{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,14]],"date-time":"2025-04-14T14:47:35Z","timestamp":1744642055209},"reference-count":145,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,11,1]],"date-time":"2017-11-01T00:00:00Z","timestamp":1509494400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61673179","61370175"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Fusion"],"published-print":{"date-parts":[[2017,11]]},"DOI":"10.1016\/j.inffus.2017.02.007","type":"journal-article","created":{"date-parts":[[2017,2,22]],"date-time":"2017-02-22T04:00:20Z","timestamp":1487736020000},"page":"43-54","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":743,"special_numbering":"C","title":["Multi-view learning overview: Recent progress and new challenges"],"prefix":"10.1016","volume":"38","author":[{"given":"Jing","family":"Zhao","sequence":"first","affiliation":[]},{"given":"Xijiong","family":"Xie","sequence":"additional","affiliation":[]},{"given":"Xin","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Shiliang","family":"Sun","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.inffus.2017.02.007_bib0001","doi-asserted-by":"crossref","first-page":"2031","DOI":"10.1007\/s00521-013-1362-6","article-title":"A survey of multi-view machine learning","volume":"23","author":"Sun","year":"2013","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.inffus.2017.02.007_bib0002","series-title":"Proceeding of the 11th Annual Conference on Computational Learning Theory","first-page":"92","article-title":"Combining labeled and unlabeled data with co-training","author":"Blum","year":"1998"},{"key":"10.1016\/j.inffus.2017.02.007_bib0003","series-title":"Proceedings of the 9th International Conference on Information and Knowledge Management","first-page":"86","article-title":"Analyzing the effectiveness and applicability of co-training","author":"Nigam","year":"2000"},{"key":"10.1016\/j.inffus.2017.02.007_bib0004","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1613\/jair.2005","article-title":"Active learning with multiple views","volume":"27","author":"Muslea","year":"2006","journal-title":"J. Artif. Intell. Res."},{"key":"10.1016\/j.inffus.2017.02.007_bib0005","doi-asserted-by":"crossref","first-page":"1113","DOI":"10.1142\/S0218001411008981","article-title":"Robust co-training","volume":"25","author":"Sun","year":"2011","journal-title":"Int. J. Pattern Recognit. Artif. Intell."},{"key":"10.1016\/j.inffus.2017.02.007_bib0006","first-page":"2423","article-title":"Sparse semi-supervised learning using conjugate functions","volume":"11","author":"Sun","year":"2010","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.inffus.2017.02.007_bib0007","doi-asserted-by":"crossref","first-page":"701","DOI":"10.3233\/IDA-150740","article-title":"Multi-view twin support vector machines","volume":"19","author":"Xie","year":"2015","journal-title":"Intell. Data Anal."},{"key":"10.1016\/j.inffus.2017.02.007_bib0008","first-page":"209","article-title":"Multi-view Laplacian support vector machines","volume":"7121","author":"Sun","year":"2011","journal-title":"Lect. Notes Artif. Intell."},{"key":"10.1016\/j.inffus.2017.02.007_bib0009","doi-asserted-by":"crossref","first-page":"1059","DOI":"10.1007\/s10489-014-0563-8","article-title":"Multi-view Laplacian twin support vector machines","volume":"41","author":"Xie","year":"2014","journal-title":"Appl. Intell."},{"key":"10.1016\/j.inffus.2017.02.007_bib0010","series-title":"Proceedings of the 23rd International Joint Conference on Artificial Intelligence","first-page":"1706","article-title":"Multi-view maximum entropy discrimination","author":"Sun","year":"2013"},{"key":"10.1016\/j.inffus.2017.02.007_bib0011","doi-asserted-by":"crossref","first-page":"1445","DOI":"10.1109\/TNNLS.2015.2442256","article-title":"Alternative multi-view maximum entropy discrimination","volume":"27","author":"Chao","year":"2016","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.inffus.2017.02.007_bib0012","series-title":"Proceedings of the 25th International Joint Conference on Artificial Intelligence","first-page":"1839","article-title":"Soft margin consistency based scalable multi-view maximum entropy discrimination","author":"Mao","year":"2016"},{"key":"10.1016\/j.inffus.2017.02.007_bib0013","doi-asserted-by":"crossref","first-page":"296","DOI":"10.1016\/j.ins.2016.06.004","article-title":"Consensus and complementarity based maximun entropy discrimination for multi-view classification","volume":"367","author":"Chao","year":"2016","journal-title":"Inf. Sci."},{"key":"10.1016\/j.inffus.2017.02.007_bib0014","first-page":"470","article-title":"Maximum entropy discrimination","volume":"12","author":"Jaakkola","year":"1999","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2017.02.007_bib0015","doi-asserted-by":"crossref","first-page":"501","DOI":"10.1613\/jair.4190","article-title":"Information-theoretic multi-view domain adaptation: a theoretical and empirical study","volume":"49","author":"Yang","year":"2014","journal-title":"J. Artif. Intell. Res."},{"key":"10.1016\/j.inffus.2017.02.007_bib0016","series-title":"Proceedings of the 23rd International Joint Conference on Artificial Intelligence","first-page":"1848","article-title":"Multi-view discriminant transfer learning","author":"Yang","year":"2013"},{"key":"10.1016\/j.inffus.2017.02.007_bib0017","doi-asserted-by":"crossref","first-page":"282","DOI":"10.1002\/sam.11226","article-title":"Multi-transfer: transfer learning with multiple views and multiple sources","volume":"7","author":"Tan","year":"2014","journal-title":"Stat. Anal. Data Min."},{"key":"10.1016\/j.inffus.2017.02.007_bib0018","series-title":"Proceedings of the 14th International Conference on Data Mining","first-page":"110","article-title":"Low-rank common subspace for multi-view learning","author":"Ding","year":"2014"},{"key":"10.1016\/j.inffus.2017.02.007_bib0019","series-title":"Proceedings of the 27th AAAI Conference on Artificial Intelligence","first-page":"387","article-title":"Convex subspace representation learning from multi-view data","author":"Guo","year":"2013"},{"key":"10.1016\/j.inffus.2017.02.007_bib0020","series-title":"Proceedings of the 21st European Conference on Artificial Intelligence","first-page":"387","article-title":"Bayesian multiview dimensionality reduction for learning predictive subspaces","author":"G\u00f6nen","year":"2014"},{"key":"10.1016\/j.inffus.2017.02.007_bib0021","series-title":"Proceedings of IEEE International Conference on Computer Vision","first-page":"1582","article-title":"Low-rank tensor constrained multiview subspace clustering","author":"Zhang","year":"2015"},{"key":"10.1016\/j.inffus.2017.02.007_bib0022","series-title":"Proceedings of the 29th AAAI Conference on Artificial Intelligence","first-page":"2750","article-title":"Large-scale multi-view spectral clustering via bipartite graph","author":"Li","year":"2015"},{"key":"10.1016\/j.inffus.2017.02.007_bib0023","series-title":"Proceedings of the 28th AAAI Conference on Artificial Intelligence","first-page":"1968","article-title":"Partial multi-view clustering","author":"Li","year":"2014"},{"key":"10.1016\/j.inffus.2017.02.007_bib0024","series-title":"Proceedings of the 29th AAAI Conference on Artificial Intelligence","first-page":"3174","article-title":"Constrained NMF-based multi-view clustering on unmapped data","author":"Zhang","year":"2015"},{"key":"10.1016\/j.inffus.2017.02.007_bib0025","series-title":"Proceedings of the IEEE International Conference on Data Mining","first-page":"1103","article-title":"Multi-view clustering via multi-manifold regularized nonnegative matrix factorization","author":"Zhang","year":"2014"},{"key":"10.1016\/j.inffus.2017.02.007_bib0026","series-title":"Proceedings of the 28th AAAI Conference on Artificial Intelligence","first-page":"2149","article-title":"Robust multi-view spectral clustering via low-rank and sparse decomposition","author":"Xia","year":"2014"},{"key":"10.1016\/j.inffus.2017.02.007_bib0027","first-page":"1007","article-title":"Multi-view clustering based on belief propagation","volume":"28","author":"Zhang","year":"2015","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.inffus.2017.02.007_bib0028","series-title":"Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition","first-page":"586","article-title":"Diversity-induced multiview subspace clustering","author":"Cao","year":"2015"},{"key":"10.1016\/j.inffus.2017.02.007_bib0029","series-title":"Proceedings of 11th IEEE International Conference on Automatic Face and Gesture Recognition","first-page":"1","article-title":"Multi-view discriminant analysis with tensor representation and its application to cross-view gait recognition","author":"Makihara","year":"2015"},{"key":"10.1016\/j.inffus.2017.02.007_bib0030","doi-asserted-by":"crossref","first-page":"3272","DOI":"10.1109\/TCYB.2015.2502248","article-title":"Multiview uncorrelated discriminant analysis","volume":"46","author":"Sun","year":"2015","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.inffus.2017.02.007_bib0031","series-title":"Proceedings of World Statistics Conference","first-page":"2351","article-title":"NOTAM2: Nonparametric Bayes multi-task multi-view learning","author":"Yang","year":"2013"},{"key":"10.1016\/j.inffus.2017.02.007_bib0032","doi-asserted-by":"crossref","first-page":"2874","DOI":"10.1109\/TNNLS.2015.2399233","article-title":"Robust multitask multiview tracking in videos","volume":"26","author":"Mei","year":"2015","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.inffus.2017.02.007_bib0033","series-title":"Proceedings of IEEE International Conference on Computer Vision","first-page":"649","article-title":"Tracking via robust multi-task multi-view joint sparse representation","author":"Hong","year":"2013"},{"key":"10.1016\/j.inffus.2017.02.007_bib0034","series-title":"Proceedings of the 24th International Joint Conference on Artificial Intelligence","first-page":"4055","article-title":"Multi-task multi-view clustering for non-negative data","author":"Zhang","year":"2015"},{"key":"10.1016\/j.inffus.2017.02.007_bib0035","series-title":"Proceedings of ECML PKDD","first-page":"353","article-title":"Shared structure learning for multiple tasks with multiple views","author":"Jin","year":"2013"},{"key":"10.1016\/j.inffus.2017.02.007_bib0036","first-page":"375","article-title":"PAC generalization bounds for co-training","volume":"14","author":"Dasgupta","year":"2002","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2017.02.007_bib0037","series-title":"Proceedings of the Conference on Learning Theory","first-page":"403","article-title":"An information theoretic framework for multi-view learning","author":"Sridharan","year":"2008"},{"key":"10.1016\/j.inffus.2017.02.007_bib0038","first-page":"3507","article-title":"PAC-Bayes bounds with data dependent priors","volume":"13","author":"Parrado-Hern\u00e1ndez","year":"2012","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.inffus.2017.02.007_bib0039","series-title":"Proceedings of the 11th Annual Conference on Computational Learning Theory","first-page":"92","article-title":"Combining labeled and unlabeled data with co-training","author":"Blum","year":"1998"},{"key":"10.1016\/j.inffus.2017.02.007_bib0040","series-title":"Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics","first-page":"360","article-title":"Bootstrapping","author":"Abney","year":"2002"},{"key":"10.1016\/j.inffus.2017.02.007_bib0041","first-page":"89","article-title":"Co-training and expansion: towards bridging theory and practice","volume":"17","author":"Balcan","year":"2005","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2017.02.007_bib0042","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1016\/j.inffus.2016.09.008","article-title":"PAC-Bayes analysis of multi-view learning","volume":"35","author":"Sun","year":"2017","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.inffus.2017.02.007_bib0043","first-page":"463","article-title":"Rademacher and Gaussian complexities: risk bounds and structural results","volume":"3","author":"Bartlett","year":"2002","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.inffus.2017.02.007_bib0044","first-page":"355","article-title":"Two view learning: SVM-2K, theory and practice","volume":"18","author":"Farquhar","year":"2006","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2017.02.007_bib0045","doi-asserted-by":"crossref","first-page":"1254","DOI":"10.1016\/j.neucom.2006.11.012","article-title":"Synthesis of maximum margin and multiview learning using unlabeled data","volume":"70","author":"Szedmak","year":"2007","journal-title":"Neurocomputing"},{"key":"10.1016\/j.inffus.2017.02.007_bib0046","first-page":"396","article-title":"The Rademacher complexity of co-regularized kernel classes","volume":"2","author":"Rosenberg","year":"2007","journal-title":"J. Mach. Learn. Res. Workshop Conf. Proc."},{"key":"10.1016\/j.inffus.2017.02.007_bib0047","series-title":"Proceedings of the 25th International Conference on Machine Learning","first-page":"976","article-title":"An RKHS for multi-view learning and manifold co-regularization","author":"Sindhwani","year":"2008"},{"key":"10.1016\/j.inffus.2017.02.007_bib0048","doi-asserted-by":"crossref","first-page":"2531","DOI":"10.1109\/TPAMI.2015.2417578","article-title":"Multi-view intact space learning","volume":"37","author":"Xu","year":"2015","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2017.02.007_bib0049","doi-asserted-by":"crossref","first-page":"2639","DOI":"10.1162\/0899766042321814","article-title":"Canonical correlation analysis: an overview with application to learning methods","volume":"16","author":"Hardoon","year":"2004","journal-title":"Neural Comput."},{"key":"10.1016\/j.inffus.2017.02.007_bib0050","series-title":"Proceedings of the International Conference on Data Mining","first-page":"1043","article-title":"A novel method of combined feature extraction for recognition","author":"Sun","year":"2008"},{"key":"10.1016\/j.inffus.2017.02.007_bib0051","series-title":"Proceedings of the European Conference on Computer Vision","first-page":"808","article-title":"Multi-view discriminant analysis","author":"Kan","year":"2012"},{"key":"10.1016\/j.inffus.2017.02.007_bib0052","first-page":"454","article-title":"Analyzing co-training style algorithms","volume":"4701","author":"Wang","year":"2007","journal-title":"Lect. Notes Artif. Intell."},{"key":"10.1016\/j.inffus.2017.02.007_bib0053","series-title":"Proceedings of the 27th International Conference on Machine Learning","first-page":"1135","article-title":"A new analysis of co-training","author":"Wang","year":"2010"},{"key":"10.1016\/j.inffus.2017.02.007_bib0054","series-title":"Proceedings of the 5th Asian Conference on Machine Learning","first-page":"467","article-title":"Co-training with insufficient views","author":"Wang","year":"2013"},{"key":"10.1016\/j.inffus.2017.02.007_bib0055","series-title":"Proceedings of the 21st International Conference on Machine Learning","first-page":"99","article-title":"Co-EM support vector learning","author":"Brefeld","year":"2004"},{"key":"10.1016\/j.inffus.2017.02.007_bib0056","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1613\/jair.2005","article-title":"Active learning with multiple views","volume":"27","author":"Muslea","year":"2006","journal-title":"J. Artif. Intell. Res."},{"key":"10.1016\/j.inffus.2017.02.007_bib0057","series-title":"Proceedings of the 19th International Conference on Machine Learning","first-page":"435","article-title":"Active+semi-supervised learning=robust multiview learning","author":"Muslea","year":"2002"},{"key":"10.1016\/j.inffus.2017.02.007_bib0058","doi-asserted-by":"crossref","first-page":"1113","DOI":"10.1142\/S0218001411008981","article-title":"Robust co-training","volume":"25","author":"Sun","year":"2011","journal-title":"Int. J. Pattern Recognit. Artif. Intell."},{"key":"10.1016\/j.inffus.2017.02.007_bib0059","first-page":"2649","article-title":"Bayesian co-training","volume":"12","author":"Yu","year":"2011","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.inffus.2017.02.007_bib0060","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1016\/j.patrec.2013.12.003","article-title":"A subspace co-training framework for multi-view clustering","volume":"41","author":"Zhao","year":"2014","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.inffus.2017.02.007_bib0061","first-page":"2456","article-title":"Co-training for domain adaptation","volume":"24","author":"Chen","year":"2011","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2017.02.007_bib0062","series-title":"Proceedings of the 23rd IEEE International Conference on Tools with Artificial Intelligence","first-page":"399","article-title":"Multi-view transfer learning with adaboost","author":"Xu","year":"2011"},{"key":"10.1016\/j.inffus.2017.02.007_bib0063","doi-asserted-by":"crossref","first-page":"332","DOI":"10.1007\/978-3-642-34487-9_41","article-title":"Multi-source transfer learning with multi-view adaboost","volume":"7665","author":"Xu","year":"2012","journal-title":"Lect. Notes Comput. Sci."},{"key":"10.1016\/j.inffus.2017.02.007_bib0064","series-title":"Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"1208","article-title":"Multi-view transfer learning with a large margin approach","author":"Zhang","year":"2011"},{"key":"10.1016\/j.inffus.2017.02.007_bib0065","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1093\/biomet\/28.3-4.321","article-title":"Relations between two sets of variates","volume":"28","author":"Hotelling","year":"1936","journal-title":"Biometrika"},{"key":"10.1016\/j.inffus.2017.02.007_bib0066","doi-asserted-by":"crossref","first-page":"433","DOI":"10.1093\/biomet\/58.3.433","article-title":"Canonical analysis of several sets of variables","volume":"58","author":"Kettenring","year":"1971","journal-title":"Biometrika"},{"key":"10.1016\/j.inffus.2017.02.007_bib0067","series-title":"Kernel Methods for Pattern Analysis","author":"Shawe-Taylor","year":"2004"},{"key":"10.1016\/j.inffus.2017.02.007_bib0068","doi-asserted-by":"crossref","first-page":"365","DOI":"10.1142\/S012906570000034X","article-title":"Kernel and nonlinear canonical correlation analysis","volume":"10","author":"Lai","year":"2000","journal-title":"Int. J. Neural Syst."},{"key":"10.1016\/j.inffus.2017.02.007_bib0069","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1007\/s10994-008-5085-3","article-title":"Convergence analysis of kernel canonical correlation analysis: theory and practice","volume":"74","author":"Hardoon","year":"2009","journal-title":"Mach. Learn."},{"key":"10.1016\/j.inffus.2017.02.007_bib0070","first-page":"1","article-title":"Kernel independent component analysis","volume":"3","author":"Bach","year":"2002","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.inffus.2017.02.007_bib0071","series-title":"Proceedings of the International Meeting of the Psychometric Society","first-page":"1","article-title":"A kernel method for canonical correlation analysis","author":"Akaho","year":"2001"},{"key":"10.1016\/j.inffus.2017.02.007_bib0072","series-title":"Proceedings of the Conference on Data Mining and Data Warehouses","first-page":"1","article-title":"Multi-view canonical correlation analysis","author":"Rupnik","year":"2010"},{"key":"10.1016\/j.inffus.2017.02.007_bib0073","first-page":"199","article-title":"Multi-view learning of word embeddings via CCA","volume":"24","author":"Dhillon","year":"2011","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2017.02.007_bib0074","series-title":"Proceedings of the 15th International Conference on Artificial Intelligence and Statistics","first-page":"199","article-title":"Structured sparse canonical correlation analysis","author":"Chen","year":"2012"},{"key":"10.1016\/j.inffus.2017.02.007_bib0075","doi-asserted-by":"crossref","first-page":"331","DOI":"10.1007\/s10994-010-5222-7","article-title":"Sparse canonical correlation analysis","volume":"83","author":"Hardoon","year":"2011","journal-title":"Mach. Learn."},{"key":"10.1016\/j.inffus.2017.02.007_bib0076","doi-asserted-by":"crossref","first-page":"194","DOI":"10.1109\/TPAMI.2010.160","article-title":"Canonical correlation analysis for multilabel classification: a least-squares formulation, extension, and analysis","volume":"33","author":"Sun","year":"2011","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2017.02.007_bib0077","series-title":"Proceedings of the 26th Annual International Conference on Machine Learning","first-page":"129","article-title":"Multi-view clustering via canonical correlation analysis","author":"Chaudhuri","year":"2009"},{"key":"10.1016\/j.inffus.2017.02.007_bib0078","series-title":"Proceedings of the Annual Conference on Computational Learning Theory","first-page":"82","article-title":"Multi-view regression via canonical correlation analysis","author":"Kakade","year":"2007"},{"key":"10.1016\/j.inffus.2017.02.007_sbref0079","series-title":"Technical Report","article-title":"A probabilistic interpretation of canonical correlation analysis","author":"Bach","year":"2005"},{"key":"10.1016\/j.inffus.2017.02.007_bib0080","first-page":"965","article-title":"Bayesian canonical correlation analysis","volume":"14","author":"Klami","year":"2013","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.inffus.2017.02.007_bib0081","series-title":"Proceedings of the 28th International Conference on Machine Learning","first-page":"457","article-title":"Bayesian CCA via group sparsity","author":"Virtanen","year":"2011"},{"key":"10.1016\/j.inffus.2017.02.007_bib0082","series-title":"Proceedings of the 33rd International Conference on Machine Learning","first-page":"458","article-title":"Beyond CCA: moment matching for multi-view models","author":"Podosinnikova","year":"2016"},{"key":"10.1016\/j.inffus.2017.02.007_bib0083","series-title":"Proceedings of the 30th International Conference on Machine Learning","first-page":"1247","article-title":"Deep canonical correlation analysis","author":"Andrew","year":"2013"},{"key":"10.1016\/j.inffus.2017.02.007_bib0084","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1016\/j.neunet.2006.09.011","article-title":"A learning algorithm for adaptive canonical correlation analysis of several data sets","volume":"20","author":"V\u00eda","year":"2007","journal-title":"Neural Netw."},{"key":"10.1016\/j.inffus.2017.02.007_bib0085","doi-asserted-by":"crossref","first-page":"3111","DOI":"10.1109\/TKDE.2015.2445757","article-title":"Tensor canonical correlation analysis for multi-view dimension reduction","volume":"27","author":"Luo","year":"2015","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.inffus.2017.02.007_bib0086","series-title":"Proceedings of IEEE Conference on Computer Vision and Pattern Recognition","first-page":"1","article-title":"Tensor canonical correlation analysis for action classification","author":"Kim","year":"2007"},{"key":"10.1016\/j.inffus.2017.02.007_bib0087","series-title":"Proceeding of the SIAM International Conference on Data Mining","first-page":"822","article-title":"A general model for multiple view unsupervised learning","author":"Long","year":"2008"},{"key":"10.1016\/j.inffus.2017.02.007_bib0088","doi-asserted-by":"crossref","first-page":"2365","DOI":"10.1109\/TPAMI.2012.64","article-title":"Large-margin predictive latent subspace learning for multiview data analysis","volume":"34","author":"Chen","year":"2012","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.inffus.2017.02.007_bib0089","first-page":"1","article-title":"Convex multi-view subspace learning","volume":"25","author":"White","year":"2012","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2017.02.007_bib0090","series-title":"Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"2045","article-title":"Collaborative multi-view denoising","author":"Zhang","year":"2016"},{"key":"10.1016\/j.inffus.2017.02.007_bib0091","series-title":"Proceedings of the 4th IEEE International Conference on Data Mining","first-page":"19","article-title":"Multi-view clustering","author":"Bickel","year":"2004"},{"key":"10.1016\/j.inffus.2017.02.007_bib0092","series-title":"Proceedings of the 22th IEEE International Conference on Machine Learning","first-page":"20","article-title":"Spectral clustering with two views","author":"Sa","year":"2005"},{"key":"10.1016\/j.inffus.2017.02.007_bib0093","series-title":"Proceedings of IEEE Conference on Computer Vision and Pattern Recognition","first-page":"1","article-title":"Correlational spectral clustering","author":"Blaschko","year":"2008"},{"key":"10.1016\/j.inffus.2017.02.007_bib0094","series-title":"Proceedings of the 12th IEEE International Conference on Data Mining","first-page":"675","article-title":"Spectral clustering and transductive learning with multiple views","author":"Zhou","year":"2012"},{"key":"10.1016\/j.inffus.2017.02.007_bib0095","series-title":"Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval","first-page":"736","article-title":"Multiview clustering: a late fusion approach using latent models","author":"Bruno","year":"2009"},{"key":"10.1016\/j.inffus.2017.02.007_bib0096","doi-asserted-by":"crossref","first-page":"1056","DOI":"10.1109\/TKDE.2012.95","article-title":"Multiview partitioning via tensor methods","volume":"25","author":"Liu","year":"2013","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.inffus.2017.02.007_bib0097","series-title":"Proceedings of the 30th International Conference on Machine Learning","first-page":"352","article-title":"Multi-view clustering and feature learning via structured sparsity","author":"Wang","year":"2013"},{"key":"10.1016\/j.inffus.2017.02.007_bib0098","series-title":"Proceedings of the 13th SIAM International Conference on Data Mining","first-page":"252","article-title":"Multi-view clustering via joint nonnegative matrix factorization","author":"Liu","year":"2013"},{"key":"10.1016\/j.inffus.2017.02.007_bib0099","series-title":"Proceedings of International Conference on Machine Learning and Cybernetics","first-page":"51","article-title":"Multi-view clustering ensembles","author":"Xie","year":"2013"},{"key":"10.1016\/j.inffus.2017.02.007_bib0100","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1002\/ima.22121","article-title":"Multiview cluster ensembles for multimodal MRI segmentation","volume":"25","author":"M\u00e9ndez","year":"2015","journal-title":"Int. J. Imaging Syst. Technol."},{"key":"10.1016\/j.inffus.2017.02.007_bib0101","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1007\/s10844-014-0307-6","article-title":"Multi-view document clustering via ensemble method","volume":"49","author":"Hussain","year":"2014","journal-title":"J. Intell. Inf. Syst."},{"key":"10.1016\/j.inffus.2017.02.007_bib0102","doi-asserted-by":"crossref","first-page":"618","DOI":"10.1016\/j.ipm.2015.12.007","article-title":"Multi-view clustering via spectral partitioning and local refinement","volume":"52","author":"Chikhi","year":"2016","journal-title":"Inf. Process. Manage."},{"key":"10.1016\/j.inffus.2017.02.007_bib0103","series-title":"Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases","first-page":"328","article-title":"Constructing nonlinear discriminants from multiple data views","author":"Diethe","year":"2010"},{"key":"10.1016\/j.inffus.2017.02.007_bib0104","series-title":"Proceedings of the 9th European Conference on Computer Vision","first-page":"251","article-title":"Learning discriminative canonical correlations for object recognition with image sets","author":"Kim","year":"2006"},{"key":"10.1016\/j.inffus.2017.02.007_bib0105","series-title":"Proceedings of the NIPS Workshop on Learning from Multiple Sources","first-page":"1","article-title":"Multiview Fisher discriminant analysis","author":"Diethe","year":"2008"},{"key":"10.1016\/j.inffus.2017.02.007_bib0106","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1007\/978-3-642-10684-2_32","article-title":"Hierarchical multi-view Fisher discriminant analysis","volume":"5864","author":"Chen","year":"2009","journal-title":"Lect. Notes Comput. Sci."},{"key":"10.1016\/j.inffus.2017.02.007_bib0107","series-title":"Proceedings of the Computer Vision and Pattern Recognition","first-page":"2160","article-title":"Generalized multiview analysis: a discriminative latent space","author":"Sharma","year":"2012"},{"key":"10.1016\/j.inffus.2017.02.007_bib0108","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1007\/s00530-014-0389-6","article-title":"Large-margin multi-view Gaussian process","volume":"21","author":"Xu","year":"2014","journal-title":"Multimedia Syst."},{"key":"10.1016\/j.inffus.2017.02.007_bib0109","doi-asserted-by":"crossref","first-page":"189","DOI":"10.1109\/TIP.2014.2375634","article-title":"Discriminative shared gaussian processes for multiview and view-invariant facial expression recognition","volume":"24","author":"Eleftheriadis","year":"2015","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.inffus.2017.02.007_bib0110","first-page":"60","article-title":"Multi-view discriminative sequential learning","volume":"3720","author":"Brefeld","year":"2005","journal-title":"Lect. Notes Artif. Intell."},{"key":"10.1016\/j.inffus.2017.02.007_bib0111","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1109\/MSP.2009.933383","article-title":"Multi-view point cloud kernels for semisupervised learning","volume":"145","author":"Rosenberg","year":"2009","journal-title":"IEEE Signal Process. Mag."},{"key":"10.1016\/j.inffus.2017.02.007_bib0112","doi-asserted-by":"crossref","first-page":"2040","DOI":"10.1109\/TKDE.2011.160","article-title":"Multiview semi-supervised learning with consensus","volume":"24","author":"Li","year":"2012","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.inffus.2017.02.007_bib0113","first-page":"209","article-title":"Multiview vector-valued manifold regularization for multilabel image classification","volume":"24","author":"Luo","year":"2013","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.inffus.2017.02.007_bib0114","series-title":"Proceedings of the 28th International Conference on Machine Learning","first-page":"25","article-title":"A graph-based framework for multi-task multi-view learning","author":"He","year":"2011"},{"key":"10.1016\/j.inffus.2017.02.007_bib0115","series-title":"Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"543","article-title":"Inductive multi-task learning with multiple view data","author":"Zhang","year":"2012"},{"key":"10.1016\/j.inffus.2017.02.007_bib0116","series-title":"Proceedings of the ACM International Conference on Information and Knowledge Management","first-page":"441","article-title":"Multi-task multi-view learning for heterogeneous tasks","author":"Jin","year":"2014"},{"key":"10.1016\/j.inffus.2017.02.007_bib0117","doi-asserted-by":"crossref","first-page":"355","DOI":"10.1007\/978-3-642-17537-4_44","article-title":"An algorithm on multi-view adaboost","volume":"6443","author":"Xu","year":"2010","journal-title":"Lect. Notes Comput. Sci."},{"key":"10.1016\/j.inffus.2017.02.007_bib0118","doi-asserted-by":"crossref","first-page":"229","DOI":"10.1007\/s11063-011-9195-8","article-title":"Multiple-view multiple-learner semi-supervised learning","volume":"34","author":"Sun","year":"2011","journal-title":"Neural Process. Lett."},{"key":"10.1016\/j.inffus.2017.02.007_bib0119","doi-asserted-by":"crossref","first-page":"3113","DOI":"10.1016\/j.patcog.2010.04.004","article-title":"Multiple-view multiple-learner active learning","volume":"43","author":"Zhang","year":"2010","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.inffus.2017.02.007_bib0120","series-title":"Proceedings of the 3rd International Symposium on Women in Computing & Informatics","first-page":"31","article-title":"Multi-view ensemble learning: a supervised feature set partitioning for high dimensional data classification","author":"Kumar","year":"2015"},{"key":"10.1016\/j.inffus.2017.02.007_bib0121","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s10115-015-0875-y","article-title":"Multi-view ensemble learning: an optimal feature set partitioning for high dimensional data classification","author":"Kumar","year":"2016","journal-title":"Knowl. Inf. Syst."},{"key":"10.1016\/j.inffus.2017.02.007_bib0122","series-title":"Proceedings of the 2nd International Conference on Advanced Computing, Networking and Informatics","first-page":"57","article-title":"Multi-view ensemble learning for poem data classification using sentiwordnet","author":"Kumar","year":"2014"},{"key":"10.1016\/j.inffus.2017.02.007_sbref0123","series-title":"Technical Report","article-title":"The CMU multi-pose, illumination, and expression (multi-pie) face database","author":"Gross","year":"2007"},{"key":"10.1016\/j.inffus.2017.02.007_bib0124","series-title":"Proceedings of the 12th IEEE International Conference on Data Mining","first-page":"675","article-title":"Kernel-based weighted multiview clustering","author":"Tzortzis","year":"2012"},{"key":"10.1016\/j.inffus.2017.02.007_bib0125","doi-asserted-by":"crossref","first-page":"903","DOI":"10.1007\/s00138-011-0346-8","article-title":"Efficient large-scale multiview stereo for ultra high-resolution image sets","volume":"23","author":"Tola","year":"2012","journal-title":"Mach. Vision Appl."},{"key":"10.1016\/j.inffus.2017.02.007_bib0126","series-title":"Proceedings of IEEE Conference on Computer Vision and Pattern Recognition","first-page":"406","article-title":"Large scale multi-view stereopsis evaluation","author":"Jensen","year":"2014"},{"key":"10.1016\/j.inffus.2017.02.007_bib0127","series-title":"Proceedings of the 7th Asian Conference on Machine Learning","first-page":"407","article-title":"One-pass multi-view learning","author":"Zhu","year":"2015"},{"key":"10.1016\/j.inffus.2017.02.007_bib0128","first-page":"91","article-title":"Large scale canonical correlation analysis with iterative least squares","volume":"27","author":"Lu","year":"2014","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2017.02.007_bib0129","series-title":"Proceedings of the 23rd International Joint Conference on Artificial Intelligence","first-page":"2598","article-title":"Multi-view k-means clustering on big data","author":"Cai","year":"2013"},{"key":"10.1016\/j.inffus.2017.02.007_bib0130","series-title":"Proceedings of the 32nd International Conference on Machine Learning","first-page":"1083","article-title":"On deep multi-view representation learning","author":"Wang","year":"2015"},{"key":"10.1016\/j.inffus.2017.02.007_bib0131","series-title":"Proceedings of the 28th International Conference on Machine Learning","first-page":"689","article-title":"Multimodal deep learning","author":"Ngiam","year":"2011"},{"key":"10.1016\/j.inffus.2017.02.007_bib0132","series-title":"Proceedings of the 30th International Conference on Machine Learning","first-page":"1247","article-title":"Deep canonical correlation analysis","author":"Andrew","year":"2013"},{"key":"10.1016\/j.inffus.2017.02.007_bib0133","first-page":"217","article-title":"Multi-view perceptron: a deep model for learning face identity and view representations","volume":"27","author":"Zhu","year":"2014","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.inffus.2017.02.007_bib0134","series-title":"Proceedings of the IEEE International Conference on Computer Vision","first-page":"945","article-title":"Multi-view convolutional neural networks for 3D shape recognition","author":"Su","year":"2015"},{"key":"10.1016\/j.inffus.2017.02.007_bib0135","series-title":"Proceedings of the 33rd International Conference on Machine Learning","first-page":"888","article-title":"A comparative analysis and study of multiview CNN models for joint object categorization and pose estimation","author":"Elhoseiny","year":"2016"},{"key":"10.1016\/j.inffus.2017.02.007_bib0136","series-title":"Proceedings of the 24th International Conference on World Wide Web","first-page":"278","article-title":"Multi-view deep learning approach for cross domain user modeling in recommendation systems","author":"Elkahky","year":"2015"},{"key":"10.1016\/j.inffus.2017.02.007_bib0137","series-title":"Proceedings of the 28th AAAI Conference on Artificial Intelligence","first-page":"1968","article-title":"Partial multi-view clustering","author":"Li","year":"2014"},{"key":"10.1016\/j.inffus.2017.02.007_bib0138","series-title":"Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases","first-page":"318","article-title":"Multiple incomplete views clustering via weighted nonnegative matrix factorization with L2, 1 regularization","author":"Shao","year":"2015"},{"key":"10.1016\/j.inffus.2017.02.007_bib0139","series-title":"Proceedings of the 17th AAAI Conference on Artificial Intelligence","first-page":"621","article-title":"Selective sampling with redundant views","author":"Muslea","year":"2000"},{"key":"10.1016\/j.inffus.2017.02.007_bib0140","doi-asserted-by":"crossref","first-page":"2980","DOI":"10.1016\/j.neucom.2010.07.007","article-title":"Active learning with extremely sparse labeled examples","volume":"73","author":"Sun","year":"2010","journal-title":"Neurocomputing"},{"key":"10.1016\/j.inffus.2017.02.007_bib0141","doi-asserted-by":"crossref","first-page":"1615","DOI":"10.1007\/s00521-014-1643-8","article-title":"Active learning of Gaussian processes with manifold-preserving graph reduction","volume":"25","author":"Zhou","year":"2014","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.inffus.2017.02.007_bib0142","doi-asserted-by":"crossref","first-page":"122","DOI":"10.1016\/j.neucom.2015.04.086","article-title":"Gaussian process versus margin sampling active learning","volume":"167","author":"Zhou","year":"2015","journal-title":"Neurocomputing"},{"key":"10.1016\/j.inffus.2017.02.007_bib0143","series-title":"Proceedings of the 24th International Joint Conference on Artificial Intelligence","first-page":"1047","article-title":"Revisiting Gaussian process dynamical models","author":"Zhao","year":"2015"},{"key":"10.1016\/j.inffus.2017.02.007_bib0144","doi-asserted-by":"crossref","first-page":"2014","DOI":"10.1109\/TITS.2016.2515105","article-title":"High-order Gaussian process dynamical models for traffic flow prediction","volume":"17","author":"Zhao","year":"2016","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"key":"10.1016\/j.inffus.2017.02.007_bib0145","first-page":"1","article-title":"Variational dependent multi-output Gaussian process dynamical systems","volume":"17","author":"Zhao","year":"2016","journal-title":"J. Mach. Learn. Res."}],"container-title":["Information Fusion"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1566253516302032?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1566253516302032?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,9,18]],"date-time":"2019-09-18T19:39:57Z","timestamp":1568835597000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1566253516302032"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,11]]},"references-count":145,"alternative-id":["S1566253516302032"],"URL":"https:\/\/doi.org\/10.1016\/j.inffus.2017.02.007","relation":{},"ISSN":["1566-2535"],"issn-type":[{"value":"1566-2535","type":"print"}],"subject":[],"published":{"date-parts":[[2017,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Multi-view learning overview: Recent progress and new challenges","name":"articletitle","label":"Article Title"},{"value":"Information Fusion","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.inffus.2017.02.007","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}