{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,9]],"date-time":"2025-04-09T11:34:06Z","timestamp":1744198446977},"reference-count":35,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Image and Vision Computing"],"published-print":{"date-parts":[[2023,6]]},"DOI":"10.1016\/j.imavis.2023.104670","type":"journal-article","created":{"date-parts":[[2023,4,14]],"date-time":"2023-04-14T09:54:24Z","timestamp":1681466064000},"page":"104670","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":7,"special_numbering":"C","title":["EGRA-NeRF: Edge-Guided Ray Allocation for Neural Radiance Fields"],"prefix":"10.1016","volume":"134","author":[{"given":"Zhenbiao","family":"Gai","sequence":"first","affiliation":[]},{"given":"Zhenyang","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Min","family":"Tan","sequence":"additional","affiliation":[]},{"given":"Jiajun","family":"Ding","sequence":"additional","affiliation":[]},{"given":"Jun","family":"Yu","sequence":"additional","affiliation":[]},{"given":"Mingzhao","family":"Tong","sequence":"additional","affiliation":[]},{"given":"Junqing","family":"Yuan","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.imavis.2023.104670_b0005","series-title":"European conference on computer vision","first-page":"405","article-title":"Nerf: Representing scenes as neural radiance fields for view synthesis","author":"Mildenhall","year":"2020"},{"key":"10.1016\/j.imavis.2023.104670_b0010","doi-asserted-by":"crossref","unstructured":"J.T. Barron, B. Mildenhall, M. Tancik, P. Hedman, R. Martin-Brualla, P.P. Srinivasan, Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2021, pp. 5855\u20135864.","DOI":"10.1109\/ICCV48922.2021.00580"},{"key":"10.1016\/j.imavis.2023.104670_b0015","doi-asserted-by":"crossref","unstructured":"A. Yu, V. Ye, M. Tancik, A. Kanazawa, pixelnerf: Neural radiance fields from one or few images, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 4578\u20134587.","DOI":"10.1109\/CVPR46437.2021.00455"},{"key":"10.1016\/j.imavis.2023.104670_b0020","doi-asserted-by":"crossref","unstructured":"T. M\u00fcller, A. Evans, C. Schied, A. Keller, Instant neural graphics primitives with a multiresolution hash encoding, arXiv preprint arXiv:2201.05989 (2022).","DOI":"10.1145\/3528223.3530127"},{"key":"10.1016\/j.imavis.2023.104670_b0025","article-title":"Scene representation networks: Continuous 3d-structure-aware neural scene representations","volume":"32","author":"Sitzmann","year":"2019","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.imavis.2023.104670_b0030","doi-asserted-by":"crossref","DOI":"10.1145\/3306346.3322980","article-title":"Local light field fusion: Practical view synthesis with prescriptive sampling guidelines","author":"Mildenhall","year":"2019","journal-title":"ACM Trans. Graph. (SIGGRAPH)"},{"key":"10.1016\/j.imavis.2023.104670_b0035","doi-asserted-by":"crossref","DOI":"10.1145\/3306346.3323020","article-title":"Neural volumes: Learning dynamic renderable volumes from images","author":"Lombardi","year":"2019","journal-title":"ACM Trans. Graph. (SIGGRAPH)"},{"key":"10.1016\/j.imavis.2023.104670_b0040","unstructured":"K. Zhang, G. Riegler, N. Snavely, V. Koltun, Nerf++: Analyzing and improving neural radiance fields, arXiv preprint arXiv:2010.07492 (2020)."},{"key":"10.1016\/j.imavis.2023.104670_b0045","doi-asserted-by":"crossref","unstructured":"A. Yu, R. Li, M. Tancik, H. Li, R. Ng, A. Kanazawa, Plenoctrees for real-time rendering of neural radiance fields, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2021, pp. 5752\u20135761.","DOI":"10.1109\/ICCV48922.2021.00570"},{"key":"10.1016\/j.imavis.2023.104670_b0050","first-page":"15651","article-title":"Neural sparse voxel fields","volume":"33","author":"Liu","year":"2020","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.imavis.2023.104670_b0055","doi-asserted-by":"crossref","unstructured":"S. Lombardi, T. Simon, G. Schwartz, M. Zollhoefer, Y. Sheikh, J. Saragih, Mixture of volumetric primitives for efficient neural rendering, 2021. arXiv:2103.01954.","DOI":"10.1145\/3476576.3476608"},{"key":"10.1016\/j.imavis.2023.104670_b0060","doi-asserted-by":"crossref","DOI":"10.1111\/cgf.14340","article-title":"DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks","volume":"40","author":"Neff","year":"2021","journal-title":"Comput. Graph. Forum"},{"key":"10.1016\/j.imavis.2023.104670_b0065","doi-asserted-by":"crossref","unstructured":"K. Deng, A. Liu, J.-Y. Zhu, D. Ramanan, Depth-supervised nerf: Fewer views and faster training for free, arXiv preprint arXiv:2107.02791 (2021).","DOI":"10.1109\/CVPR52688.2022.01254"},{"key":"10.1016\/j.imavis.2023.104670_b0070","doi-asserted-by":"crossref","unstructured":"S.J. Garbin, M. Kowalski, M. Johnson, J. Shotton, J. Valentin, Fastnerf: High-fidelity neural rendering at 200fps, https:\/\/arxiv.org\/abs\/2103.10380 (2021).","DOI":"10.1109\/ICCV48922.2021.01408"},{"key":"10.1016\/j.imavis.2023.104670_b0075","doi-asserted-by":"crossref","unstructured":"J.L. Schonberger, J.-M. Frahm, Structure-from-motion revisited, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 4104\u20134113.","DOI":"10.1109\/CVPR.2016.445"},{"key":"10.1016\/j.imavis.2023.104670_b0080","series-title":"Computer Vision\u2013ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11\u201314, 2016, Proceedings, Part III 14","first-page":"501","article-title":"Pixelwise view selection for unstructured multi-view stereo","author":"Sch\u00f6nberger","year":"2016"},{"key":"10.1016\/j.imavis.2023.104670_b0085","doi-asserted-by":"crossref","unstructured":"C. Sun, M. Sun, H.-T. Chen, Direct voxel grid optimization: Super-fast convergence for radiance fields reconstruction, arXiv preprint arXiv:2111.11215 (2021).","DOI":"10.1109\/CVPR52688.2022.00538"},{"key":"10.1016\/j.imavis.2023.104670_b0090","doi-asserted-by":"crossref","unstructured":"D. Rebain, W. Jiang, S. Yazdani, K. Li, K.M. Yi, A. Tagliasacchi, DeRF: Decomposed radiance fields, https:\/\/arxiv.org\/abs\/2011.12490 (2020).","DOI":"10.1109\/CVPR46437.2021.01393"},{"key":"10.1016\/j.imavis.2023.104670_b0095","doi-asserted-by":"crossref","unstructured":"D. Lindell, J. Martel, G. Wetzstein, AutoInt: Automatic integration for fast neural volume rendering, https:\/\/arxiv.org\/abs\/2012.01714 (2020).","DOI":"10.1109\/CVPR46437.2021.01432"},{"key":"10.1016\/j.imavis.2023.104670_b0100","doi-asserted-by":"crossref","unstructured":"C. Reiser, S. Peng, Y. Liao, A. Geiger, Kilonerf: Speeding up neural radiance fields with thousands of tiny mlps, 2021. arXiv:2103.13744.","DOI":"10.1109\/ICCV48922.2021.01407"},{"key":"10.1016\/j.imavis.2023.104670_b0105","first-page":"19313","article-title":"Light field networks: Neural scene representations with single-evaluation rendering","volume":"34","author":"Sitzmann","year":"2021","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.imavis.2023.104670_b0110","doi-asserted-by":"crossref","unstructured":"E. Tretschk, A. Tewari, V. Golyanik, M. Zollh\u00f6fer, C. Lassner, C. Theobalt, Non-rigid neural radiance fields: Reconstruction and novel view synthesis of a deforming scene from monocular video, https:\/\/arxiv.org\/abs\/2012.12247 (2020).","DOI":"10.1109\/ICCV48922.2021.01272"},{"key":"10.1016\/j.imavis.2023.104670_b0115","doi-asserted-by":"crossref","unstructured":"A. Noguchi, X. Sun, S. Lin, T. Harada, Neural articulated radiance field, arXiv preprint arXiv:2104.03110 (2021).","DOI":"10.1109\/ICCV48922.2021.00571"},{"key":"10.1016\/j.imavis.2023.104670_b0120","series-title":"2022 International Conference on Robotics and Automation (ICRA)","first-page":"8454","article-title":"Cla-nerf: Category-level articulated neural radiance field","author":"Tseng","year":"2022"},{"key":"10.1016\/j.imavis.2023.104670_b0125","doi-asserted-by":"crossref","unstructured":"K. Park, U. Sinha, J.T. Barron, S. Bouaziz, D. Goldman, S. Seitz, R. Martin-Brualla, Deformable neural radiance fields, https:\/\/arxiv.org\/abs\/2011.12948 (2020).","DOI":"10.1109\/ICCV48922.2021.00581"},{"key":"10.1016\/j.imavis.2023.104670_b0130","doi-asserted-by":"crossref","unstructured":"G. Gafni, J. Thies, M. Zollh\u00f6fer, M. Nie\u00dfner, Dynamic neural radiance fields for monocular 4D facial avatar reconstruction, https:\/\/arxiv.org\/abs\/2012.03065 (2020).","DOI":"10.1109\/CVPR46437.2021.00854"},{"key":"10.1016\/j.imavis.2023.104670_b0135","doi-asserted-by":"crossref","unstructured":"A. Raj, M. Zollhoefer, T. Simon, J. Saragih, S. Saito, J. Hays, S. Lombardi, Pva: Pixel-aligned volumetric avatars, arXiv preprint arXiv:2101.02697 (2021).","DOI":"10.1109\/CVPR46437.2021.01156"},{"key":"10.1016\/j.imavis.2023.104670_b0140","doi-asserted-by":"crossref","unstructured":"S. Peng, J. Dong, Q. Wang, S. Zhang, Q. Shuai, H. Bao, X. Zhou, Animatable neural radiance fields for human body modeling, arXiv preprint arXiv:2105.02872 (2021).","DOI":"10.1109\/ICCV48922.2021.01405"},{"key":"10.1016\/j.imavis.2023.104670_b0145","doi-asserted-by":"crossref","DOI":"10.1145\/3478513.3480528","article-title":"Neural actor: Neural free-view synthesis of human actors with pose control","author":"Liu","year":"2021","journal-title":"ACM SIGGRAPH Asia"},{"key":"10.1016\/j.imavis.2023.104670_b0150","unstructured":"J. Chen, Y. Zhang, D. Kang, X. Zhe, L. Bao, X. Jia, H. Lu, Animatable neural radiance fields from monocular rgb videos, 2021. arXiv:2106.13629."},{"key":"10.1016\/j.imavis.2023.104670_b0155","doi-asserted-by":"crossref","unstructured":"A. Pumarola, E. Corona, G. Pons-Moll, F. Moreno-Noguer, D-NeRF: Neural radiance fields for dynamic scenes, https:\/\/arxiv.org\/abs\/2011.13961 (2020).","DOI":"10.1109\/CVPR46437.2021.01018"},{"key":"10.1016\/j.imavis.2023.104670_b0160","doi-asserted-by":"crossref","first-page":"1277","DOI":"10.1016\/0031-3203(93)90135-J","article-title":"A review on image segmentation techniques","volume":"26","author":"Pal","year":"1993","journal-title":"Pattern Recogn."},{"key":"10.1016\/j.imavis.2023.104670_b0165","series-title":"Competition and cooperation in neural nets","first-page":"267","article-title":"Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition","author":"Fukushima","year":"1982"},{"key":"10.1016\/j.imavis.2023.104670_b0170","unstructured":"M. Mirza, S. Osindero, Conditional generative adversarial nets, arXiv preprint arXiv:1411.1784 (2014)."},{"key":"10.1016\/j.imavis.2023.104670_b0175","doi-asserted-by":"crossref","first-page":"328","DOI":"10.1109\/29.21701","article-title":"Phoneme recognition using time-delay neural networks","volume":"37","author":"Waibel","year":"1989","journal-title":"IEEE Trans. Acoust. Speech Signal Process."}],"container-title":["Image and Vision Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0262885623000446?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0262885623000446?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,2,13]],"date-time":"2024-02-13T13:40:07Z","timestamp":1707831607000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0262885623000446"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,6]]},"references-count":35,"alternative-id":["S0262885623000446"],"URL":"https:\/\/doi.org\/10.1016\/j.imavis.2023.104670","relation":{},"ISSN":["0262-8856"],"issn-type":[{"value":"0262-8856","type":"print"}],"subject":[],"published":{"date-parts":[[2023,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"EGRA-NeRF: Edge-Guided Ray Allocation for Neural Radiance Fields","name":"articletitle","label":"Article Title"},{"value":"Image and Vision Computing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.imavis.2023.104670","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"104670"}}