{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,30]],"date-time":"2024-12-30T18:56:17Z","timestamp":1735584977603},"reference-count":59,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,4,1]],"date-time":"2021-04-01T00:00:00Z","timestamp":1617235200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"name":"British Heart Foundation Accelerator Award, UK","award":["RP202G0230"]},{"name":"Royal Society International Exchanges Cost Share Award, UK"},{"name":"Hope Foundation for Cancer Research, UK","award":["RM60G0680"]},{"name":"Medical Research Council Confidence in Concept Award, UK","award":["MC_PC_17171"]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Fusion"],"published-print":{"date-parts":[[2021,4]]},"DOI":"10.1016\/j.inffus.2020.11.005","type":"journal-article","created":{"date-parts":[[2020,11,13]],"date-time":"2020-11-13T09:24:09Z","timestamp":1605259449000},"page":"131-148","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":195,"special_numbering":"C","title":["COVID-19 classification by CCSHNet with deep fusion using transfer learning and discriminant correlation analysis"],"prefix":"10.1016","volume":"68","author":[{"given":"Shui-Hua","family":"Wang","sequence":"first","affiliation":[]},{"given":"Deepak Ranjan","family":"Nayak","sequence":"additional","affiliation":[]},{"given":"David S.","family":"Guttery","sequence":"additional","affiliation":[]},{"given":"Xin","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Yu-Dong","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.inffus.2020.11.005_bib0001","unstructured":"COVID-19 CORONAVIRUS PANDEMIC, 2020. (12\/Oct\/2020). Available: https:\/\/www.worldometers.info\/coronavirus."},{"key":"10.1016\/j.inffus.2020.11.005_bib0002","doi-asserted-by":"crossref","unstructured":"A. Azar, D.E. Wessell, J.R. Janus, and L.V. Simon. Fractured aluminum nasopharyngeal swab during drive-through testing for COVID-19: radiographic detection of a retained foreign body. Skeletal Radiol. [Article; Early Access]. 5 (2020). doi: 10.1007\/s00256-020-03582-x.","DOI":"10.1007\/s00256-020-03582-x"},{"issue":"2","key":"10.1016\/j.inffus.2020.11.005_bib0003","article-title":"Chest-X-ray is a mainstay for follow-up in critically ill patients with covid-19 induced","volume":"129","author":"de Barry","year":"2020","journal-title":"Eur. J. Radiol."},{"key":"10.1016\/j.inffus.2020.11.005_bib0004","doi-asserted-by":"crossref","first-page":"W39","DOI":"10.2214\/AJR.20.23530","article-title":"Impact of the Prevalence on the Predictive Positive Value of Chest CT in the Diagnosis of Coronavirus Disease (COVID-19)","volume":"215","author":"Herpe","year":"2020","journal-title":"Am. J. Roentgenol."},{"year":"2020","series-title":"Contamination At CDC Lab Delayed Rollout of Coronavirus Tests","author":"Willman","key":"10.1016\/j.inffus.2020.11.005_bib0005"},{"key":"10.1016\/j.inffus.2020.11.005_bib0006","doi-asserted-by":"crossref","first-page":"E32","DOI":"10.1148\/radiol.2020200642","article-title":"Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: a Report of 1014 Cases,\"","volume":"296","author":"Ai","year":"2020","journal-title":"Radiology"},{"key":"10.1016\/j.inffus.2020.11.005_bib0007","first-page":"346","article-title":"A Typical Chest CT Appearance of a Case with Coronavirus Disease 2019 (COVID-19),","volume":"42","author":"Imre","year":"2020","journal-title":"Erciyes Med. J."},{"key":"10.1016\/j.inffus.2020.11.005_bib0008","doi-asserted-by":"crossref","first-page":"556","DOI":"10.1016\/j.crad.2020.04.009","article-title":"From ground-glass opacities to pulmonary emboli. A snapshot of the evolving role of a radiology unit facing the COVID-19 outbreak","volume":"75","author":"Flor","year":"2020","journal-title":"Clin. Radiol."},{"key":"10.1016\/j.inffus.2020.11.005_bib0009","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1371\/journal.pone.0236307","article-title":"Consolidation in a crisis: patterns of international collaboration in early COVID-19 research","volume":"15","author":"Fry","year":"2020","journal-title":"PLoS ONE"},{"key":"10.1016\/j.inffus.2020.11.005_bib0010","doi-asserted-by":"crossref","first-page":"275","DOI":"10.3233\/FI-2017-1492","article-title":"Pathological Brain Detection via Wavelet Packet Tsallis Entropy and Real-Coded Biogeography-based Optimization","volume":"151","author":"Li","year":"2017","journal-title":"Fundam. Inform."},{"key":"10.1016\/j.inffus.2020.11.005_bib0011","doi-asserted-by":"crossref","first-page":"23","DOI":"10.2174\/1871527315666161019153259","article-title":"A Pathological Brain Detection System based on Extreme Learning Machine Optimized by Bat Algorithm","volume":"16","author":"Lu","year":"2017","journal-title":"CNS Neurol. Dis. - Drug Targets"},{"key":"10.1016\/j.inffus.2020.11.005_bib0012","doi-asserted-by":"crossref","first-page":"2031","DOI":"10.1166\/jmihi.2019.2804","article-title":"Chinese Sign Language Fingerspelling Recognition via Six-Layer Convolutional Neural Network with Leaky Rectified Linear Units for Therapy and Rehabilitation","volume":"9","author":"Jiang","year":"2019","journal-title":"J. Med. Imaging Health Inform."},{"key":"10.1016\/j.inffus.2020.11.005_bib0013","series-title":"IEEE 13th International Conference on Anti-Counterfeiting, Security, and Identification","first-page":"324","article-title":"Classification of Thyroid Ultrasound Standard Plane Images using ResNet-18 Networks","author":"Guo","year":"2019"},{"key":"10.1016\/j.inffus.2020.11.005_bib0014","doi-asserted-by":"crossref","first-page":"16","DOI":"10.3390\/brainsci9090212","article-title":"Classification of Alzheimer's Disease with and without Imagery Using Gradient Boosted Machines and ResNet-50","volume":"9","author":"Fulton","year":"2019","journal-title":"Brain. Sci."},{"key":"10.1016\/j.inffus.2020.11.005_bib0015","first-page":"19","article-title":"Within the Lack of Chest COVID-19 X-ray Dataset: a Novel Detection Model Based on GAN and Deep Transfer Learning","volume":"12","author":"Loey","year":"2020","journal-title":"Symmetry-Basel"},{"key":"10.1016\/j.inffus.2020.11.005_bib0016","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1016\/j.compbiomed.2020.103805","article-title":"COVID-19 detection using deep learning models to exploit Social Mimic Optimization and structured chest X-ray images using fuzzy color and stacking approaches","volume":"121","author":"Togacar","year":"2020","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.inffus.2020.11.005_bib0017","first-page":"10","article-title":"Predicting COVID-19 Pneumonia Severity on Chest X-ray With Deep Learning","volume":"12","author":"Cohen","year":"2020","journal-title":"Cureus"},{"year":"2020","series-title":"COVIDGR Dataset and COVID-SDNet Methodology For Predicting COVID-19 Based On Chest X-Ray Images","author":"Tabik","key":"10.1016\/j.inffus.2020.11.005_bib0018"},{"key":"10.1016\/j.inffus.2020.11.005_bib0019","first-page":"11","article-title":"A deep learning approach to characterize 2019 coronavirus disease (COVID-19) pneumonia in chest CT images","author":"Ni","year":"2020","journal-title":"Eur. Radiol."},{"key":"10.1016\/j.inffus.2020.11.005_bib0020","doi-asserted-by":"crossref","first-page":"13","DOI":"10.2196\/19569","article-title":"COVID-19 Pneumonia Diagnosis Using a Simple 2D Deep Learning Framework With a Single Chest CT Image: model Development and Validation","volume":"22","author":"Ko","year":"2020","journal-title":"J. Med. Internet Res."},{"key":"10.1016\/j.inffus.2020.11.005_bib0021","doi-asserted-by":"crossref","first-page":"E65","DOI":"10.1148\/radiol.2020200905","article-title":"Using Artificial Intelligence to Detect COVID-19 and Community-acquired Pneumonia Based on Pulmonary CT: evaluation of the Diagnostic Accuracy","volume":"296","author":"Li","year":"2020","journal-title":"Radiology"},{"key":"10.1016\/j.inffus.2020.11.005_bib0022","doi-asserted-by":"crossref","first-page":"2615","DOI":"10.1109\/TMI.2020.2995965","article-title":"A Weakly-Supervised Framework for COVID-19 Classification and Lesion Localization From Chest CT","volume":"39","author":"Wang","year":"2020","journal-title":"IEEE Trans. Med. Imaging."},{"key":"10.1016\/j.inffus.2020.11.005_bib0023","first-page":"1","article-title":"A seven-layer convolutional neural network for chest CT based COVID-19 diagnosis using stochastic pooling","author":"Satapathy","year":"2020","journal-title":"IEEE Sens. J."},{"key":"10.1016\/j.inffus.2020.11.005_bib0024","doi-asserted-by":"crossref","first-page":"1332","DOI":"10.2991\/ijcis.d.200828.001","article-title":"Diagnosis of COVID-19 by Wavelet Renyi Entropy and Three-Segment Biogeography-Based Optimization","volume":"13","author":"Wu","year":"2020","journal-title":"Int. J. Comput. Intelligence Syst."},{"key":"10.1016\/j.inffus.2020.11.005_bib0025","doi-asserted-by":"crossref","first-page":"5","DOI":"10.2174\/1871527314666161124115531","article-title":"A Feature-Free 30-Disease Pathological Brain Detection System by Linear Regression Classifier","volume":"16","author":"Chen","year":"2017","journal-title":"CNS Neurol. Dis. - Drug Targets"},{"key":"10.1016\/j.inffus.2020.11.005_bib0026","doi-asserted-by":"crossref","first-page":"3813","DOI":"10.1007\/s11042-016-4161-0","article-title":"Wavelet energy entropy and linear regression classifier for detecting abnormal breasts","volume":"77","author":"Chen","year":"2018","journal-title":"Multimed. Tools Appl."},{"key":"10.1016\/j.inffus.2020.11.005_bib0027","article-title":"Enhanced 3D Point Cloud from a Light Field Image","volume":"12","author":"Farhood","year":"2020","journal-title":"Remote Sens. (Basel)"},{"key":"10.1016\/j.inffus.2020.11.005_bib0028","doi-asserted-by":"crossref","first-page":"23689","DOI":"10.1007\/s11042-019-7673-6","article-title":"Brain tumour segmentation using memory based learning method","volume":"78","author":"Debnath","year":"2019","journal-title":"Multimed. Tools. Appl."},{"key":"10.1016\/j.inffus.2020.11.005_bib0029","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1016\/j.eswa.2020.113420","article-title":"DECAF: deep Case-based Policy Inference for knowledge transfer in Reinforcement Learning","volume":"156","author":"Glatt","year":"2020","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.inffus.2020.11.005_bib0030","doi-asserted-by":"crossref","first-page":"41","DOI":"10.26833\/ijeg.681312","article-title":"Intelligent mapping of irrigated areas from landsat 8 images using transfer learning","volume":"6","author":"Benbahria","year":"2021","journal-title":"Int. J. Eng. Geoscie."},{"key":"10.1016\/j.inffus.2020.11.005_bib0031","doi-asserted-by":"crossref","first-page":"6724","DOI":"10.1109\/LRA.2020.3015448","article-title":"Good Robot!\": efficient Reinforcement Learning for Multi-Step Visual Tasks with Sim to Real Transfer","volume":"5","author":"Hundt","year":"2020","journal-title":"IEEE Robotics Automation Lett."},{"key":"10.1016\/j.inffus.2020.11.005_bib0032","doi-asserted-by":"crossref","first-page":"1837","DOI":"10.1007\/s11548-019-02004-1","article-title":"Deep transfer learning methods for colon cancer classification in confocal laser microscopy images","volume":"14","author":"Gessert","year":"2019","journal-title":"Int. J. Comput. Assist. Radiol. Surg."},{"key":"10.1016\/j.inffus.2020.11.005_bib0033","first-page":"1201","article-title":"Learning Document Image Features With SqueezeNet Convolutional Neural Network","volume":"33","author":"Hassanpour","year":"2020","journal-title":"Int. J. Eng."},{"key":"10.1016\/j.inffus.2020.11.005_bib0034","article-title":"Automatic diagnosis of melanoma using hyperspectral data and GoogLeNet","volume":"7","author":"Hirano","year":"2020","journal-title":"Skin Res. Technol. [Article; Early Access]."},{"key":"10.1016\/j.inffus.2020.11.005_bib0035","first-page":"34","article-title":"Spurious Valleys in One-hidden-layer Neural Network Optimization Landscapes","volume":"20","author":"Venturi","year":"2019","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.inffus.2020.11.005_bib0036","series-title":"7th Iberian Conference on Information Systems and Technologies (CISTI 2012","first-page":"1","article-title":"Comparison between decision-level and feature-level fusion of acoustic and linguistic features for spontaneous emotion recognition","author":"Planet","year":"2012"},{"key":"10.1016\/j.inffus.2020.11.005_bib0037","doi-asserted-by":"crossref","first-page":"577","DOI":"10.1109\/34.927459","article-title":"Feature-level and decision-level fusion of noncoincidently sampled sensors for land mine detection","volume":"23","author":"Gunatilaka","year":"2001","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2020.11.005_bib0038","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.asoc.2015.02.001","article-title":"Hybrid fusion of score level and adaptive fuzzy decision level fusions for the finger-knuckle-print based authentication","volume":"31","author":"Grover","year":"2015","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.inffus.2020.11.005_bib0039","doi-asserted-by":"crossref","first-page":"598","DOI":"10.1109\/83.913594","article-title":"A shape- and texture-based enhanced fisher classifier for face recognition","volume":"10","author":"Liu","year":"2001","journal-title":"IEEE Transactions on Image Processing"},{"key":"10.1016\/j.inffus.2020.11.005_bib0040","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1016\/S0031-3203(01)00152-2","article-title":"Generalized K-L transform based combined feature extraction","volume":"35","author":"Yang","year":"2002","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.inffus.2020.11.005_bib0041","doi-asserted-by":"crossref","first-page":"2437","DOI":"10.1016\/j.patcog.2004.12.013","article-title":"A new method of feature fusion and its application in image recognition","volume":"38","author":"Sun","year":"2005","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.inffus.2020.11.005_bib0042","doi-asserted-by":"crossref","first-page":"1984","DOI":"10.1109\/TIFS.2016.2569061","article-title":"Discriminant Correlation Analysis: real-Time Feature Level Fusion for Multimodal Biometric Recognition","volume":"11","author":"Haghighat","year":"2016","journal-title":"IEEE Trans. Inform. Forensics Security"},{"key":"10.1016\/j.inffus.2020.11.005_bib0043","doi-asserted-by":"crossref","first-page":"4775","DOI":"10.1109\/TGRS.2017.2700322","article-title":"Deep Feature Fusion for VHR Remote Sensing Scene Classification","volume":"55","author":"Chaib","year":"2017","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"year":"2020","series-title":"Covid-19 Classification by FGCNet With Deep Feature Fusion from Graph Convolutional Network and Convolutional Neural Network","author":"Wang","key":"10.1016\/j.inffus.2020.11.005_bib0044"},{"key":"10.1016\/j.inffus.2020.11.005_bib0045","doi-asserted-by":"crossref","DOI":"10.1016\/j.compind.2020.103225","article-title":"A Novel Approach to Data Augmentation for Pavement Distress Segmentation","volume":"121","author":"Mazzini","year":"2020","journal-title":"Comput. Industry"},{"key":"10.1016\/j.inffus.2020.11.005_bib0046","doi-asserted-by":"crossref","first-page":"1825","DOI":"10.1111\/apa.15189","article-title":"Cross-validation of Actigraph derived accelerometer cut-points for assessment of sedentary behaviour and physical activity in children aged 8-11 years","volume":"109","author":"Duncan","year":"2020","journal-title":"Acta Paediatr."},{"key":"10.1016\/j.inffus.2020.11.005_bib0047","doi-asserted-by":"crossref","first-page":"90847","DOI":"10.1109\/ACCESS.2020.2994222","article-title":"Evaluating Trust Prediction and Confusion Matrix Measures for Web Services Ranking","volume":"8","author":"Hasnain","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.inffus.2020.11.005_bib0048","doi-asserted-by":"crossref","first-page":"20","DOI":"10.3390\/jimaging6070071","article-title":"Cross-Depicted Historical Motif Categorization and Retrieval with Deep Learning","volume":"6","author":"Pondenkandath","year":"2020","journal-title":"J. Imaging"},{"key":"10.1016\/j.inffus.2020.11.005_bib0049","doi-asserted-by":"crossref","first-page":"24","DOI":"10.3390\/pr8050618","article-title":"An Adjective Selection Personality Assessment Method Using Gradient Boosting Machine Learning","volume":"8","author":"Fernandes","year":"2020","journal-title":"Processes"},{"key":"10.1016\/j.inffus.2020.11.005_bib0050","doi-asserted-by":"crossref","first-page":"15","DOI":"10.3390\/diagnostics10040196","article-title":"Automatic Annotation of Narrative Radiology Reports","volume":"10","author":"Krsnik","year":"2020","journal-title":"Diagnostics"},{"key":"10.1016\/j.inffus.2020.11.005_bib0051","doi-asserted-by":"crossref","first-page":"336","DOI":"10.1007\/s11263-019-01228-7","article-title":"Grad-CAM: visual Explanations from Deep Networks via Gradient-Based Localization","volume":"128","author":"Selvaraju","year":"2020","journal-title":"Int. J. Comput. Vis."},{"key":"10.1016\/j.inffus.2020.11.005_bib0052","doi-asserted-by":"crossref","first-page":"617","DOI":"10.1109\/TMM.2018.2882744","article-title":"Emotion-Aware Multimedia Systems Security","volume":"21","author":"Zhang","year":"2019","journal-title":"IEEE Trans. Multimedia."},{"key":"10.1016\/j.inffus.2020.11.005_bib0053","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1016\/j.jnca.2018.05.007","article-title":"PEA: parallel electrocardiogram-based authentication for smart healthcare systems","volume":"117","author":"Zhang","year":"2018","journal-title":"J. Netw. Comput. Appl."},{"key":"10.1016\/j.inffus.2020.11.005_bib0054","first-page":"1","article-title":"PSAC: proactive Sequence-aware Content Caching via Deep Learning at the Network Edge","author":"Zhang","year":"2020","journal-title":"IEEE Trans. Netw. Scie. Eng."},{"key":"10.1016\/j.inffus.2020.11.005_bib0055","doi-asserted-by":"crossref","first-page":"10216","DOI":"10.1109\/TVT.2019.2936792","article-title":"Heterogeneous Information Network-Based Content Caching in the Internet of Vehicles","volume":"68","author":"Zhang","year":"2019","journal-title":"IEEE Trans. Veh. Technol."},{"key":"10.1016\/j.inffus.2020.11.005_bib0056","doi-asserted-by":"crossref","first-page":"58","DOI":"10.1109\/MNET.2019.1800344","article-title":"Edge Intelligence in the Cognitive Internet of Things: improving Sensitivity and Interactivity","volume":"33","author":"Zhang","year":"2019","journal-title":"IEEE Netw."},{"key":"10.1016\/j.inffus.2020.11.005_bib0057","first-page":"1","article-title":"Multi-Aspect Aware Session-Based Recommendation for Intelligent Transportation Services","author":"Zhang","year":"2020","journal-title":"IEEE Trans. Intell. Transport. Syst."},{"key":"10.1016\/j.inffus.2020.11.005_bib0058","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1016\/j.future.2018.12.017","article-title":"iBike: intelligent public bicycle services assisted by data analytics","volume":"95","author":"Zhang","year":"2019","journal-title":"Future Gen. Comput. Syst."},{"key":"10.1016\/j.inffus.2020.11.005_bib0059","doi-asserted-by":"crossref","first-page":"26","DOI":"10.1109\/MWC.2019.1800401","article-title":"COCME: content-Oriented Caching on the Mobile Edge for Wireless Communications","volume":"26","author":"Zhang","year":"2019","journal-title":"IEEE Wireless Commun."}],"container-title":["Information Fusion"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1566253520304073?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1566253520304073?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,10,12]],"date-time":"2023-10-12T07:47:14Z","timestamp":1697096834000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1566253520304073"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,4]]},"references-count":59,"alternative-id":["S1566253520304073"],"URL":"https:\/\/doi.org\/10.1016\/j.inffus.2020.11.005","relation":{},"ISSN":["1566-2535"],"issn-type":[{"type":"print","value":"1566-2535"}],"subject":[],"published":{"date-parts":[[2021,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"COVID-19 classification by CCSHNet with deep fusion using transfer learning and discriminant correlation analysis","name":"articletitle","label":"Article Title"},{"value":"Information Fusion","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.inffus.2020.11.005","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}