{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T18:10:24Z","timestamp":1726251024398},"reference-count":49,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,7,1]],"date-time":"2017-07-01T00:00:00Z","timestamp":1498867200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61440018","61501411"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003819","name":"Hubei Natural Science Foundation","doi-asserted-by":"publisher","award":["2014CFB904"],"id":[{"id":"10.13039\/501100003819","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information Fusion"],"published-print":{"date-parts":[[2017,7]]},"DOI":"10.1016\/j.inffus.2016.11.015","type":"journal-article","created":{"date-parts":[[2016,12,1]],"date-time":"2016-12-01T13:32:05Z","timestamp":1480599125000},"page":"225-232","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":31,"special_numbering":"C","title":["Air quality data clustering using EPLS method"],"prefix":"10.1016","volume":"36","author":[{"given":"Yunliang","family":"Chen","sequence":"first","affiliation":[]},{"given":"Lizhe","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Fangyuan","family":"Li","sequence":"additional","affiliation":[]},{"given":"Bo","family":"Du","sequence":"additional","affiliation":[]},{"given":"Kim-Kwang Raymond","family":"Choo","sequence":"additional","affiliation":[]},{"given":"Houcine","family":"Hassan","sequence":"additional","affiliation":[]},{"given":"Wenjian","family":"Qin","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"12","key":"10.1016\/j.inffus.2016.11.015_bib0001","doi-asserted-by":"crossref","first-page":"3026","DOI":"10.1109\/TKDE.2014.2316504","article-title":"Highly comparative feature-based time-series classification","volume":"26","author":"Fulcher","year":"2014","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.inffus.2016.11.015_bib0002","series-title":"Workshop on mining and learning from time series (MiLeTS)","article-title":"Amp: a new time-frequency feature extraction method for intermittent time-series data","author":"Barrack","year":"2015"},{"issue":"4","key":"10.1016\/j.inffus.2016.11.015_bib0003","doi-asserted-by":"crossref","first-page":"2121","DOI":"10.1016\/j.eswa.2014.09.036","article-title":"A high-order multi-variable fuzzy time series forecasting algorithm based on fuzzy clustering","volume":"42","author":"Askari","year":"2015","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.inffus.2016.11.015_bib0004","series-title":"Proceedings of the 22nd International Conference on Pattern Recognition","article-title":"Extracting texture features for time series classification","author":"Souza","year":"2014"},{"key":"10.1016\/j.inffus.2016.11.015_bib0005","series-title":"Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data","first-page":"919","article-title":"Mining and forecasting of big time-series data","author":"Sakurai","year":"2015"},{"key":"10.1016\/j.inffus.2016.11.015_bib0006","series-title":"Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data","first-page":"1855","article-title":"k-shape: efficient and accurate clustering of time series","author":"Paparrizos","year":"2015"},{"key":"10.1016\/j.inffus.2016.11.015_bib0007","series-title":"Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining","first-page":"322","article-title":"Identifying distinctive subsequences in multivariate time series by clustering","author":"Oates","year":"1999"},{"issue":"3","key":"10.1016\/j.inffus.2016.11.015_bib0008","doi-asserted-by":"crossref","first-page":"678","DOI":"10.1016\/j.patcog.2010.09.013","article-title":"A global averaging method for dynamic time warping, with applications to clustering","volume":"44","author":"Petitjean","year":"2011","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.inffus.2016.11.015_bib0009","series-title":"Proceedings of the 11th IEEE International Conference on Data Mining","first-page":"547","article-title":"Time series epenthesis: clustering time series streams requires ignoring some data","author":"Rakthanmanon","year":"2011"},{"issue":"1","key":"10.1016\/j.inffus.2016.11.015_bib0010","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1109\/TKDE.2015.2462369","article-title":"Similarity measure selection for clustering time series databases","volume":"28","author":"Mori","year":"2016","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"4","key":"10.1016\/j.inffus.2016.11.015_bib0011","doi-asserted-by":"crossref","first-page":"349","DOI":"10.1023\/A:1024988512476","article-title":"On the need for time series data mining benchmarks: a survey and empirical demonstration","volume":"7","author":"Keogh","year":"2003","journal-title":"Data Min. Knowl. Discov."},{"issue":"2","key":"10.1016\/j.inffus.2016.11.015_bib0012","doi-asserted-by":"crossref","first-page":"154","DOI":"10.1007\/s10115-004-0172-7","article-title":"Clustering of time-series subsequences is meaningless: implications for previous and future research","volume":"8","author":"Keogh","year":"2005","journal-title":"Knowl. Inf. Syst."},{"key":"10.1016\/j.inffus.2016.11.015_bib0013","series-title":"Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"947","article-title":"Time series shapelets: a new primitive for data mining","author":"Ye","year":"2009"},{"key":"10.1016\/j.inffus.2016.11.015_bib0014","series-title":"Proceedings of the 13th SIAM international conference on data mining","first-page":"668","article-title":"Fast shapelets: a scalable algorithm for discovering time series shapelets","author":"Rakthanmanon","year":"2013"},{"issue":"11","key":"10.1016\/j.inffus.2016.11.015_bib0015","doi-asserted-by":"crossref","first-page":"1857","DOI":"10.1016\/j.patcog.2005.01.025","article-title":"Clustering of time series data a survey","volume":"38","author":"Liao","year":"2005","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.inffus.2016.11.015_bib0016","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1142\/9789812565402_0004","article-title":"Indexing time-series under conditions of noise","volume":"57","author":"Vlachos","year":"2004","journal-title":"Data Min. Time Ser. Databases"},{"issue":"4","key":"10.1016\/j.inffus.2016.11.015_bib0017","doi-asserted-by":"crossref","first-page":"736","DOI":"10.1109\/LGRS.2014.2360457","article-title":"Compressed sensing of a remote sensing image based on the priors of the reference image","volume":"12","author":"Wang","year":"2015","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"10.1016\/j.inffus.2016.11.015_bib0018","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1016\/j.future.2014.10.029","article-title":"Remote sensing big data computing: challenges and opportunities","volume":"51","author":"Ma","year":"2015","journal-title":"Futur. Gener. Comput. Syst."},{"issue":"3","key":"10.1016\/j.inffus.2016.11.015_bib0019","first-page":"49","article-title":"Feature-based classification of time-series data","volume":"10","author":"Nanopoulos","year":"2001","journal-title":"Int. J. Comput. Res."},{"key":"10.1016\/j.inffus.2016.11.015_bib0020","first-page":"1","article-title":"G-IK-SVD: parallel IK-SVD on GPUs for sparse representation of spatial big data","author":"Song","year":"2016","journal-title":"J. Supercomput."},{"key":"10.1016\/j.inffus.2016.11.015_bib0021","series-title":"SDM","first-page":"449","article-title":"On periodicity detection and structural periodic similarity.","volume":"5","author":"Vlachos","year":"2005"},{"issue":"2","key":"10.1016\/j.inffus.2016.11.015_bib0022","doi-asserted-by":"crossref","first-page":"793","DOI":"10.1007\/s10586-016-0569-6","article-title":"Link the remote sensing big data to the image features via wavelet transformation","volume":"19","author":"Wang","year":"2016","journal-title":"Clust. Comput."},{"key":"10.1016\/j.inffus.2016.11.015_bib0023","doi-asserted-by":"crossref","first-page":"142","DOI":"10.1016\/j.ins.2013.02.030","article-title":"A time series forest for classification and feature extraction","volume":"239","author":"Deng","year":"2013","journal-title":"Inf. Sci."},{"issue":"8","key":"10.1016\/j.inffus.2016.11.015_bib0024","doi-asserted-by":"crossref","first-page":"1819","DOI":"10.1109\/TKDE.2013.39","article-title":"A review on multi-label learning algorithms","volume":"26","author":"Zhang","year":"2014","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.inffus.2016.11.015_bib0025","article-title":"PM2. 5 forecasting with hybrid LSE model-based approach","author":"Chen","year":"2016","journal-title":"Softw. Pract. Exp."},{"key":"10.1016\/j.inffus.2016.11.015_bib0026","series-title":"Machine Learning and Data Mining Approaches to Climate Science","first-page":"185","article-title":"Change detection in climate time series based on bounded-variation clustering","author":"Sefidmazgi","year":"2015"},{"key":"10.1016\/j.inffus.2016.11.015_bib0027","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1016\/j.atmosenv.2014.01.004","article-title":"Study of PM 10 and PM 2.5 levels in three European cities: analysis of intra and inter urban variations","volume":"87","author":"Kassomenos","year":"2014","journal-title":"Atmos. Environ."},{"key":"10.1016\/j.inffus.2016.11.015_bib0028","doi-asserted-by":"crossref","first-page":"264","DOI":"10.1016\/j.scitotenv.2014.07.051","article-title":"A hybrid model for PM 2.5 forecasting based on ensemble empirical mode decomposition and a general regression neural network","volume":"496","author":"Zhou","year":"2014","journal-title":"Sci. Total Environ."},{"key":"10.1016\/j.inffus.2016.11.015_bib0029","doi-asserted-by":"crossref","first-page":"511","DOI":"10.1016\/j.scitotenv.2012.10.110","article-title":"PM 10 emission forecasting using artificial neural networks and genetic algorithm input variable optimization","volume":"443","author":"Antanasijevic","year":"2013","journal-title":"Sci. Total Environ."},{"issue":"5","key":"10.1016\/j.inffus.2016.11.015_bib0030","doi-asserted-by":"crossref","first-page":"1336","DOI":"10.1109\/TC.2014.2317188","article-title":"Cloudgenius: a hybrid decision support method for automating the migration of web application clusters to public clouds","volume":"64","author":"Menzel","year":"2015","journal-title":"IEEE Trans. Comput."},{"issue":"2","key":"10.1016\/j.inffus.2016.11.015_bib0031","doi-asserted-by":"crossref","first-page":"275","DOI":"10.1007\/s10618-012-0250-5","article-title":"Experimental comparison of representation methods and distance measures for time series data","volume":"26","author":"Wang","year":"2013","journal-title":"Data Min. Knowl. Discov."},{"issue":"8","key":"10.1016\/j.inffus.2016.11.015_bib0032","doi-asserted-by":"crossref","first-page":"3194","DOI":"10.1007\/s11227-016-1630-1","article-title":"CEVP: cross entropy based virtual machine placement for energy optimization in clouds","volume":"72","author":"Chen","year":"2016","journal-title":"J. Supercomput."},{"issue":"2","key":"10.1016\/j.inffus.2016.11.015_bib0033","doi-asserted-by":"crossref","first-page":"549","DOI":"10.1007\/s10586-014-0413-9","article-title":"A scalable and fast optics for clustering trajectory big data","volume":"18","author":"Deng","year":"2015","journal-title":"Clust. Comput."},{"issue":"3","key":"10.1016\/j.inffus.2016.11.015_bib0034","doi-asserted-by":"crossref","first-page":"335","DOI":"10.1007\/s10618-005-0039-x","article-title":"Characteristic-based clustering for time series data","volume":"13","author":"Wang","year":"2006","journal-title":"Data Min. Knowl. Discov."},{"key":"10.1016\/j.inffus.2016.11.015_bib0035","series-title":"International Conference on Foundations of Data Organization and Algorithms","first-page":"69","article-title":"Efficient similarity search in sequence databases","author":"Agrawal","year":"1993"},{"key":"10.1016\/j.inffus.2016.11.015_bib0036","series-title":"KDD Workshop","first-page":"359","article-title":"Using dynamic time warping to find patterns in time series.","author":"Berndt","year":"1994"},{"issue":"1","key":"10.1016\/j.inffus.2016.11.015_bib0037","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1145\/2379776.2379788","article-title":"Time-series data mining","volume":"45","author":"Esling","year":"2012","journal-title":"ACM Comput. Surv. (CSUR)"},{"issue":"01","key":"10.1016\/j.inffus.2016.11.015_bib0038","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1142\/S1793536909000047","article-title":"Ensemble empirical mode decomposition: a noise-assisted data analysis method","volume":"1","author":"Wu","year":"2009","journal-title":"Adv. Adapt. Data Anal."},{"key":"10.1016\/j.inffus.2016.11.015_bib0039","unstructured":"J. Shlens, A tutorial on principal component analysis. arXiv preprint arXiv: 1404.1100."},{"key":"10.1016\/j.inffus.2016.11.015_bib0040","doi-asserted-by":"crossref","first-page":"38","DOI":"10.1016\/j.future.2014.11.001","article-title":"Software tools and techniques for big data computing in healthcare clouds.","volume":"43","author":"Wang","year":"2015","journal-title":"Futur. Gener. Comput. Syst."},{"issue":"35","key":"10.1016\/j.inffus.2016.11.015_bib0041","doi-asserted-by":"crossref","first-page":"8331","DOI":"10.1016\/j.atmosenv.2008.07.020","article-title":"A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco, Chile","volume":"42","author":"D\u00edaz-Robles","year":"2008","journal-title":"Atmos. Environ."},{"key":"10.1016\/j.inffus.2016.11.015_bib0042","doi-asserted-by":"crossref","first-page":"244","DOI":"10.1016\/j.envint.2013.06.003","article-title":"A framework to spatially cluster air pollution monitoring sites in us based on the PM 2.5 composition","volume":"59","author":"Austin","year":"2013","journal-title":"Environ. Int."},{"key":"10.1016\/j.inffus.2016.11.015_bib0043","unstructured":"http:\/\/www.aqistudy.cn\/"},{"key":"10.1016\/j.inffus.2016.11.015_bib0044","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1016\/j.knosys.2014.10.004","article-title":"Particle swarm optimization based dictionary learning for remote sensing big data","volume":"79","author":"Wang","year":"2015","journal-title":"Knowl. Based Syst."},{"key":"10.1016\/j.inffus.2016.11.015_bib0045","unstructured":"T.U.T.S.C. Homepage. http:\/\/www.cs.ucr.edu\/~eamonn\/time_series_data\/. (accessed 01.09.16)."},{"key":"10.1016\/j.inffus.2016.11.015_bib0046","series-title":"Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences","first-page":"903","article-title":"The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis","volume":"454","author":"Huang","year":"1998"},{"issue":"5","key":"10.1016\/j.inffus.2016.11.015_bib0047","doi-asserted-by":"crossref","first-page":"793","DOI":"10.3233\/IDA-140669","article-title":"Clustering of large time series datasets","volume":"18","author":"Aghabozorgi","year":"2014","journal-title":"Intell. Data Anal."},{"issue":"3","key":"10.1016\/j.inffus.2016.11.015_bib0048","doi-asserted-by":"crossref","first-page":"333","DOI":"10.1007\/s10994-011-5256-5","article-title":"Classifier chains for multi-label classification","volume":"85","author":"Read","year":"2011","journal-title":"Mach. Learn."},{"key":"10.1016\/j.inffus.2016.11.015_bib0049","series-title":"Finding Groups in Data: An Introduction to Cluster Analysis","volume":"344","author":"Kaufman","year":"2009"}],"container-title":["Information Fusion"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1566253516301968?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1566253516301968?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,9,16]],"date-time":"2019-09-16T01:14:16Z","timestamp":1568596456000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1566253516301968"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,7]]},"references-count":49,"alternative-id":["S1566253516301968"],"URL":"https:\/\/doi.org\/10.1016\/j.inffus.2016.11.015","relation":{},"ISSN":["1566-2535"],"issn-type":[{"value":"1566-2535","type":"print"}],"subject":[],"published":{"date-parts":[[2017,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Air quality data clustering using EPLS method","name":"articletitle","label":"Article Title"},{"value":"Information Fusion","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.inffus.2016.11.015","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2016 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}