{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T17:49:02Z","timestamp":1725990542335},"reference-count":54,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,3,1]],"date-time":"2018-03-01T00:00:00Z","timestamp":1519862400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100004739","name":"Youth Innovation Promotion Association CAS","doi-asserted-by":"publisher","award":["2017089"],"id":[{"id":"10.13039\/501100004739","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["41301390"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"National Science and Technology Major Project","award":["2014AA06A511"]},{"DOI":"10.13039\/501100012336","name":"Major State Basic Research Development Program of China","doi-asserted-by":"crossref","award":["2013CB733405, 2010CB950603"],"id":[{"id":"10.13039\/501100012336","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Fusion"],"published-print":{"date-parts":[[2018,3]]},"DOI":"10.1016\/j.inffus.2017.06.005","type":"journal-article","created":{"date-parts":[[2017,6,13]],"date-time":"2017-06-13T16:45:50Z","timestamp":1497372350000},"page":"34-44","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":28,"special_numbering":"C","title":["Validation of synthetic daily Landsat NDVI time series data generated by the improved spatial and temporal data fusion approach"],"prefix":"10.1016","volume":"40","author":[{"given":"Mingquan","family":"Wu","sequence":"first","affiliation":[]},{"given":"Wenjiang","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Zheng","family":"Niu","sequence":"additional","affiliation":[]},{"given":"Changyao","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Wang","family":"Li","sequence":"additional","affiliation":[]},{"given":"Bo","family":"Yu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.inffus.2017.06.005_bib0001","series-title":"Climate Change 2007-impacts, Adaptation and vulnerability: Working Group II Contribution to the Fourth Assessment Report of the IPCC","author":"Parry","year":"2007"},{"key":"10.1016\/j.inffus.2017.06.005_bib0002","doi-asserted-by":"crossref","first-page":"547","DOI":"10.1007\/s00484-014-0802-z","article-title":"Interannual variations and trends in global land surface phenology derived from enhanced vegetation index during 1982\u20132010","volume":"58","author":"Zhang","year":"2014","journal-title":"Int. J. Biometeorol."},{"key":"10.1016\/j.inffus.2017.06.005_bib0003","series-title":"Advanced Very High Resolution Radiometer AVHRR","author":"Cracknell","year":"1997"},{"key":"10.1016\/j.inffus.2017.06.005_bib0004","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1080\/0143116031000115265","article-title":"VEGETATION\/SPOT: an operational mission for the Earth monitoring; presentation of new standard products","volume":"25","author":"Maisongrande","year":"2004","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.inffus.2017.06.005_bib0005","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1109\/36.20292","article-title":"MODIS: advanced facility instrument for studies of the Earth as a system","volume":"27","author":"Salomonson","year":"1989","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2017.06.005_bib0006","doi-asserted-by":"crossref","first-page":"2970","DOI":"10.1016\/j.rse.2010.08.003","article-title":"Phenological change detection while accounting for abrupt and gradual trends in satellite image time series","volume":"114","author":"Verbesselt","year":"2010","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.inffus.2017.06.005_bib0007","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1016\/j.rse.2014.03.001","article-title":"Modeling growing season phenology in North American forests using seasonal mean vegetation indices from MODIS","volume":"147","author":"Wu","year":"2014","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.inffus.2017.06.005_bib0008","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1016\/j.agrformet.2014.09.009","article-title":"An improved logistic method for detecting spring vegetation phenology in grasslands from MODIS EVI time-series data","volume":"200","author":"Cao","year":"2015","journal-title":"Agric. For. Meteorol."},{"key":"10.1016\/j.inffus.2017.06.005_bib0009","doi-asserted-by":"crossref","first-page":"114","DOI":"10.1016\/j.rse.2015.04.014","article-title":"An approach for evaluating the impact of gaps and measurement errors on satellite land surface phenology algorithms: application to 20year NOAA AVHRR data over Canada","volume":"164","author":"Kandasamy","year":"2015","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.inffus.2017.06.005_bib0010","doi-asserted-by":"crossref","first-page":"457","DOI":"10.1016\/j.rse.2014.10.012","article-title":"Reconstruction of a complete global time series of daily vegetation index trajectory from long-term AVHRR data","volume":"156","author":"Zhang","year":"2015","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.inffus.2017.06.005_bib0011","doi-asserted-by":"crossref","first-page":"503","DOI":"10.1016\/j.ecolind.2015.07.029","article-title":"Applying remote sensing techniques to monitoring seasonal and interannual changes of aquatic vegetation in Taihu Lake, China","volume":"60","author":"Luo","year":"2016","journal-title":"Ecol. Indic."},{"key":"10.1016\/j.inffus.2017.06.005_bib0012","doi-asserted-by":"crossref","first-page":"191","DOI":"10.1016\/j.ecolmodel.2015.05.022","article-title":"Quantifying moderate resolution remote sensing phenology of Louisiana coastal marshes","volume":"312","author":"Mo","year":"2015","journal-title":"Ecol. Modell."},{"key":"10.1016\/j.inffus.2017.06.005_bib0013","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1016\/j.agrformet.2015.06.013","article-title":"Assessing temperature sensitivity of subalpine shrub phenology in semi-arid mountain regions of China","volume":"213","author":"He","year":"2015","journal-title":"Agric. For. Meteorol."},{"key":"10.1016\/j.inffus.2017.06.005_bib0014","doi-asserted-by":"crossref","first-page":"265","DOI":"10.1016\/j.rse.2005.10.022","article-title":"Green leaf phenology at Landsat resolution: scaling from the field to the satellite","volume":"100","author":"Fisher","year":"2006","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.inffus.2017.06.005_bib0015","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1016\/j.rse.2007.01.004","article-title":"Cross-scalar satellite phenology from ground, Landsat, and MODIS data","volume":"109","author":"Fisher","year":"2007","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.inffus.2017.06.005_bib0016","doi-asserted-by":"crossref","first-page":"16293","DOI":"10.3390\/rs71215826","article-title":"Reconstruction of daily 30m data from HJ CCD, GF-1 WFV, Landsat, and MODIS data for crop monitoring","volume":"7","author":"Wu","year":"2015","journal-title":"Remote Sens."},{"key":"10.1016\/j.inffus.2017.06.005_bib0017","doi-asserted-by":"crossref","first-page":"325","DOI":"10.1080\/01431161.2011.593581","article-title":"The suitability of multi-temporal web-enabled Landsat data NDVI for phenological monitoring\u2013a comparison with flux tower and MODIS NDVI","volume":"3","author":"Kovalskyy","year":"2012","journal-title":"Remote Sens. Lett."},{"key":"10.1016\/j.inffus.2017.06.005_bib0018","doi-asserted-by":"crossref","first-page":"2207","DOI":"10.1109\/TGRS.2006.872081","article-title":"On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance","volume":"44","author":"Gao","year":"2006","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.inffus.2017.06.005_bib0019","doi-asserted-by":"crossref","first-page":"1613","DOI":"10.1016\/j.rse.2009.03.007","article-title":"A new data fusion model for high spatial-and temporal-resolution mapping of forest disturbance based on Landsat and MODIS","volume":"113","author":"Hilker","year":"2009","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.inffus.2017.06.005_bib0020","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1016\/j.rse.2011.06.023","article-title":"Enhancing temporal resolution of satellite imagery for public health studies: a case study of West Nile Virus outbreak in Los Angeles in 2007","volume":"117","author":"Liu","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.inffus.2017.06.005_bib0021","doi-asserted-by":"crossref","first-page":"156","DOI":"10.1016\/j.rse.2014.11.015","article-title":"Multi-resolution time series imagery for forest disturbance and regrowth monitoring in Queensland, Australia","volume":"158","author":"Schmidt","year":"2015","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.inffus.2017.06.005_bib0022","doi-asserted-by":"crossref","first-page":"381","DOI":"10.1016\/j.rse.2011.10.014","article-title":"Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest phenology","volume":"117","author":"Walker","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.inffus.2017.06.005_bib0023","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1016\/j.rse.2014.02.003","article-title":"Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data","volume":"145","author":"Weng","year":"2014","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.inffus.2017.06.005_bib0024","doi-asserted-by":"crossref","first-page":"2610","DOI":"10.1016\/j.rse.2010.05.032","article-title":"An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions","volume":"114","author":"Zhu","year":"2010","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.inffus.2017.06.005_bib0025","doi-asserted-by":"crossref","first-page":"207","DOI":"10.3390\/s16020207","article-title":"An Improved STARFM with help of an unmixing-based method to generate high spatial and temporal resolution remote sensing data in complex heterogeneous regions","volume":"16","author":"Xie","year":"2016","journal-title":"Sensors"},{"key":"10.1016\/j.inffus.2017.06.005_bib0026","doi-asserted-by":"crossref","first-page":"6213","DOI":"10.1080\/01431161.2014.951097","article-title":"Spatio-temporal reflectance fusion via unmixing: accounting for both phenological and land-cover changes","volume":"35","author":"Huang","year":"2014","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.inffus.2017.06.005_bib0027","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1016\/j.rse.2015.11.016","article-title":"A flexible spatiotemporal method for fusing satellite images with different resolutions","volume":"172","author":"Zhu","year":"2016","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.inffus.2017.06.005_bib0028","doi-asserted-by":"crossref","first-page":"24002","DOI":"10.3390\/s150924002","article-title":"Generating daily synthetic Landsat imagery by combining Landsat and MODIS data","volume":"15","author":"Wu","year":"2015","journal-title":"Sensors"},{"key":"10.1016\/j.inffus.2017.06.005_bib0029","article-title":"Use of MODIS and Landsat time series data to generate high-resolution temporal synthetic Landsat data using a spatial and temporal reflectance fusion model","volume":"6","author":"Wu","year":"2012","journal-title":"J. Appl. Remote Sens."},{"key":"10.1016\/j.inffus.2017.06.005_bib0030","doi-asserted-by":"crossref","first-page":"14","DOI":"10.1016\/j.inffus.2015.12.005","article-title":"An improved high spatial and temporal data fusion approach for combining Landsat and MODIS data to generate daily synthetic Landsat imagery","volume":"31","author":"Wu","year":"2016","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2017.06.005_bib0031","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.compag.2015.05.003","article-title":"High-resolution Leaf Area Index estimation from synthetic Landsat data generated by a spatial and temporal data fusion model","volume":"115","author":"Wu","year":"2015","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.inffus.2017.06.005_bib0032","first-page":"1396","article-title":"Generating daily high spatial land surface temperatures by combining ASTER and MODIS land surface temperature products for environmental process monitoring","volume":"17","author":"Wu","year":"2015","journal-title":"Environ. Sci."},{"key":"10.1016\/j.inffus.2017.06.005_bib0033","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1016\/j.rse.2013.02.007","article-title":"Assessing the accuracy of blending Landsat\u2013MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: a framework for algorithm selection","volume":"133","author":"Emelyanova","year":"2013","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.inffus.2017.06.005_bib0034","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1016\/j.jag.2015.07.001","article-title":"Monitoring forest disturbances in Southeast Oklahoma using Landsat and MODIS images","volume":"44","author":"Tran","year":"2016","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.inffus.2017.06.005_bib0035","doi-asserted-by":"crossref","first-page":"2542","DOI":"10.3390\/ijgi4042542","article-title":"Assessing the effect of temporal interval length on the blending of landsat-MODIS surface reflectance for different land cover types in southwestern continental United States","volume":"4","author":"Fu","year":"2015","journal-title":"ISPRS Int. J. Geo-Inf."},{"key":"10.1016\/j.inffus.2017.06.005_bib0036","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1109\/LGRS.2005.857030","article-title":"A Landsat surface reflectance dataset for North America, 1990-2000","volume":"3","author":"Masek","year":"2006","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"10.1016\/j.inffus.2017.06.005_bib0037","doi-asserted-by":"crossref","first-page":"46","DOI":"10.1016\/j.rse.2016.04.008","article-title":"Preliminary analysis of the performance of the Landsat 8\/OLI land surface reflectance product","volume":"185","author":"Vermote","year":"2016","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.inffus.2017.06.005_bib0038","doi-asserted-by":"crossref","first-page":"1159","DOI":"10.1080\/01431169308904402","article-title":"Linear mixing and the estimation of ground cover proportions","volume":"14","author":"Settle","year":"1993","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.inffus.2017.06.005_bib0039","doi-asserted-by":"crossref","first-page":"374","DOI":"10.1016\/j.rse.2016.07.028","article-title":"Land cover change detection by integrating object-based data blending model of Landsat and MODIS","volume":"184","author":"Lu","year":"2016","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.inffus.2017.06.005_bib0040","doi-asserted-by":"crossref","first-page":"497","DOI":"10.1016\/j.rse.2003.11.006","article-title":"Land surface phenology, climatic variation, and institutional change: analyzing agricultural land cover change in Kazakhstan","volume":"89","author":"De Beurs","year":"2004","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.inffus.2017.06.005_bib0041","unstructured":"M. Friedl, G. Henebry, B. Reed, A. Huete, Land surface phenology: a community white paper requested by NASA, in, 2006."},{"key":"10.1016\/j.inffus.2017.06.005_bib0042","doi-asserted-by":"crossref","first-page":"471","DOI":"10.1016\/S0034-4257(02)00135-9","article-title":"Monitoring vegetation phenology using MODIS","volume":"84","author":"Zhang","year":"2003","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.inffus.2017.06.005_bib0043","doi-asserted-by":"crossref","first-page":"3495","DOI":"10.1080\/01431160802562255","article-title":"Global land surface phenology trends from GIMMS database","volume":"30","author":"Julien","year":"2009","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.inffus.2017.06.005_bib0044","doi-asserted-by":"crossref","DOI":"10.1029\/2007GL031447","article-title":"Diverse responses of vegetation phenology to a warming climate","volume":"34","author":"Zhang","year":"2007","journal-title":"Geophys. Res. Lett."},{"key":"10.1016\/j.inffus.2017.06.005_bib0045","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1016\/j.rse.2010.08.013","article-title":"Validating satellite phenology through intensive ground observation and landscape scaling in a mixed seasonal forest","volume":"115","author":"Liang","year":"2011","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.inffus.2017.06.005_bib0046","doi-asserted-by":"crossref","DOI":"10.1029\/2006JG000217","article-title":"Global vegetation phenology from Moderate Resolution Imaging Spectroradiometer (MODIS): evaluation of global patterns and comparison with in situ measurements","volume":"111","author":"Zhang","year":"2006","journal-title":"J. Geophys. Res."},{"key":"10.1016\/j.inffus.2017.06.005_bib0047","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1016\/j.rse.2016.11.004","article-title":"Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery","volume":"188","author":"Gao","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.inffus.2017.06.005_bib0048","doi-asserted-by":"crossref","first-page":"152","DOI":"10.1016\/j.rse.2016.01.021","article-title":"Improved modeling of land surface phenology using MODIS land surface reflectance and temperature at evergreen needleleaf forests of central North America","volume":"176","author":"Liu","year":"2016","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.inffus.2017.06.005_bib0049","doi-asserted-by":"crossref","first-page":"318","DOI":"10.1016\/j.rse.2017.01.001","article-title":"Exploration of scaling effects on coarse resolution land surface phenology","volume":"190","author":"Zhang","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.inffus.2017.06.005_bib0050","doi-asserted-by":"crossref","first-page":"2253","DOI":"10.1002\/2015GL063586","article-title":"Intercomparison of satellite sensor land surface phenology and ground phenology in Europe","volume":"42","author":"Rodriguez\u2010Galiano","year":"2015","journal-title":"Geophys. Res. Lett."},{"key":"10.1016\/j.inffus.2017.06.005_bib0051","doi-asserted-by":"crossref","first-page":"4411","DOI":"10.1080\/01431161.2015.1083633","article-title":"A generalization of spatial and temporal fusion methods for remotely sensed surface parameters","volume":"36","author":"Zhang","year":"2015","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.inffus.2017.06.005_bib0052","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1016\/j.jag.2006.08.003","article-title":"Scaling dimensions in spectroscopy of soil and vegetation","volume":"9","author":"Malenovsk\u00fd","year":"2007","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.inffus.2017.06.005_bib0053","doi-asserted-by":"crossref","first-page":"59","DOI":"10.1016\/0034-4257(95)00171-9","article-title":"Nonlinear spectral mixing in desert vegetation","volume":"55","author":"Ray","year":"1996","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.inffus.2017.06.005_bib0054","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1016\/j.rse.2015.12.033","article-title":"Estimating the effective spatial resolution of the operational BRDF, albedo, and nadir reflectance products from MODIS and VIIRS","volume":"175","author":"Campagnolo","year":"2016","journal-title":"Remote Sens. Environ."}],"container-title":["Information Fusion"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1566253517303676?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1566253517303676?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,5,17]],"date-time":"2020-05-17T20:14:25Z","timestamp":1589746465000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1566253517303676"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,3]]},"references-count":54,"alternative-id":["S1566253517303676"],"URL":"https:\/\/doi.org\/10.1016\/j.inffus.2017.06.005","relation":{},"ISSN":["1566-2535"],"issn-type":[{"value":"1566-2535","type":"print"}],"subject":[],"published":{"date-parts":[[2018,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Validation of synthetic daily Landsat NDVI time series data generated by the improved spatial and temporal data fusion approach","name":"articletitle","label":"Article Title"},{"value":"Information Fusion","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.inffus.2017.06.005","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}