{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T00:43:26Z","timestamp":1726188206986},"reference-count":52,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100004731","name":"Natural Science Foundation of Zhejiang Province","doi-asserted-by":"publisher","award":["LDT23F01014F01","LDT23F01015F01","LDT23F01011F01"],"id":[{"id":"10.13039\/501100004731","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100022963","name":"Key Research and Development Program of Zhejiang Province","doi-asserted-by":"publisher","award":["2022C01068"],"id":[{"id":"10.13039\/100022963","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["U21B2024","62071415","61931008","62336008","62322211"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"publisher","award":["2020YFB1406604"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003467","name":"Hangzhou Dianzi University","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100003467","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Image and Vision Computing"],"published-print":{"date-parts":[[2024,10]]},"DOI":"10.1016\/j.imavis.2024.105227","type":"journal-article","created":{"date-parts":[[2024,8,12]],"date-time":"2024-08-12T21:40:25Z","timestamp":1723498825000},"page":"105227","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Coplane-constrained sparse depth sampling and local depth propagation for depth estimation"],"prefix":"10.1016","volume":"150","author":[{"given":"Jiehua","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Zhiwen","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Chuqiao","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Hongkui","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Tingyu","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Chenggang","family":"Yan","sequence":"additional","affiliation":[]},{"given":"Yihong","family":"Gong","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.imavis.2024.105227_bb0005","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"1610","article-title":"P3depth: Monocular depth estimation with a piecewise planarity prior","author":"Patil","year":"2022"},{"key":"10.1016\/j.imavis.2024.105227_bb0010","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"3049","article-title":"Phonedepth: A dataset for monocular depth estimation on mobile devices","author":"Benavides","year":"2022"},{"key":"10.1016\/j.imavis.2024.105227_bb0015","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"4009","article-title":"Adabins: Depth estimation using adaptive bins","author":"Bhat","year":"2021"},{"issue":"3","key":"10.1016\/j.imavis.2024.105227_bb0020","doi-asserted-by":"crossref","first-page":"752","DOI":"10.1007\/s11263-022-01718-1","article-title":"Desc: domain adaptation for depth estimation via semantic consistency","volume":"131","author":"Lopez-Rodriguez","year":"2023","journal-title":"Int. J. Comput. Vis."},{"key":"10.1016\/j.imavis.2024.105227_bb0025","series-title":"Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision","first-page":"5861","article-title":"Attention attention everywhere: Monocular depth prediction with skip attention","author":"Agarwal","year":"2023"},{"key":"10.1016\/j.imavis.2024.105227_bb0030","series-title":"2018 IEEE International Conference on Robotics and Automation (ICRA)","first-page":"4796","article-title":"Sparse-to-dense: Depth prediction from sparse depth samples and a single image","author":"Ma","year":"2018"},{"key":"10.1016\/j.imavis.2024.105227_bb0035","doi-asserted-by":"crossref","first-page":"2850","DOI":"10.1109\/TIP.2021.3055629","article-title":"Learning steering kernels for guided depth completion","volume":"30","author":"Liu","year":"2021","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.imavis.2024.105227_bb0040","series-title":"Proceedings of the AAAI Conference on Artificial Intelligence","first-page":"3626","article-title":"Robust depth completion with uncertainty-driven loss functions","volume":"vol. 36","author":"Zhu","year":"2022"},{"key":"10.1016\/j.imavis.2024.105227_bb0045","series-title":"2020 IEEE International Conference on Computational Photography (ICCP)","first-page":"1","article-title":"Deep adaptive lidar: End-to-end optimization of sampling and depth completion at low sampling rates","author":"Bergman","year":"2020"},{"key":"10.1016\/j.imavis.2024.105227_bb0050","doi-asserted-by":"crossref","first-page":"224","DOI":"10.1109\/TCI.2022.3155377","article-title":"Adaptive illumination based depth sensing using deep superpixel and soft sampling approximation","volume":"8","author":"Dai","year":"2022","journal-title":"IEEE Trans. Comput. Imaging"},{"key":"10.1016\/j.imavis.2024.105227_bb0055","series-title":"in: 2020 International Conference on 3D Vision (3DV)","first-page":"1216","article-title":"Towards a mems-based adaptive lidar","author":"Pittaluga","year":"2020"},{"key":"10.1016\/j.imavis.2024.105227_bb0060","article-title":"Depth map prediction from a single image using a multi-scale deep network","volume":"27","author":"Eigen","year":"2014","journal-title":"Adv. Neural Inf. Proces. Syst."},{"key":"10.1016\/j.imavis.2024.105227_bb0065","series-title":"2016 Fourth International Conference on 3D Vision (3DV)","first-page":"239","article-title":"Deeper depth prediction with fully convolutional residual networks","author":"Laina","year":"2016"},{"issue":"11","key":"10.1016\/j.imavis.2024.105227_bb0070","doi-asserted-by":"crossref","first-page":"4381","DOI":"10.1109\/TCSVT.2021.3049869","article-title":"Monocular depth estimation using laplacian pyramid-based depth residuals","volume":"31","author":"Song","year":"2021","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"10.1016\/j.imavis.2024.105227_bb0075","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"2002","article-title":"Deep ordinal regression network for monocular depth estimation","author":"Fu","year":"2018"},{"issue":"7","key":"10.1016\/j.imavis.2024.105227_bb0080","doi-asserted-by":"crossref","first-page":"4841","DOI":"10.1109\/TCSVT.2021.3128505","article-title":"Cornet: context-based ordinal regression network for monocular depth estimation","volume":"32","author":"Meng","year":"2021","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"10.1016\/j.imavis.2024.105227_bb0085","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"18527","article-title":"Completionformer: Depth completion with convolutions and vision transformers","author":"Zhang","year":"2023"},{"key":"10.1016\/j.imavis.2024.105227_bb0090","doi-asserted-by":"crossref","DOI":"10.1016\/j.imavis.2022.104520","article-title":"Rich global feature guided network for monocular depth estimation","volume":"125","author":"Wu","year":"2022","journal-title":"Image Vis. Comput."},{"key":"10.1016\/j.imavis.2024.105227_bb0095","doi-asserted-by":"crossref","DOI":"10.1016\/j.imavis.2022.104487","article-title":"Monocular depth estimation with spatially coherent sliced network","volume":"124","author":"Su","year":"2022","journal-title":"Image Vis. Comput."},{"key":"10.1016\/j.imavis.2024.105227_bb0100","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"3313","article-title":"Deeplidar: Deep surface normal guided depth prediction for outdoor scene from sparse lidar data and single color image","author":"Qiu","year":"2019"},{"key":"10.1016\/j.imavis.2024.105227_bb0105","series-title":"in: 2019 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"12438","article-title":"Depth coefficients for depth completion","author":"Imran","year":"2019"},{"key":"10.1016\/j.imavis.2024.105227_bb0110","series-title":"Proceedings of the IEEE\/CVF International Conference on Computer Vision","first-page":"2811","article-title":"Depth completion from sparse lidar data with depth-normal constraints","author":"Xu","year":"2019"},{"key":"10.1016\/j.imavis.2024.105227_bb0115","article-title":"Deep rgb-d canonical correlation analysis for sparse depth completion","volume":"32","author":"Zhong","year":"2019","journal-title":"Adv. Neural Inf. Proces. Syst."},{"key":"10.1016\/j.imavis.2024.105227_bb0120","series-title":"Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision","first-page":"32","article-title":"A multi-scale guided cascade hourglass network for depth completion","author":"Li","year":"2020"},{"key":"10.1016\/j.imavis.2024.105227_bb0125","doi-asserted-by":"crossref","first-page":"1116","DOI":"10.1109\/TIP.2020.3040528","article-title":"Learning guided convolutional network for depth completion","volume":"30","author":"Tang","year":"2020","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.imavis.2024.105227_bb0130","series-title":"Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision","first-page":"197","article-title":"Ssgp: Sparse spatial guided propagation for robust and generic interpolation","author":"Schuster","year":"2021"},{"issue":"2","key":"10.1016\/j.imavis.2024.105227_bb0135","doi-asserted-by":"crossref","first-page":"1808","DOI":"10.1109\/LRA.2021.3060396","article-title":"Denselidar: a real-time pseudo dense depth guided depth completion network","volume":"6","author":"Gu","year":"2021","journal-title":"IEEE Robot. Automat. Lett."},{"key":"10.1016\/j.imavis.2024.105227_bb0140","series-title":"Proceedings of the European Conference on Computer Vision (ECCV)","first-page":"103","article-title":"Depth estimation via affinity learned with convolutional spatial propagation network","author":"Cheng","year":"2018"},{"key":"10.1016\/j.imavis.2024.105227_bb0145","series-title":"Proceedings of the AAAI Conference on Artificial Intelligence","first-page":"10615","article-title":"Cspn++: Learning context and resource aware convolutional spatial propagation networks for depth completion","volume":"vol. 34","author":"Cheng","year":"2020"},{"key":"10.1016\/j.imavis.2024.105227_bb0150","series-title":"European Conference on Computer Vision","first-page":"120","article-title":"Non-local spatial propagation network for depth completion","author":"Park","year":"2020"},{"key":"10.1016\/j.imavis.2024.105227_bb0155","series-title":"Proceedings of the AAAI Conference on Artificial Intelligence","article-title":"Dynamic spatial propagation network for depth completion","author":"Lin","year":"2022"},{"key":"10.1016\/j.imavis.2024.105227_bb0160","series-title":"Proceedings of the IEEE\/CVF International Conference on Computer Vision","first-page":"9422","article-title":"Lrru: Long-short range recurrent updating networks for depth completion","author":"Wang","year":"2023"},{"key":"10.1016\/j.imavis.2024.105227_bb0165","series-title":"in: 2011 International Conference on Computer Vision","first-page":"2126","article-title":"Dense disparity maps from sparse disparity measurements","author":"Hawe","year":"2011"},{"issue":"6","key":"10.1016\/j.imavis.2024.105227_bb0170","doi-asserted-by":"crossref","first-page":"1983","DOI":"10.1109\/TIP.2015.2409551","article-title":"Depth reconstruction from sparse samples: representation, algorithm, and sampling","volume":"24","author":"Liu","year":"2015","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.imavis.2024.105227_bb0175","doi-asserted-by":"crossref","first-page":"8900","DOI":"10.1109\/TIP.2021.3120042","article-title":"Adaptive lidar sampling and depth completion using ensemble variance","volume":"30","author":"Gofer","year":"2021","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.imavis.2024.105227_bb0180","series-title":"Proceedings of the IEEE\/CVF International Conference on Computer Vision","first-page":"13137","article-title":"Estimating and exploiting the aleatoric uncertainty in surface normal estimation","author":"Bae","year":"2021"},{"key":"10.1016\/j.imavis.2024.105227_bb0185","series-title":"Proceedings of the European Conference on Computer Vision (ECCV)","first-page":"352","article-title":"Superpixel sampling networks","author":"Jampani","year":"2018"},{"issue":"10","key":"10.1016\/j.imavis.2024.105227_bb0190","doi-asserted-by":"crossref","first-page":"2423","DOI":"10.1109\/TPAMI.2019.2929170","article-title":"Confidence propagation through cnns for guided sparse depth regression","volume":"42","author":"Eldesokey","year":"2019","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"year":"2022","series-title":"New crfs: Neural window fully-connected crfs for monocular depth estimation","author":"Yuan","key":"10.1016\/j.imavis.2024.105227_bb0195"},{"key":"10.1016\/j.imavis.2024.105227_bb0200","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"4009","article-title":"Adabins: Depth estimation using adaptive bins","author":"Bhat","year":"2021"},{"key":"10.1016\/j.imavis.2024.105227_bb0205","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"1610","article-title":"P3depth: Monocular depth estimation with a piecewise planarity prior","author":"Patil","year":"2022"},{"key":"10.1016\/j.imavis.2024.105227_bb0210","series-title":"Computer Vision\u2013ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23\u201327, 2022, Proceedings, Part II","first-page":"18","article-title":"Depth map decomposition for monocular depth estimation","author":"Jun","year":"2022"},{"key":"10.1016\/j.imavis.2024.105227_bb0215","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"12014","article-title":"Uncertainty-aware cnns for depth completion: Uncertainty from beginning to end","author":"Eldesokey","year":"2020"},{"key":"10.1016\/j.imavis.2024.105227_bb0220","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"13916","article-title":"Depth completion using plane-residual representation","author":"Lee","year":"2021"},{"key":"10.1016\/j.imavis.2024.105227_bb0225","series-title":"Proceedings of the AAAI Conference on Artificial Intelligence","first-page":"2136","article-title":"Fcfr-net: Feature fusion based coarse-to-fine residual learning for depth completion","volume":"vol. 35","author":"Liu","year":"2021"},{"key":"10.1016\/j.imavis.2024.105227_bb0230","doi-asserted-by":"crossref","first-page":"5264","DOI":"10.1109\/TIP.2021.3079821","article-title":"Adaptive context-aware multi-modal network for depth completion","volume":"30","author":"Zhao","year":"2021","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.imavis.2024.105227_bb0235","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"2583","article-title":"Depth completion with twin surface extrapolation at occlusion boundaries","author":"Imran","year":"2021"},{"key":"10.1016\/j.imavis.2024.105227_bb0240","series-title":"Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision","first-page":"5818","article-title":"Siunet: Sparsity invariant u-net for edge-aware depth completion","author":"Ramesh","year":"2023"},{"key":"10.1016\/j.imavis.2024.105227_bb0245","series-title":"2018 International Conference on 3d Vision (3DV)","first-page":"248","article-title":"Mvdepthnet: Real-time multiview depth estimation neural network","author":"Wang","year":"2018"},{"year":"2019","series-title":"Dpsnet: End-to-end deep plane sweep stereo","author":"Im","key":"10.1016\/j.imavis.2024.105227_bb0250"},{"key":"10.1016\/j.imavis.2024.105227_bb0255","series-title":"Computer Vision\u2013ECCV 2020: 16th European Conference, Glasgow, UK, August 23\u201328, 2020, Proceedings, Part XXI 16","first-page":"104","article-title":"Deltas: Depth estimation by learning triangulation and densification of sparse points","author":"Sinha","year":"2020"},{"key":"10.1016\/j.imavis.2024.105227_bb0260","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"283","article-title":"Geonet: Geometric neural network for joint depth and surface normal estimation","author":"Qi","year":"2018"}],"container-title":["Image and Vision Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0262885624003329?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0262885624003329?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T09:05:36Z","timestamp":1726131936000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0262885624003329"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,10]]},"references-count":52,"alternative-id":["S0262885624003329"],"URL":"https:\/\/doi.org\/10.1016\/j.imavis.2024.105227","relation":{},"ISSN":["0262-8856"],"issn-type":[{"type":"print","value":"0262-8856"}],"subject":[],"published":{"date-parts":[[2024,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Coplane-constrained sparse depth sampling and local depth propagation for depth estimation","name":"articletitle","label":"Article Title"},{"value":"Image and Vision Computing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.imavis.2024.105227","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"105227"}}