{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T17:46:23Z","timestamp":1732038383304},"reference-count":62,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61773324"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Fusion"],"published-print":{"date-parts":[[2020,1]]},"DOI":"10.1016\/j.inffus.2019.06.016","type":"journal-article","created":{"date-parts":[[2019,6,10]],"date-time":"2019-06-10T15:25:23Z","timestamp":1560180323000},"page":"123-133","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":189,"special_numbering":"C","title":["Urban big data fusion based on deep learning: An overview"],"prefix":"10.1016","volume":"53","author":[{"given":"Jia","family":"Liu","sequence":"first","affiliation":[]},{"given":"Tianrui","family":"Li","sequence":"additional","affiliation":[]},{"given":"Peng","family":"Xie","sequence":"additional","affiliation":[]},{"given":"Shengdong","family":"Du","sequence":"additional","affiliation":[]},{"given":"Fei","family":"Teng","sequence":"additional","affiliation":[]},{"given":"Xin","family":"Yang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"7","key":"10.1016\/j.inffus.2019.06.016_bib0001","doi-asserted-by":"crossref","first-page":"2299","DOI":"10.1007\/s00500-017-2492-z","article-title":"Applications of computational intelligence in vehicle traffic congestion problem: a survey","volume":"22","author":"Jabbarpour","year":"2018","journal-title":"Soft Comput."},{"key":"10.1016\/j.inffus.2019.06.016_bib0002","series-title":"Alleviating Urban Traffic Congestion","volume":"1","author":"Arnott","year":"2005"},{"issue":"2","key":"10.1016\/j.inffus.2019.06.016_bib0003","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1145\/3224204","article-title":"Sonyc: a system for monitoring, analyzing, and mitigating urban noise pollution","volume":"62","author":"Bello","year":"2019","journal-title":"Commun. ACM"},{"key":"10.1016\/j.inffus.2019.06.016_bib0004","first-page":"1","article-title":"Urban noise mapping with a crowd sensing system","author":"Xu","year":"2018","journal-title":"Wirel. Netw."},{"key":"10.1016\/j.inffus.2019.06.016_bib0005","series-title":"Technical Report","article-title":"Subways and urban air pollution","author":"Gendron-Carrier","year":"2018"},{"key":"10.1016\/j.inffus.2019.06.016_bib0006","series-title":"Mitigation of Severe Urban Haze Pollution by a Precision Air Pollution Control Approach","first-page":"1","volume":"8","author":"Yu","year":"2018"},{"key":"10.1016\/j.inffus.2019.06.016_bib0007","series-title":"Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","first-page":"1","article-title":"City-wide traffic volume inference with loop detector data and taxi trajectories","author":"Meng","year":"2017"},{"key":"10.1016\/j.inffus.2019.06.016_bib0008","doi-asserted-by":"crossref","unstructured":"S. Du, T. Li, X. Gong, Z. Yu, S.-J. Horng, A hybrid method for traffic flow forecasting using multimodal deep learning, arXiv preprint arXiv:1803.02099 (2018).","DOI":"10.1109\/ISKE.2017.8258813"},{"key":"10.1016\/j.inffus.2019.06.016_bib0009","series-title":"Proceedings of the 2nd International Conference on Compute and Data Analysis","first-page":"28","article-title":"Spatio-temporal recurrent convolutional networks for citywide short-term crowd flows prediction","author":"Jin","year":"2018"},{"key":"10.1016\/j.inffus.2019.06.016_bib0010","series-title":"Proceedings of the 31th AAAI Conference on Artificial Intelligence","first-page":"1655","article-title":"Deep spatio-temporal residual networks for citywide crowd flows prediction.","author":"Zhang","year":"2017"},{"key":"10.1016\/j.inffus.2019.06.016_bib0011","series-title":"Proceedings of the 24th SIGKDD Conference on Knowledge Discovery and Data Mining","first-page":"965","article-title":"Deep distributed fusion network for air quality prediction","author":"Yi","year":"2018"},{"key":"10.1016\/j.inffus.2019.06.016_bib0012","series-title":"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"2267","article-title":"Forecasting fine-grained air quality based on big data","author":"Zheng","year":"2015"},{"key":"10.1016\/j.inffus.2019.06.016_bib0013","series-title":"Joint European Conference on Machine Learning and Knowledge Discovery in Databases","first-page":"317","article-title":"Urban water flow and water level prediction based on deep learning","author":"Assem","year":"2017"},{"key":"10.1016\/j.inffus.2019.06.016_bib0014","series-title":"Proceedings of the 25th International Joint Conference on Artificial Intelligence","first-page":"2576","article-title":"Urban water quality prediction based on multi-task multi-view learning","author":"Liu","year":"2016"},{"key":"10.1016\/j.inffus.2019.06.016_bib0015","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1016\/j.inffus.2015.08.005","article-title":"Social big data: recent achievements and new challenges","volume":"28","author":"Bello-Orgaz","year":"2016","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2019.06.016_bib0016","series-title":"Proceedings of the 2018 International Conference on Artificial Intelligence and Big Data","first-page":"47","article-title":"Multi-source heterogeneous data fusion","author":"Zhang","year":"2018"},{"key":"10.1016\/j.inffus.2019.06.016_bib0017","series-title":"Proceedings of the 32nd AAAI Conference on Artificial Intelligence","first-page":"2588","article-title":"Deep multi-view spatial-temporal network for taxi demand prediction","author":"Yao","year":"2018"},{"issue":"3","key":"10.1016\/j.inffus.2019.06.016_bib0018","first-page":"1","article-title":"Urban computing:concepts, methodologies, and applications","volume":"5","author":"Zheng","year":"2014","journal-title":"ACM Trans. Intell. Syst. Technol."},{"issue":"1","key":"10.1016\/j.inffus.2019.06.016_bib0019","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1109\/TBDATA.2015.2465959","article-title":"Methodologies for cross-domain data fusion: an overview","volume":"1","author":"Zheng","year":"2015","journal-title":"IEEE Trans. Big Data"},{"issue":"4","key":"10.1016\/j.inffus.2019.06.016_bib0020","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1145\/3161602","article-title":"Spatio-temporal data mining: a survey of problems and methods","volume":"51","author":"Atluri","year":"2018","journal-title":"ACM Comput. Surv. (CSUR)"},{"issue":"2","key":"10.1016\/j.inffus.2019.06.016_bib0021","doi-asserted-by":"crossref","first-page":"401","DOI":"10.1089\/10665270252935539","article-title":"Learning gene functional classifications from multiple data types.","volume":"9","author":"Pavlidis","year":"2002","journal-title":"J. Comput. Biol."},{"key":"10.1016\/j.inffus.2019.06.016_bib0022","series-title":"Proceedings of the IEEE International Conference on Image Processing","first-page":"3412","article-title":"Cross-modal integration for performance improving in multimedia: a review","author":"Maragos","year":"2008"},{"key":"10.1016\/j.inffus.2019.06.016_bib0023","series-title":"Proceedings of the 2014 IEEE International Conference on Data Mining","first-page":"120","article-title":"Sparse real estate ranking with online user reviews and offline moving behaviors","author":"Fu","year":"2014"},{"issue":"4","key":"10.1016\/j.inffus.2019.06.016_bib0024","doi-asserted-by":"crossref","first-page":"499","DOI":"10.1109\/TSMC.2013.2256890","article-title":"Discovering and profiling overlapping communities in location-based social networks.","volume":"44","author":"Wang","year":"2014","journal-title":"IEEE Trans. Syst. Man Cybern."},{"key":"10.1016\/j.inffus.2019.06.016_bib0025","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1016\/j.neucom.2015.06.022","article-title":"An incremental meta-cognitive-based scaffolding fuzzy neural network","volume":"171","author":"Pratama","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.inffus.2019.06.016_bib0026","series-title":"Proceedings of the 28th International Conference on Machine Learning","first-page":"689","article-title":"Multimodal deep learning","author":"Ngiam","year":"2011"},{"issue":"7","key":"10.1016\/j.inffus.2019.06.016_bib0027","doi-asserted-by":"crossref","first-page":"651","DOI":"10.1049\/iet-its.2017.0116","article-title":"Urban link travel time estimation using traffic states-based data fusion","volume":"12","author":"Zhu","year":"2018","journal-title":"IET Intell. Transp. Syst."},{"key":"10.1016\/j.inffus.2019.06.016_bib0028","series-title":"Proceedings of the 13th international conference on Ubiquitous computing","first-page":"89","article-title":"Urban computing with taxicabs","author":"Zheng","year":"2011"},{"key":"10.1016\/j.inffus.2019.06.016_bib0029","series-title":"Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","first-page":"344","article-title":"Crowd sensing of traffic anomalies based on human mobility and social media","author":"Pan","year":"2013"},{"key":"10.1016\/j.inffus.2019.06.016_bib0030","series-title":"Proceedings of the 28th International Conference on Machine Learning","first-page":"393","article-title":"A co-training approach for multi-view spectral clustering","author":"Kumar","year":"2011"},{"key":"10.1016\/j.inffus.2019.06.016_bib0031","series-title":"Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"1027","article-title":"Inferring gas consumption and pollution emission of vehicles throughout a city","author":"Shang","year":"2014"},{"key":"10.1016\/j.inffus.2019.06.016_bib0032","doi-asserted-by":"crossref","first-page":"346","DOI":"10.1016\/j.inffus.2018.01.007","article-title":"Alternating diffusion maps for multimodal data fusion","volume":"45","author":"Katz","year":"2018","journal-title":"Inf. Fusion"},{"issue":"3","key":"10.1016\/j.inffus.2019.06.016_bib0033","doi-asserted-by":"crossref","first-page":"712","DOI":"10.1109\/TKDE.2014.2345405","article-title":"Discovering urban functional zones using latent activity trajectories","volume":"27","author":"Yuan","year":"2015","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.inffus.2019.06.016_bib0034","series-title":"Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems","first-page":"2","article-title":"Detecting collective anomalies from multiple spatio-temporal datasets across different domains","author":"Zheng","year":"2015"},{"key":"10.1016\/j.inffus.2019.06.016_bib0035","series-title":"Advances in Neural Information Processing Systems","first-page":"353","article-title":"Translated learning: Transfer learning across different feature spaces","author":"Dai","year":"2009"},{"key":"10.1016\/j.inffus.2019.06.016_bib0036","series-title":"International Joint Conference on Artificial Intelligence","first-page":"1848","article-title":"Multi-view discriminant transfer learning.","author":"Yang","year":"2013"},{"key":"10.1016\/j.inffus.2019.06.016_sbref0036","series-title":"preparation, Microsoft Tech Report","article-title":"A cloud-based knowledge discovery system for monitoring fine-grained air quality","author":"Zheng","year":"2014"},{"key":"10.1016\/j.inffus.2019.06.016_bib0038","series-title":"Proceedings of the 11th Annual Conference on Computational Learning Theory","first-page":"92","article-title":"Combining labeled and unlabeled data with co-training","author":"Blum","year":"1998"},{"issue":"7","key":"10.1016\/j.inffus.2019.06.016_bib0039","first-page":"2211","article-title":"Multiple kernel learning algorithms","volume":"12","author":"G\u00f6nen","year":"2011","journal-title":"J. Mach. Learn. Res."},{"issue":"10","key":"10.1016\/j.inffus.2019.06.016_bib0040","doi-asserted-by":"crossref","first-page":"2085","DOI":"10.1109\/TPAMI.2015.2400461","article-title":"Robust structured subspace learning for data representation","volume":"37","author":"Li","year":"2015","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2019.06.016_bib0041","series-title":"Proceedings of the Advances in Neural Information Processing Systems","first-page":"361","article-title":"Predictive subspace learning for multi-view data: a large margin approach","author":"Chen","year":"2010"},{"key":"10.1016\/j.inffus.2019.06.016_bib0042","series-title":"Proceedings of the 19th International Conference on World Wide Web","first-page":"1029","article-title":"Collaborative location and activity recommendations with gps history data","author":"Zheng","year":"2010"},{"key":"10.1016\/j.inffus.2019.06.016_bib0043","series-title":"Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing","first-page":"715","article-title":"Diagnosing new york city\u2019s noises with ubiquitous data","author":"Zheng","year":"2014"},{"issue":"2","key":"10.1016\/j.inffus.2019.06.016_bib0044","doi-asserted-by":"crossref","first-page":"847","DOI":"10.1109\/TGRS.2017.2755542","article-title":"Spectral\u2013spatial residual network for hyperspectral image classification: A 3-d deep learning framework","volume":"56","author":"Zhong","year":"2018","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"4","key":"10.1016\/j.inffus.2019.06.016_bib0045","doi-asserted-by":"crossref","first-page":"834","DOI":"10.1109\/TPAMI.2017.2699184","article-title":"Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs","volume":"40","author":"Chen","year":"2018","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"3","key":"10.1016\/j.inffus.2019.06.016_bib0046","doi-asserted-by":"crossref","first-page":"1393","DOI":"10.1109\/TITS.2013.2262376","article-title":"Predicting taxi\u2013passenger demand using streaming data","volume":"14","author":"Moreira-Matias","year":"2013","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"issue":"1","key":"10.1016\/j.inffus.2019.06.016_bib0047","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1007\/s11704-011-1192-6","article-title":"Prediction of urban human mobility using large-scale taxi traces and its applications","volume":"6","author":"Li","year":"2012","journal-title":"Front. Comput. Sci."},{"key":"10.1016\/j.inffus.2019.06.016_bib0048","series-title":"Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"1653","article-title":"The simpler the better: a unified approach to predicting original taxi demands based on large-scale online platforms","author":"Tong","year":"2017"},{"key":"10.1016\/j.inffus.2019.06.016_bib0049","series-title":"Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"1525","article-title":"Latent space model for road networks to predict time-varying traffic","author":"Deng","year":"2016"},{"issue":"8","key":"10.1016\/j.inffus.2019.06.016_bib0050","doi-asserted-by":"crossref","first-page":"1798","DOI":"10.1109\/TPAMI.2013.50","article-title":"Representation learning: a review and new perspectives","volume":"35","author":"Bengio","year":"2013","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2019.06.016_bib0051","series-title":"Advances in Neural Information Processing Systems","first-page":"1097","article-title":"Imagenet classification with deep convolutional neural networks","author":"Krizhevsky","year":"2012"},{"key":"10.1016\/j.inffus.2019.06.016_bib0052","series-title":"Proceedings of the 21th International Conference on Machine Learning","first-page":"16","article-title":"Co-em support vector learning","author":"Brefeld","year":"2004"},{"key":"10.1016\/j.inffus.2019.06.016_bib0053","series-title":"2018 21st International Conference on Intelligent Transportation Systems (ITSC)","first-page":"1279","article-title":"Long short-term memory recurrent neural network for urban traffic prediction: a case study of seoul","author":"Lee","year":"2018"},{"key":"10.1016\/j.inffus.2019.06.016_bib0054","unstructured":"Y. Liu, Y. Liang, S. Liu, D.S. Rosenblum, Y. Zheng, Predicting urban water quality with ubiquitous data, arXiv preprint arXiv:1610.09462 (2016)."},{"issue":"2","key":"10.1016\/j.inffus.2019.06.016_bib0055","doi-asserted-by":"crossref","first-page":"278","DOI":"10.1038\/s41370-018-0058-5","article-title":"Population dynamics based on mobile phone data to improve air pollution exposure assessments","volume":"29","author":"Picornell","year":"2019","journal-title":"J. Exposure Sci. Environ. Epidemiol."},{"issue":"6","key":"10.1016\/j.inffus.2019.06.016_bib0056","doi-asserted-by":"crossref","first-page":"2048","DOI":"10.1109\/TFUZZ.2015.2402683","article-title":"Recurrent classifier based on an incremental metacognitive-based scaffolding algorithm","volume":"23","author":"Pratama","year":"2015","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.inffus.2019.06.016_bib0057","series-title":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","first-page":"92","article-title":"Dnn-based prediction model for spatio-temporal data","author":"Zhang","year":"2016"},{"key":"10.1016\/j.inffus.2019.06.016_bib0058","doi-asserted-by":"crossref","first-page":"307","DOI":"10.1016\/j.inffus.2018.03.001","article-title":"Multimodal data fusion for sensitive scene localization","volume":"45","author":"Moreira","year":"2019","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2019.06.016_bib0059","doi-asserted-by":"crossref","first-page":"525","DOI":"10.1016\/j.trc.2018.05.020","article-title":"A data fusion approach for real-time traffic state estimation in urban signalized links","volume":"92","author":"Shahrbabaki","year":"2018","journal-title":"Transp. Res. Part C"},{"key":"10.1016\/j.inffus.2019.06.016_bib0060","series-title":"Proceedings of the 25th International Conference Companion on World Wide Web","first-page":"345","article-title":"Smart city energy planning: Integrating data and tools","author":"Gouveia","year":"2016"},{"issue":"7","key":"10.1016\/j.inffus.2019.06.016_bib0061","doi-asserted-by":"crossref","first-page":"667","DOI":"10.1007\/s00500-009-0434-0","article-title":"Adaptive pruning algorithm for least squares support vector machine classifier","volume":"14","author":"Yang","year":"2010","journal-title":"Soft Comput."},{"key":"10.1016\/j.inffus.2019.06.016_bib0062","series-title":"Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence","first-page":"2704","article-title":"St-mvl: filling missing values in geo-sensory time series data","author":"Yi","year":"2016"}],"container-title":["Information Fusion"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1566253519301393?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1566253519301393?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,9,17]],"date-time":"2023-09-17T09:57:17Z","timestamp":1694944637000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1566253519301393"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,1]]},"references-count":62,"alternative-id":["S1566253519301393"],"URL":"https:\/\/doi.org\/10.1016\/j.inffus.2019.06.016","relation":{},"ISSN":["1566-2535"],"issn-type":[{"type":"print","value":"1566-2535"}],"subject":[],"published":{"date-parts":[[2020,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Urban big data fusion based on deep learning: An overview","name":"articletitle","label":"Article Title"},{"value":"Information Fusion","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.inffus.2019.06.016","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}