{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T06:36:46Z","timestamp":1740119806901,"version":"3.37.3"},"reference-count":36,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,2,1]],"date-time":"2021-02-01T00:00:00Z","timestamp":1612137600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100002924","name":"FEDER, Spain","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100002924","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Spanish Government"},{"DOI":"10.13039\/501100011698","name":"Regional Government (JCCM), Spain","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100011698","id-type":"DOI","asserted-by":"publisher"}]},{"name":"scholarship 2019-PREDUCLM, Spain"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Fusion"],"published-print":{"date-parts":[[2021,2]]},"DOI":"10.1016\/j.inffus.2020.09.003","type":"journal-article","created":{"date-parts":[[2020,9,15]],"date-time":"2020-09-15T15:52:16Z","timestamp":1600185136000},"page":"155-169","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":19,"special_numbering":"C","title":["Efficient and accurate structural fusion of Bayesian networks"],"prefix":"10.1016","volume":"66","author":[{"given":"Jos\u00e9 M.","family":"Puerta","sequence":"first","affiliation":[]},{"given":"Juan A.","family":"Aledo","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-1188-1117","authenticated-orcid":false,"given":"Jos\u00e9 A.","family":"G\u00e1mez","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-6844-3970","authenticated-orcid":false,"given":"Jorge D.","family":"Laborda","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"year":"1988","series-title":"Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference","author":"Pearl","key":"10.1016\/j.inffus.2020.09.003_b1"},{"issue":"1","key":"10.1016\/j.inffus.2020.09.003_b2","doi-asserted-by":"crossref","first-page":"186","DOI":"10.1109\/TSMCA.2012.2189880","article-title":"Knowledge engineering for Bayesian networks: How common are noisy-max distributions in practice?","volume":"43","author":"Zagorecki","year":"2013","journal-title":"IEEE Trans. Syst. Man Cybern.: Syst."},{"issue":"3","key":"10.1016\/j.inffus.2020.09.003_b3","doi-asserted-by":"crossref","first-page":"292","DOI":"10.1002\/int.21701","article-title":"Structural learning of Bayesian networks via constrained hill climbing algorithms: Adjusting trade-off between efficiency and accuracy","volume":"30","author":"Arias","year":"2015","journal-title":"Int. J. Intell. Syst."},{"key":"10.1016\/j.inffus.2020.09.003_b4","first-page":"507","article-title":"Optimal structure identification with greedy search","volume":"3","author":"Chickering","year":"2003","journal-title":"J. Mach. Learn. Res."},{"issue":"3","key":"10.1016\/j.inffus.2020.09.003_b5","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1016\/j.artmed.2011.08.004","article-title":"Incorporating expert knowledge when learning Bayesian network structure: A medical case study","volume":"53","author":"Julia\u00a0Flores","year":"2011","journal-title":"Artif. Intell. Med."},{"key":"10.1016\/j.inffus.2020.09.003_b6","first-page":"1757","article-title":"Learning from multiple sources","volume":"9","author":"Crammer","year":"2008","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.inffus.2020.09.003_b7","unstructured":"J. Del\u00a0Sagrado, Learning Bayesian networks from distributed data: An approach based on the mdl principle, in: Proceedings of The 13th Conference of the Spanish Association for Artificial Intelligence (CAEPIA-2009), 2009."},{"issue":"1","key":"10.1016\/j.inffus.2020.09.003_b8","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1007\/s10994-006-6889-7","article-title":"The max\u2013min hill-climbing Bayesian network structure learning algorithm","volume":"65","author":"Tsamardinos","year":"2006","journal-title":"Mach. Learn."},{"key":"10.1016\/j.inffus.2020.09.003_b9","doi-asserted-by":"crossref","unstructured":"K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H.B. McMahan, S. Patel, D. Ramage, A. Segal, K. Seth, Practical secure aggregation for privacy-preserving machine learning, in: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, 2017.","DOI":"10.1145\/3133956.3133982"},{"year":"2019","series-title":"Towards federated learning at scale: System design","author":"Bonawitz","key":"10.1016\/j.inffus.2020.09.003_b10"},{"key":"10.1016\/j.inffus.2020.09.003_b11","doi-asserted-by":"crossref","first-page":"92","DOI":"10.1016\/j.inffus.2018.10.005","article-title":"Data fusion and machine learning for industrial prognosis: Trends and perspectives towards industry 4.0","volume":"50","author":"Diez-Olivan","year":"2019","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2020.09.003_b12","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1016\/j.inffus.2019.12.012","article-title":"Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI","volume":"58","author":"Barredo-Arrieta","year":"2020","journal-title":"Inf. Fusion"},{"year":"2012","series-title":"Ensemble Methods: Foundations and Algorithms","author":"Zhou","key":"10.1016\/j.inffus.2020.09.003_b13"},{"key":"10.1016\/j.inffus.2020.09.003_b14","unstructured":"I. Matzkevich, B. Abramson, The topological fusion of Bayes nets, in: Proceedings of the Eight Conference on Uncertainty in Artificial Intelligence (UAI-92), 1992."},{"key":"10.1016\/j.inffus.2020.09.003_b15","doi-asserted-by":"crossref","unstructured":"I. Matzkevich, B. Abramson, Deriving a minimal I-map of a belief network relative to a target ordering of its nodes, in: Proceedings of the Ninth Conference on Uncertainty in Artificial Intelligence (UAI-93), 1993.","DOI":"10.1016\/B978-1-4832-1451-1.50024-X"},{"issue":"2","key":"10.1016\/j.inffus.2020.09.003_b16","doi-asserted-by":"crossref","first-page":"237","DOI":"10.1002\/int.10086","article-title":"Qualitative combination of Bayesian networks","volume":"18","author":"Del\u00a0Sagrado","year":"2003","journal-title":"Int. J. Intell. Syst."},{"issue":"1","key":"10.1016\/j.inffus.2020.09.003_b17","first-page":"661","article-title":"Finding consensus Bayesian network structures","volume":"42","author":"Pe\u00f1a","year":"2011","journal-title":"J. Artificial Intelligence Res."},{"key":"10.1016\/j.inffus.2020.09.003_b18","unstructured":"D.M. Pennock, M.P. Wellman, Graphical representations of consensus belief, CoRR abs\/1301.6732."},{"issue":"2","key":"10.1016\/j.inffus.2020.09.003_b19","doi-asserted-by":"crossref","first-page":"393","DOI":"10.1016\/0004-3702(90)90060-D","article-title":"The computational complexity of probabilistic inference using Bayesian belief networks","volume":"42","author":"Cooper","year":"1990","journal-title":"Artificial Intelligence"},{"key":"10.1016\/j.inffus.2020.09.003_b20","series-title":"Proceedings of the Sixth Annual Conference on Uncertainty in Artificial Intelligence, UAI \u201990","article-title":"Equivalence and synthesis of causal models","author":"Verma","year":"1991"},{"key":"10.1016\/j.inffus.2020.09.003_b21","series-title":"Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, UAI\u201995","article-title":"A transformational characterization of equivalent Bayesian network structures","author":"Chickering","year":"1995"},{"issue":"2","key":"10.1016\/j.inffus.2020.09.003_b22","doi-asserted-by":"crossref","first-page":"505","DOI":"10.1214\/aos\/1031833662","article-title":"A characterization of Markov equivalence classes for acyclic digraphs","volume":"25","author":"Andersson","year":"1997","journal-title":"Ann. Statist."},{"year":"1993","series-title":"Causation, Prediction and Search","author":"Spirtes","key":"10.1016\/j.inffus.2020.09.003_b23"},{"key":"10.1016\/j.inffus.2020.09.003_b24","first-page":"527","article-title":"On inclusion-driven learning of Bayesian networks","volume":"4","author":"Castelo","year":"2003","journal-title":"J. Mach. Learn. Res."},{"issue":"4","key":"10.1016\/j.inffus.2020.09.003_b25","doi-asserted-by":"crossref","first-page":"429","DOI":"10.1016\/j.ijar.2012.09.004","article-title":"Scaling up the greedy equivalence search algorithm by constraining the search space of equivalence classes","volume":"54","author":"Alonso-Barba","year":"2013","journal-title":"Internat. J. Approx. Reason."},{"key":"10.1016\/j.inffus.2020.09.003_b26","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1007\/s41060-016-0032-z","article-title":"A million variables and more: the fast greedy equivalence search algorithm for learning high-dimensional graphical causal models, with an application to functional magnetic resonance images","volume":"3","author":"Ramsey","year":"2017","journal-title":"Int. J. Data Sci. Anal."},{"key":"10.1016\/j.inffus.2020.09.003_b27","unstructured":"J. Pearl, A. Paz, Graphoids: Graph-based logic for reasoning about relevance relations or when would X tell you more about Y if you already know Z?, in: Proceedings of the 7th European Conference on Artificial Intelligence (ECAI-86), Vol. 2, 1986."},{"issue":"6","key":"10.1016\/j.inffus.2020.09.003_b28","doi-asserted-by":"crossref","first-page":"871","DOI":"10.1287\/opre.34.6.871","article-title":"Evaluating influence diagrams","volume":"34","author":"Shachter","year":"1986","journal-title":"Oper. Res."},{"issue":"1\u20132","key":"10.1016\/j.inffus.2020.09.003_b29","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1093\/biomet\/30.1-2.81","article-title":"A new Measure of Rank Correlation","volume":"30","author":"Kendall","year":"1938","journal-title":"Biometrika"},{"key":"10.1016\/j.inffus.2020.09.003_b30","unstructured":"G. Melan\u00e7on, F. Philippe, Generating connected acyclic digraphs uniformly at random, CoRR cs.DM\/0403040."},{"key":"10.1016\/j.inffus.2020.09.003_b31","series-title":"Preliminary Papers of the Fifth International Workshop on Artificial Intelligence and Statistics","first-page":"112","article-title":"Learning Bayesian networks: Search methods and experimental results","author":"Chickering","year":"1995"},{"issue":"3","key":"10.1016\/j.inffus.2020.09.003_b32","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1007\/BF00994016","article-title":"Learning Bayesian networks: The combination of knowledge and statistical data","volume":"20","author":"Heckerman","year":"1995","journal-title":"Mach. Learn."},{"key":"10.1016\/j.inffus.2020.09.003_b33","series-title":"Recent Advances in Intelligent Information Systems, Challenging Problems of Science","first-page":"443","article-title":"A comparison of structural distance measures for causal Bayesian network models","author":"de\u00a0Jongh","year":"2009"},{"year":"2014","series-title":"Bayesian Networks with Examples in R","author":"Scutari","key":"10.1016\/j.inffus.2020.09.003_b34"},{"key":"10.1016\/j.inffus.2020.09.003_b35","unstructured":"R. Feldt, A. Magazinius, Validity threats in empirical software engineering research - an initial survey, in: Proceedings of the 22nd International Conference on Software Engineering & Knowledge Engineering (SEKE\u20192010), 2010."},{"issue":"1","key":"10.1016\/j.inffus.2020.09.003_b36","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1007\/s13748-015-0070-0","article-title":"Learning Bayesian networks with low inference complexity","volume":"5","author":"Benjumeda","year":"2016","journal-title":"Prog. Artif. Intell."}],"container-title":["Information Fusion"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S156625352030364X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S156625352030364X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,11,12]],"date-time":"2020-11-12T04:44:25Z","timestamp":1605156265000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S156625352030364X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,2]]},"references-count":36,"alternative-id":["S156625352030364X"],"URL":"https:\/\/doi.org\/10.1016\/j.inffus.2020.09.003","relation":{},"ISSN":["1566-2535"],"issn-type":[{"type":"print","value":"1566-2535"}],"subject":[],"published":{"date-parts":[[2021,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Efficient and accurate structural fusion of Bayesian networks","name":"articletitle","label":"Article Title"},{"value":"Information Fusion","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.inffus.2020.09.003","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}