005","article-title":"Multimodal registration of remotely sensed images based on jeffrey\u2019s divergence","volume":"122","author":"Xu","year":"2016","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"issue":"5","key":"10.1016\/j.inffus.2021.02.012_b405","doi-asserted-by":"crossref","first-page":"700","DOI":"10.1109\/TPAMI.1987.4767966","article-title":"Registration of translated and rotated images using finite fourier transforms","author":"De\u00a0Castro","year":"1987","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"8","key":"10.1016\/j.inffus.2021.02.012_b406","doi-asserted-by":"crossref","first-page":"1266","DOI":"10.1109\/83.506761","article-title":"An FFT-based technique for translation, rotation, and scale-invariant image registration","volume":"5","author":"Reddy","year":"1996","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.inffus.2021.02.012_b407","series-title":"Proceedings of the IEEE International Geoscience and Remote Sensing Symposium","first-page":"7011","article-title":"A new registration algorithm for multimodal remote sensing images","author":"Xie","year":"2018"},{"issue":"3","key":"10.1016\/j.inffus.2021.02.012_b408","doi-asserted-by":"crossref","first-page":"188","DOI":"10.1109\/83.988953","article-title":"Extension of phase correlation to subpixel registration","volume":"11","author":"Foroosh","year":"2002","journal-title":"IEEE Trans. Image Process."},{"issue":"12","key":"10.1016\/j.inffus.2021.02.012_b409","doi-asserted-by":"crossref","first-page":"2379","DOI":"10.1364\/JOSAA.4.002379","article-title":"Relations between the statistics of natural images and the response properties of cortical cells","volume":"4","author":"Field","year":"1987","journal-title":"Josa A"},{"issue":"14","key":"10.1016\/j.inffus.2021.02.012_b410","doi-asserted-by":"crossref","first-page":"5429","DOI":"10.1080\/01431161.2019.1579941","article-title":"A novel extended phase correlation algorithm based on log-gabor filtering for multimodal remote sensing image registration","volume":"40","author":"Xie","year":"2019","journal-title":"Int. J. Remote Sens."},{"issue":"7","key":"10.1016\/j.inffus.2021.02.012_b411","doi-asserted-by":"crossref","first-page":"646","DOI":"10.1080\/2150704X.2018.1458343","article-title":"Mutual information based multi-modal remote sensing image registration using adaptive feature weight","volume":"9","author":"Zhang","year":"2018","journal-title":"Remote Sens. Lett."},{"issue":"9","key":"10.1016\/j.inffus.2021.02.012_b412","doi-asserted-by":"crossref","first-page":"6335","DOI":"10.1109\/TGRS.2019.2905585","article-title":"Os-flow: A robust algorithm for dense optical and sar image registration","volume":"57","author":"Xiang","year":"2019","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2021.02.012_b413","doi-asserted-by":"crossref","DOI":"10.1109\/TGRS.2020.2976865","article-title":"Os-pc: Combining feature representation and 3-d phase correlation for subpixel optical and SAR image registration","author":"Xiang","year":"2020","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"9","key":"10.1016\/j.inffus.2021.02.012_b414","doi-asserted-by":"crossref","first-page":"4190","DOI":"10.1109\/TIP.2012.2199124","article-title":"Second-order optimization of mutual information for real-time image registration","volume":"21","author":"Dame","year":"2012","journal-title":"IEEE Trans. Image Process."},{"issue":"10","key":"10.1016\/j.inffus.2021.02.012_b415","doi-asserted-by":"crossref","first-page":"4050","DOI":"10.1109\/TGRS.2012.2187456","article-title":"Robust automatic registration of multimodal satellite images using ccre with partial volume interpolation","volume":"50","author":"Hasan","year":"2012","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2021.02.012_b416","doi-asserted-by":"crossref","unstructured":"K. Karantzalos, A. Sotiras, N. Paragios, Efficient and automated multimodal satellite data registration through mrfs and linear programming, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2014, pp. 329\u2013336.","DOI":"10.1109\/CVPRW.2014.57"},{"issue":"11","key":"10.1016\/j.inffus.2021.02.012_b417","doi-asserted-by":"crossref","first-page":"6587","DOI":"10.1109\/TGRS.2016.2587321","article-title":"Multimodal remote sensing image registration with accuracy estimation at local and global scales","volume":"54","author":"Uss","year":"2016","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"2","key":"10.1016\/j.inffus.2021.02.012_b418","doi-asserted-by":"crossref","first-page":"107","DOI":"10.1049\/el:20082477","article-title":"Multi-spectral remote image registration based on SIFT","volume":"44","author":"Yi","year":"2008","journal-title":"Electron. Lett."},{"key":"10.1016\/j.inffus.2021.02.012_b419","doi-asserted-by":"crossref","unstructured":"M. Hasan, M.R. Pickering, X. Jia, Modified sift for multi-modal remote sensing image registration, in: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, 2012, pp. 2348\u20132351.","DOI":"10.1109\/IGARSS.2012.6351023"},{"key":"10.1016\/j.inffus.2021.02.012_b420","article-title":"Rank-based local self-similarity descriptor for optical-to-SAR image matching","author":"Xiong","year":"2019","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"5","key":"10.1016\/j.inffus.2021.02.012_b421","doi-asserted-by":"crossref","first-page":"2941","DOI":"10.1109\/TGRS.2017.2656380","article-title":"Robust registration of multimodal remote sensing images based on structural similarity","volume":"55","author":"Ye","year":"2017","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2021.02.012_b422","series-title":"Proceedings of the IEEE IAPR Workshop on Pattern Recognition in Remote Sensing","first-page":"1","article-title":"Multi-modal remote sensing image registration based on multi-scale phase congruency","author":"Cui","year":"2018"},{"key":"10.1016\/j.inffus.2021.02.012_b423","doi-asserted-by":"crossref","unstructured":"S. Cui, Y. Zhong, A. Ma, L. Zhang, A novel robust feature descriptor for multi-source remote sensing image registration, in: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, 2019, pp. 919\u2013922.","DOI":"10.1109\/IGARSS.2019.8900521"},{"issue":"11","key":"10.1016\/j.inffus.2021.02.012_b424","doi-asserted-by":"crossref","first-page":"6058","DOI":"10.1109\/TGRS.2015.2431498","article-title":"Automatic optical-to-SAR image registration by iterative line extraction and voronoi integrated spectral point matching","volume":"53","author":"Sui","year":"2015","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"4","key":"10.1016\/j.inffus.2021.02.012_b425","doi-asserted-by":"crossref","first-page":"722","DOI":"10.1109\/TPAMI.2008.300","article-title":"Lsd: A fast line segment detector with a false detection control","volume":"32","author":"Von\u00a0Gioi","year":"2008","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"3","key":"10.1016\/j.inffus.2021.02.012_b426","doi-asserted-by":"crossref","first-page":"336","DOI":"10.1109\/TPAMI.1982.4767255","article-title":"Dot pattern processing using voronoi neighborhoods","author":"Ahuja","year":"1982","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"1","key":"10.1016\/j.inffus.2021.02.012_b427","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1016\/S0031-3203(02)00054-7","article-title":"Spectral correspondence for point pattern matching","volume":"36","author":"Carcassoni","year":"2003","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.inffus.2021.02.012_b428","series-title":"Proceedings of the IEEE International Geoscience and Remote Sensing Symposium","first-page":"2582","article-title":"Registration for SAR and optical images based on straight line features and mutual information","author":"Xiong","year":"2016"},{"key":"10.1016\/j.inffus.2021.02.012_b429","series-title":"The Australian Pattern Recognition Society Conference: DICTA, Vol. 2003","article-title":"Phase congruency detects corners and edges","author":"Kovesi","year":"2003"},{"key":"10.1016\/j.inffus.2021.02.012_b430","series-title":"Proceedings of the IEEE International Geoscience and Remote Sensing Symposium","first-page":"5141","article-title":"Fast and robust structure-based multimodal geospatial image matching","author":"Ye","year":"2017"},{"issue":"4","key":"10.1016\/j.inffus.2021.02.012_b431","doi-asserted-by":"crossref","first-page":"658","DOI":"10.3390\/rs10040658","article-title":"A novel affine and contrast invariant descriptor for infrared and visible image registration","volume":"10","author":"Liu","year":"2018","journal-title":"Remote Sens."},{"issue":"2","key":"10.1016\/j.inffus.2021.02.012_b432","doi-asserted-by":"crossref","first-page":"1335","DOI":"10.1109\/TIE.2018.2833051","article-title":"Robust and fast registration of infrared and visible images for electro-optical pod","volume":"66","author":"Liu","year":"2018","journal-title":"IEEE Trans. Ind. Electron."},{"issue":"13","key":"10.1016\/j.inffus.2021.02.012_b433","doi-asserted-by":"crossref","first-page":"3712","DOI":"10.3390\/s20133712","article-title":"Detecting matching blunders of multi-source remote sensing images via graph theory","volume":"20","author":"Deng","year":"2020","journal-title":"Sensors"},{"key":"10.1016\/j.inffus.2021.02.012_b434","doi-asserted-by":"crossref","first-page":"38544","DOI":"10.1109\/ACCESS.2018.2853100","article-title":"Multi-temporal remote sensing image registration using deep convolutional features","volume":"6","author":"Yang","year":"2018","journal-title":"IEEE Access"},{"issue":"23","key":"10.1016\/j.inffus.2021.02.012_b435","doi-asserted-by":"crossref","first-page":"2836","DOI":"10.3390\/rs11232836","article-title":"Matching RGB and infrared remote sensing images with densely-connected convolutional neural networks","volume":"11","author":"Zhu","year":"2019","journal-title":"Remote Sens."},{"key":"10.1016\/j.inffus.2021.02.012_b436","series-title":"Proceedings of the IEEE International Geoscience and Remote Sensing Symposium","first-page":"6215","article-title":"Deep generative matching network for optical and SAR image registration","author":"Quan","year":"2018"},{"issue":"6","key":"10.1016\/j.inffus.2021.02.012_b437","doi-asserted-by":"crossref","first-page":"1811","DOI":"10.1109\/JSTARS.2018.2803212","article-title":"Exploring the potential of conditional adversarial networks for optical and SAR image matching","volume":"11","author":"Merkle","year":"2018","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"10.1016\/j.inffus.2021.02.012_b438","doi-asserted-by":"crossref","unstructured":"A. Zampieri, G. Charpiat, N. Girard, Y. Tarabalka, Multimodal image alignment through a multiscale chain of neural networks with application to remote sensing, in: Proceedings of the European Conference on Computer Vision, 2018, pp. 657\u2013673.","DOI":"10.1007\/978-3-030-01270-0_40"},{"key":"10.1016\/j.inffus.2021.02.012_b439","doi-asserted-by":"crossref","first-page":"178","DOI":"10.1016\/j.infrared.2019.04.021","article-title":"A grayscale weight with window algorithm for infrared and visible image registration","volume":"99","author":"Yu","year":"2019","journal-title":"Infrared Phys. Technol."},{"issue":"1","key":"10.1016\/j.inffus.2021.02.012_b440","doi-asserted-by":"crossref","first-page":"125","DOI":"10.3390\/s18010125","article-title":"Free-form deformation approach for registration of visible and infrared facial images in fever screening","volume":"18","author":"Dwith\u00a0Chenna","year":"2018","journal-title":"Sensors"},{"key":"10.1016\/j.inffus.2021.02.012_b441","series-title":"Scandinavian Conference on Image Analysis","first-page":"383","article-title":"Infrared-visual image registration based on corners and hausdorff distance","author":"Hrka\u0107","year":"2007"},{"issue":"19","key":"10.1016\/j.inffus.2021.02.012_b442","doi-asserted-by":"crossref","first-page":"4244","DOI":"10.3390\/s19194244","article-title":"Feature point matching based on distinct wavelength phase congruency and log-gabor filters in infrared and visible images","volume":"19","author":"Liu","year":"2019","journal-title":"Sensors"},{"issue":"5","key":"10.1016\/j.inffus.2021.02.012_b443","doi-asserted-by":"crossref","DOI":"10.1117\/1.JEI.24.5.053017","article-title":"Visible and infrared image registration based on visual salient features","volume":"24","author":"Wu","year":"2015","journal-title":"J. Electron. Imaging"},{"issue":"1","key":"10.1016\/j.inffus.2021.02.012_b444","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1186\/s40327-015-0028-0","article-title":"Infrared-visible image registration for augmented reality-based thermographic building diagnostics","volume":"3","author":"Liu","year":"2015","journal-title":"Vis. Eng."},{"key":"10.1016\/j.inffus.2021.02.012_b445","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2020.107377","article-title":"Non-rigid infrared and visible image registration by enhanced affine transformation","author":"Min","year":"2020","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.inffus.2021.02.012_b446","doi-asserted-by":"crossref","first-page":"42562","DOI":"10.1109\/ACCESS.2020.2976767","article-title":"Non-rigid registration for infrared and visible images via Gaussian weighted shape context and enhanced affine transformation","volume":"8","author":"Min","year":"2020","journal-title":"IEEE Access"},{"issue":"1","key":"10.1016\/j.inffus.2021.02.012_b447","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1016\/j.imavis.2010.08.002","article-title":"Visible and infrared image registration using trajectories and composite foreground images","volume":"29","author":"Bilodeau","year":"2011","journal-title":"Image Vis. Comput."},{"issue":"1","key":"10.1016\/j.inffus.2021.02.012_b448","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1016\/j.patrec.2012.03.022","article-title":"Visible and infrared image registration in man-made environments employing hybrid visual features","volume":"34","author":"Han","year":"2013","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.inffus.2021.02.012_b449","doi-asserted-by":"crossref","unstructured":"S. Sonn, G.-A. Bilodeau, P. Galinier, Fast and accurate registration of visible and infrared videos, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2013, pp. 308\u2013313.","DOI":"10.1109\/CVPRW.2013.53"},{"key":"10.1016\/j.inffus.2021.02.012_b450","series-title":"2015 IEEE Winter Conference on Applications of Computer Vision","first-page":"381","article-title":"A global-to-local framework for infrared and visible image sequence registration","author":"Yang","year":"2015"},{"issue":"2","key":"10.1016\/j.inffus.2021.02.012_b451","doi-asserted-by":"crossref","first-page":"384","DOI":"10.3390\/s17020384","article-title":"A hierarchical framework combining motion and feature information for infrared-visible video registration","volume":"17","author":"Sun","year":"2017","journal-title":"Sensors"},{"key":"10.1016\/j.inffus.2021.02.012_b452","doi-asserted-by":"crossref","unstructured":"D.-L. Nguyen, P.-L. St-Charles, G.-A. Bilodeau, Non-planar infrared-visible registration for uncalibrated stereo pairs, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2016, pp. 63\u201371.","DOI":"10.1109\/CVPRW.2016.48"},{"key":"10.1016\/j.inffus.2021.02.012_b453","doi-asserted-by":"crossref","unstructured":"L. Wang, C. Gao, Y. Zhao, T. Song, Q. Feng, Infrared and visible image registration using transformer adversarial network, in: Proceedings of the IEEE International Conference on Image Processing, 2018, 1248\u20131252.","DOI":"10.1109\/ICIP.2018.8451370"},{"year":"2018","series-title":"Multimodal matching using a hybrid convolutional neural network","author":"Baruch","key":"10.1016\/j.inffus.2021.02.012_b454"},{"key":"10.1016\/j.inffus.2021.02.012_b455","doi-asserted-by":"crossref","unstructured":"M. Arar, Y. Ginger, D. Danon, A.H. Bermano, D. Cohen-Or, Unsupervised multi-modal image registration via geometry preserving image-to-image translation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020, pp. 13410\u201313419.","DOI":"10.1109\/CVPR42600.2020.01342"},{"issue":"1","key":"10.1016\/j.inffus.2021.02.012_b456","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1007\/s11265-012-0679-1","article-title":"Mirf: a multimodal image registration and fusion module based on DT-CWT","volume":"71","author":"Ghantous","year":"2013","journal-title":"J. Signal Process. Syst."},{"issue":"2","key":"10.1016\/j.inffus.2021.02.012_b457","doi-asserted-by":"crossref","first-page":"210","DOI":"10.1016\/j.cviu.2011.10.006","article-title":"An iterative integrated framework for thermal\u2013visible image registration, sensor fusion, and people tracking for video surveillance applications","volume":"116","author":"Torabi","year":"2012","journal-title":"Comput. Vis. Image Underst."},{"key":"10.1016\/j.inffus.2021.02.012_b458","series-title":"Proceedings of the IAPR International Conference on Machine Vision Applications","first-page":"312","article-title":"Automatic target recognition by infrared and visible image matching","author":"Cheng","year":"2015"},{"key":"10.1016\/j.inffus.2021.02.012_b459","doi-asserted-by":"crossref","first-page":"5147","DOI":"10.1109\/TIP.2020.2980972","article-title":"Boosting structure consistency for multispectral and multimodal image registration","volume":"29","author":"Cao","year":"2020","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.inffus.2021.02.012_b460","doi-asserted-by":"crossref","DOI":"10.1016\/j.neucom.2020.07.066","article-title":"Reginet: Gradient guided multispectral image registration using convolutional neural networks","author":"Wei","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.inffus.2021.02.012_b461","series-title":"International Conference on Biometrics","first-page":"733","article-title":"Partial face matching between near infrared and visual images in mbgc portal challenge","author":"Yi","year":"2009"},{"key":"10.1016\/j.inffus.2021.02.012_b462","series-title":"International Conference on Biometrics","first-page":"523","article-title":"Face matching between near infrared and visible light images","author":"Yi","year":"2007"},{"issue":"1","key":"10.1016\/j.inffus.2021.02.012_b463","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1007\/s11263-006-0009-9","article-title":"Detecting irregularities in images and in video","volume":"74","author":"Boiman","year":"2007","journal-title":"Int. J. Comput. Vis."},{"key":"10.1016\/j.inffus.2021.02.012_b464","doi-asserted-by":"crossref","unstructured":"I. Rocco, R. Arandjelovic, J. Sivic, Convolutional neural network architecture for geometric matching, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 6148\u20136157.","DOI":"10.1109\/CVPR.2017.12"},{"issue":"5","key":"10.1016\/j.inffus.2021.02.012_b465","doi-asserted-by":"crossref","first-page":"1300","DOI":"10.1109\/TIP.2010.2093904","article-title":"Geodesic active fields\u2014a geometric framework for image registration","volume":"20","author":"Zosso","year":"2010","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.inffus.2021.02.012_b466","doi-asserted-by":"crossref","first-page":"130","DOI":"10.1016\/j.inffus.2018.09.009","article-title":"Multimodal image registration using Laplacian commutators","volume":"49","author":"Zimmer","year":"2019","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2021.02.012_b467","series-title":"NeuroImage","article-title":"Brainweb: Online interface to a 3D MRI simulated brain database","author":"Cocosco","year":"1997"},{"key":"10.1016\/j.inffus.2021.02.012_b468","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"177","article-title":"Multi-spectral SIFT for scene category recognition","author":"Brown","year":"2011"},{"year":"2015","series-title":"Wxbs: Wide baseline stereo generalizations","author":"Mishkin","key":"10.1016\/j.inffus.2021.02.012_b469"},{"year":"2018","series-title":"Single-view place recognition under seasonal changes","author":"Olid","key":"10.1016\/j.inffus.2021.02.012_b470"},{"key":"10.1016\/j.inffus.2021.02.012_b471","doi-asserted-by":"crossref","unstructured":"T. Sattler, W. Maddern, C. Toft, A. Torii, L. Hammarstrand, E. Stenborg, D. Safari, M. Okutomi, M. Pollefeys, J. Sivic, et al. Benchmarking 6dof outdoor visual localization in changing conditions, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8601\u20138610.","DOI":"10.1109\/CVPR.2018.00897"},{"key":"10.1016\/j.inffus.2021.02.012_b472","doi-asserted-by":"crossref","unstructured":"J. Heinly, E. Dunn, J.-M. Frahm, Comparative evaluation of binary features, in: Proceedings of the European Conference on Computer Vision, 2012, pp. 759\u2013773.","DOI":"10.1007\/978-3-642-33709-3_54"},{"key":"10.1016\/j.inffus.2021.02.012_b473","doi-asserted-by":"crossref","unstructured":"C.L. Zitnick, K. Ramnath, Edge foci interest points, in: Proceedings of the IEEE International Conference on Computer Vision, 2011, pp. 359\u2013366.","DOI":"10.1109\/ICCV.2011.6126263"},{"year":"2008","series-title":"Vlfeat: An open and portable library of computer vision algorithms","author":"Vedaldi","key":"10.1016\/j.inffus.2021.02.012_b474"},{"year":"2008","series-title":"Learning OpenCV: Computer vision with the OpenCV library","author":"Bradski","key":"10.1016\/j.inffus.2021.02.012_b475"},{"issue":"5","key":"10.1016\/j.inffus.2021.02.012_b476","doi-asserted-by":"crossref","first-page":"694","DOI":"10.1109\/42.736021","article-title":"Predicting error in rigid-body point-based registration","volume":"17","author":"Fitzpatrick","year":"1998","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"3","key":"10.1016\/j.inffus.2021.02.012_b477","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1109\/97.995823","article-title":"A universal image quality index","volume":"9","author":"Wang","year":"2002","journal-title":"IEEE Signal Process. Lett."},{"key":"10.1016\/j.inffus.2021.02.012_b478","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1016\/j.inffus.2016.03.003","article-title":"A review of remote sensing image fusion methods","volume":"32","author":"Ghassemian","year":"2016","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2021.02.012_b479","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/j.inffus.2018.09.004","article-title":"Fusiongan: A generative adversarial network for infrared and visible image fusion","volume":"48","author":"Ma","year":"2019","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2021.02.012_b480","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/j.inffus.2019.07.005","article-title":"Infrared and visible image fusion via detail preserving adversarial learning","volume":"54","author":"Ma","year":"2020","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2021.02.012_b481","doi-asserted-by":"crossref","first-page":"4980","DOI":"10.1109\/TIP.2020.2977573","article-title":"Ddcgan: A dual-discriminator conditional generative adversarial network for multi-resolution image fusion","volume":"29","author":"Ma","year":"2020","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.inffus.2021.02.012_b482","doi-asserted-by":"crossref","first-page":"40","DOI":"10.1016\/j.inffus.2020.08.022","article-title":"MFF-Gan: An unsupervised generative adversarial network with adaptive and gradient joint constraints for multi-focus image fusion","volume":"66","author":"Zhang","year":"2020","journal-title":"Inf. Fusion"},{"issue":"4","key":"10.1016\/j.inffus.2021.02.012_b483","doi-asserted-by":"crossref","first-page":"887","DOI":"10.1007\/s11517-018-1935-8","article-title":"Brain CT and MRI medical image fusion using convolutional neural networks and a dual-channel spiking cortical model","volume":"57","author":"Hou","year":"2019","journal-title":"Med. Biol. Eng. Comput."},{"key":"10.1016\/j.inffus.2021.02.012_b484","doi-asserted-by":"crossref","unstructured":"J. Yang, X. Fu, Y. Hu, Y. Huang, X. Ding, J. Paisley, Pannet: A deep network architecture for pan-sharpening, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 1753\u20131761.","DOI":"10.1109\/ICCV.2017.193"},{"key":"10.1016\/j.inffus.2021.02.012_b485","doi-asserted-by":"crossref","first-page":"110","DOI":"10.1016\/j.inffus.2020.04.006","article-title":"Pan-GAN: An unsupervised pan-sharpening method for remote sensing image fusion","volume":"62","author":"Ma","year":"2020","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2021.02.012_b486","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1016\/j.jvcir.2019.06.002","article-title":"Ghost-free multi exposure image fusion technique using dense sift descriptor and guided filter","volume":"62","author":"Hayat","year":"2019","journal-title":"J. Vis. Commun. Image Represent."},{"key":"10.1016\/j.inffus.2021.02.012_b487","doi-asserted-by":"crossref","unstructured":"K.R. Prabhakar, V.S. Srikar, R.V. Babu, Deepfuse: A deep unsupervised approach for exposure fusion with extreme exposure image pairs, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 4714\u20134722.","DOI":"10.1109\/ICCV.2017.505"},{"issue":"8","key":"10.1016\/j.inffus.2021.02.012_b488","doi-asserted-by":"crossref","first-page":"1982","DOI":"10.1109\/TMM.2019.2895292","article-title":"Fusegan: Learning to fuse multi-focus image via conditional generative adversarial network","volume":"21","author":"Guo","year":"2019","journal-title":"IEEE Trans. Multimed."},{"key":"10.1016\/j.inffus.2021.02.012_b489","doi-asserted-by":"crossref","unstructured":"H. Zhang, H. Xu, Y. Xiao, X. Guo, J. Ma, Rethinking the image fusion: A fast unified image fusion network based on proportional maintenance of gradient and intensity, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2020, pp. 12797\u201312804.","DOI":"10.1609\/aaai.v34i07.6975"},{"key":"10.1016\/j.inffus.2021.02.012_b490","article-title":"U2fusion: A unified unsupervised image fusion network","author":"Xu","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"6","key":"10.1016\/j.inffus.2021.02.012_b491","doi-asserted-by":"crossref","first-page":"989","DOI":"10.1080\/01431168908903939","article-title":"Review article digital change detection techniques using remotely-sensed data","volume":"10","author":"Singh","year":"1989","journal-title":"Int. J. Remote Sens."},{"issue":"2","key":"10.1016\/j.inffus.2021.02.012_b492","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1016\/S0034-4257(97)00112-0","article-title":"A comparison of four algorithms for change detection in an urban environment","volume":"63","author":"Ridd","year":"1998","journal-title":"Remote Sens. Environ."},{"issue":"4","key":"10.1016\/j.inffus.2021.02.012_b493","doi-asserted-by":"crossref","first-page":"2417","DOI":"10.1109\/TGRS.2012.2210901","article-title":"A change detection approach to flood mapping in urban areas using terrasar-x","volume":"51","author":"Giustarini","year":"2012","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"4","key":"10.1016\/j.inffus.2021.02.012_b494","doi-asserted-by":"crossref","first-page":"772","DOI":"10.1109\/LGRS.2009.2025059","article-title":"Unsupervised change detection in satellite images using principal component analysis and k-means clustering","volume":"6","author":"Celik","year":"2009","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"9","key":"10.1016\/j.inffus.2021.02.012_b495","doi-asserted-by":"crossref","first-page":"5349","DOI":"10.1109\/TGRS.2013.2288271","article-title":"Mimosa: An automatic change detection method for SAR time series","volume":"52","author":"Quin","year":"2013","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"4","key":"10.1016\/j.inffus.2021.02.012_b496","doi-asserted-by":"crossref","first-page":"697","DOI":"10.1109\/LGRS.2012.2219494","article-title":"Unsupervised change detection on SAR images using triplet Markov field model","volume":"10","author":"Wang","year":"2012","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"11","key":"10.1016\/j.inffus.2021.02.012_b497","doi-asserted-by":"crossref","first-page":"1976","DOI":"10.1016\/j.patcog.2004.07.010","article-title":"Objects based change detection in a pair of gray-level images","volume":"38","author":"Miller","year":"2005","journal-title":"Pattern Recognit."},{"issue":"2","key":"10.1016\/j.inffus.2021.02.012_b498","doi-asserted-by":"crossref","first-page":"399","DOI":"10.1080\/01431160601075582","article-title":"Object-based change detection using correlation image analysis and image segmentation","volume":"29","author":"Im","year":"2008","journal-title":"Int. J. Remote Sens."},{"issue":"3","key":"10.1016\/j.inffus.2021.02.012_b499","doi-asserted-by":"crossref","first-page":"122","DOI":"10.3390\/rs1030122","article-title":"Similarity measures of remotely sensed multi-sensor images for change detection applications","volume":"1","author":"Alberga","year":"2009","journal-title":"Remote Sens."},{"issue":"5","key":"10.1016\/j.inffus.2021.02.012_b500","doi-asserted-by":"crossref","first-page":"1428","DOI":"10.1109\/TGRS.2008.916476","article-title":"Conditional copulas for change detection in heterogeneous remote sensing images","volume":"46","author":"Mercier","year":"2008","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"3","key":"10.1016\/j.inffus.2021.02.012_b501","doi-asserted-by":"crossref","first-page":"799","DOI":"10.1109\/TIP.2014.2387013","article-title":"A new multivariate statistical model for change detection in images acquired by homogeneous and heterogeneous sensors","volume":"24","author":"Prendes","year":"2014","journal-title":"IEEE Trans. Image Process."},{"issue":"4","key":"10.1016\/j.inffus.2021.02.012_b502","doi-asserted-by":"crossref","first-page":"1889","DOI":"10.1137\/15M1047908","article-title":"A Bayesian nonparametric model coupled with a Markov random field for change detection in heterogeneous remote sensing images","volume":"9","author":"Prendes","year":"2016","journal-title":"SIAM J. Imaging Sci."},{"key":"10.1016\/j.inffus.2021.02.012_b503","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.isprsjprs.2016.02.013","article-title":"Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images","volume":"116","author":"Zhang","year":"2016","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"issue":"12","key":"10.1016\/j.inffus.2021.02.012_b504","doi-asserted-by":"crossref","first-page":"7066","DOI":"10.1109\/TGRS.2017.2739800","article-title":"Discriminative feature learning for unsupervised change detection in heterogeneous images based on a coupled neural network","volume":"55","author":"Zhao","year":"2017","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"year":"2012","series-title":"Monitoring Land-Use Change in Nakuru (Kenya) Using Multi-Sensor Satellite Data","author":"Mubea","key":"10.1016\/j.inffus.2021.02.012_b505"},{"issue":"1","key":"10.1016\/j.inffus.2021.02.012_b506","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TRO.2015.2496823","article-title":"Visual place recognition: A survey","volume":"32","author":"Lowry","year":"2015","journal-title":"IEEE Trans. Robot."},{"issue":"5","key":"10.1016\/j.inffus.2021.02.012_b507","doi-asserted-by":"crossref","first-page":"561","DOI":"10.1002\/rob.21595","article-title":"Summary maps for lifelong visual localization","volume":"33","author":"M\u00fchlfellner","year":"2016","journal-title":"J. Field Robotics"},{"issue":"3","key":"10.1016\/j.inffus.2021.02.012_b508","doi-asserted-by":"crossref","first-page":"194","DOI":"10.1109\/TIV.2017.2749181","article-title":"Simultaneous localization and mapping: A survey of current trends in autonomous driving","volume":"2","author":"Bresson","year":"2017","journal-title":"IEEE Trans. Intell. Veh."},{"issue":"2","key":"10.1016\/j.inffus.2021.02.012_b509","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1109\/TRO.2017.2788045","article-title":"Robust visual localization across seasons","volume":"34","author":"Naseer","year":"2018","journal-title":"IEEE Trans. Robot."},{"key":"10.1016\/j.inffus.2021.02.012_b510","doi-asserted-by":"crossref","unstructured":"J.L. Sch\u00f6nberger, M. Pollefeys, A. Geiger, T. Sattler, Semantic visual localization, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 6896\u20136906.","DOI":"10.1109\/CVPR.2018.00721"},{"key":"10.1016\/j.inffus.2021.02.012_b511","doi-asserted-by":"crossref","unstructured":"H. Taira, M. Okutomi, T. Sattler, M. Cimpoi, M. Pollefeys, J. Sivic, T. Pajdla, A. Torii, Inloc: Indoor visual localization with dense matching and view synthesis, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7199\u20137209.","DOI":"10.1109\/CVPR.2018.00752"},{"key":"10.1016\/j.inffus.2021.02.012_b512","doi-asserted-by":"crossref","unstructured":"L. Liu, H. Li, Y. Dai, Efficient global 2d-3d matching for camera localization in a large-scale 3d map, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2372\u20132381.","DOI":"10.1109\/ICCV.2017.260"},{"issue":"7","key":"10.1016\/j.inffus.2021.02.012_b513","doi-asserted-by":"crossref","first-page":"1045","DOI":"10.1109\/76.795058","article-title":"Object recognition and tracking for remote video surveillance","volume":"9","author":"Foresti","year":"1999","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"10.1016\/j.inffus.2021.02.012_b514","doi-asserted-by":"crossref","unstructured":"T.Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, H. Balakrishnan, Glimpse: Continuous, real-time object recognition on mobile devices, in: Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems, 2015, pp. 155\u2013168.","DOI":"10.1145\/2809695.2809711"},{"issue":"1","key":"10.1016\/j.inffus.2021.02.012_b515","first-page":"713","article-title":"Traffic surveillance: A review of vision based vehicle detection, recognition and tracking","volume":"11","author":"Abdulrahim","year":"2016","journal-title":"Int. J. Appl. Eng. Res."},{"issue":"7","key":"10.1016\/j.inffus.2021.02.012_b516","doi-asserted-by":"crossref","first-page":"1518","DOI":"10.3390\/s17071518","article-title":"Active multimodal sensor system for target recognition and tracking","volume":"17","author":"Qu","year":"2017","journal-title":"Sensors"},{"key":"10.1016\/j.inffus.2021.02.012_b517","doi-asserted-by":"crossref","unstructured":"S. Ojha, S. Sakhare, Image processing techniques for object tracking in video surveillance-a survey, in: Proceedings of the International Conference on Pervasive Computing, 2015, pp. 1\u20136.","DOI":"10.1109\/PERVASIVE.2015.7087180"},{"issue":"1","key":"10.1016\/j.inffus.2021.02.012_b518","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1007\/s12555-011-0226-z","article-title":"Automatic target recognition and tracking in forward-looking infrared image sequences with a complex background","volume":"11","author":"Yoon","year":"2013","journal-title":"Int. J. Control Autom. Syst."},{"key":"10.1016\/j.inffus.2021.02.012_b519","doi-asserted-by":"crossref","unstructured":"W. Zhou, Z. Li, P. Gao, Research on moving object detection and matching technology in multi-angle monitoring video, in: Proceedings of the Joint International Information Technology and Artificial Intelligence Conference, 2019, pp. 741\u2013744.","DOI":"10.1109\/ITAIC.2019.8785803"},{"key":"10.1016\/j.inffus.2021.02.012_b520","doi-asserted-by":"crossref","first-page":"318","DOI":"10.1016\/j.infrared.2018.06.023","article-title":"Moving object detection in aerial infrared images with registration accuracy prediction and feature points selection","volume":"92","author":"Xu","year":"2018","journal-title":"Infrared Phys. Technol."},{"key":"10.1016\/j.inffus.2021.02.012_b521","doi-asserted-by":"crossref","first-page":"164","DOI":"10.1016\/j.jvcir.2015.03.003","article-title":"Moving object detection and tracking from video captured by moving camera","volume":"30","author":"Hu","year":"2015","journal-title":"J. Vis. Commun. Image Represent."},{"key":"10.1016\/j.inffus.2021.02.012_b522","doi-asserted-by":"crossref","first-page":"100","DOI":"10.1016\/j.inffus.2016.02.001","article-title":"Infrared and visible image fusion via gradient transfer and total variation minimization","volume":"31","author":"Ma","year":"2016","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2021.02.012_b523","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/j.inffus.2015.05.007","article-title":"Jointly registering and fusing images from multiple sensors","volume":"27","author":"Li","year":"2016","journal-title":"Inf. Fusion"}],"container-title":["Information Fusion"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S156625352100035X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S156625352100035X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,8,25]],"date-time":"2024-08-25T01:22:52Z","timestamp":1724548972000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S156625352100035X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,9]]},"references-count":523,"alternative-id":["S156625352100035X"],"URL":"https:\/\/doi.org\/10.1016\/j.inffus.2021.02.012","relation":{},"ISSN":["1566-2535"],"issn-type":[{"type":"print","value":"1566-2535"}],"subject":[],"published":{"date-parts":[[2021,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A review of multimodal image matching: Methods and applications","name":"articletitle","label":"Article Title"},{"value":"Information Fusion","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.inffus.2021.02.012","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}