{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,7]],"date-time":"2024-07-07T06:39:48Z","timestamp":1720334388381},"reference-count":41,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Image and Vision Computing"],"published-print":{"date-parts":[[2022,6]]},"DOI":"10.1016\/j.imavis.2022.104447","type":"journal-article","created":{"date-parts":[[2022,4,9]],"date-time":"2022-04-09T00:57:01Z","timestamp":1649465821000},"page":"104447","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":3,"special_numbering":"C","title":["Robust depth estimation on real-world light field images using Gaussian belief propagation"],"prefix":"10.1016","volume":"122","author":[{"given":"Zhihao","family":"Zhao","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5439-1137","authenticated-orcid":false,"given":"Samuel","family":"Cheng","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6393-5941","authenticated-orcid":false,"given":"Lihua","family":"Li","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.imavis.2022.104447_bb0005","series-title":"Digital Light Field Photography","author":"Ng","year":"2006"},{"key":"10.1016\/j.imavis.2022.104447_bb0010","series-title":"Proceedings of the IEEE International Conference on Computer Vision","article-title":"Depth and image restoration from light field in a scattering medium","author":"Tian","year":"2017"},{"key":"10.1016\/j.imavis.2022.104447_bb0015","series-title":"European Conference on Computer Vision","article-title":"A 4d light-field dataset and cnn architectures for material recognition.","author":"Wang","year":"2016"},{"key":"10.1016\/j.imavis.2022.104447_bb0020","doi-asserted-by":"crossref","first-page":"912","DOI":"10.1109\/LRA.2017.2654544","article-title":"Image-based visual servoing with light field cameras","volume":"2.2","author":"Tsai","year":"2017","journal-title":"IEEE Robot. Autom. Lett."},{"issue":"2","key":"10.1016\/j.imavis.2022.104447_bb0025","doi-asserted-by":"crossref","first-page":"297","DOI":"10.1109\/TPAMI.2018.2794979","article-title":"Depth from a light field image with learning-based matching costs","volume":"41","author":"Jeon","year":"2018","journal-title":"IEEE Trans. Pattern Anal. Mach. Intel."},{"key":"10.1016\/j.imavis.2022.104447_bb0030","series-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","first-page":"1547","article-title":"Accurate depth map estimation from a lenslet light field camera.","author":"Jeon","year":"2015"},{"key":"10.1016\/j.imavis.2022.104447_bb0035","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","article-title":"Globally consistent multi-label assignment on the ray space of 4d light fields","author":"Wanner","year":"2013"},{"key":"10.1016\/j.imavis.2022.104447_bb0040","series-title":"Proceedings of the IEEE International Conference on Computer Vision","article-title":"Depth from combining defocus and correspondence using light-field cameras","author":"Tao","year":"2013"},{"key":"10.1016\/j.imavis.2022.104447_bb0045","series-title":"Proceedings of the IEEE International Conference on Computer Vision","article-title":"Occlusion-aware depth estimation using light-field cameras","author":"Wang","year":"2015"},{"key":"10.1016\/j.imavis.2022.104447_bb0050","doi-asserted-by":"crossref","first-page":"2170","DOI":"10.1109\/TPAMI.2016.2515615","article-title":"Depth estimation with occlusion modeling using light-field cameras","volume":"38.11","author":"Wang","year":"2016","journal-title":"IEEE Trans. Pattern Anal. Mach. Intel."},{"key":"10.1016\/j.imavis.2022.104447_bb0055","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","article-title":"What sparse light field coding reveals about scene structure","author":"Johannsen","year":"2016"},{"key":"10.1016\/j.imavis.2022.104447_bb0060","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","article-title":"Light field stereo matching using bilateral statistics of surface cameras","author":"Chen","year":"2014"},{"key":"10.1016\/j.imavis.2022.104447_bb0065","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1016\/j.cviu.2004.06.001","article-title":"Extracting layers and analyzing their specular properties using epipolar-plane-image analysis","volume":"97.1","author":"Criminisi","year":"2005","journal-title":"Comput. Vision. Image Understand."},{"key":"10.1016\/j.imavis.2022.104447_bb0070","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","article-title":"Accurate depth and normal maps from occlusion-aware focal stack symmetry","author":"Strecke","year":"2017"},{"key":"10.1016\/j.imavis.2022.104447_bb0075","series-title":"Proceedings of the IEEE International Conference on Computer Vision","article-title":"Depth recovery from light field using focal stack symmetry","author":"Lin","year":"2015"},{"key":"10.1016\/j.imavis.2022.104447_bb0080","first-page":"546","article-title":"Shape estimation from shading, defocus, and correspondence using light-field angular coherence","volume":"39.3","author":"Tao","year":"2016","journal-title":"IEEE Trans. Pattern Anal. Mach. Intel."},{"key":"10.1016\/j.imavis.2022.104447_bb0085","first-page":"145","article-title":"Epipolar plane image refocusing for improved depth estimation and occlusion handling","volume":"18th","author":"Diebold","year":"2013","journal-title":"Annual Workshop Vision Model. Visual.: VMV"},{"key":"10.1016\/j.imavis.2022.104447_bb0090","doi-asserted-by":"crossref","first-page":"965","DOI":"10.1109\/JSTSP.2017.2730818","article-title":"Occlusion-model guided antiocclusion depth estimation in light field","volume":"11.7","author":"Zhu","year":"2017","journal-title":"IEEE J. Select. Topics Signal Proc."},{"key":"10.1016\/j.imavis.2022.104447_bb0095","series-title":"Dense Depth-Map Estimation and Geometry Inference from Light Fields Via Global Optimization Asian Conference on Computer Vision","author":"Si","year":"2016"},{"key":"10.1016\/j.imavis.2022.104447_bb0100","series-title":"Reconstructing Reflective And Transparent Surfaces From Epipolar Plane Images. German Conference on Pattern Recognition","author":"Wanner","year":"2013"},{"key":"10.1016\/j.imavis.2022.104447_bb0105","first-page":"41","article-title":"Globally consistent depth labeling of 4D light fields","author":"Wanner Sven","year":"2012","journal-title":"IEEE Conference Comput. Vision Pattern Recognit. IEEE"},{"key":"10.1016\/j.imavis.2022.104447_bb0110","doi-asserted-by":"crossref","first-page":"148","DOI":"10.1016\/j.cviu.2015.12.007","article-title":"Robust depth estimation for light field via spinning parallelogram operator.","volume":"145","author":"Zhang","year":"2016","journal-title":"Comput. Vision Image Understand."},{"key":"10.1016\/j.imavis.2022.104447_bb0115","first-page":"4748","article-title":"Epinet: a fully-convolutional neural network using epipolar geometry for depth from light field images","author":"Shin","year":"2018","journal-title":"Proceed. IEEE Conference Comput. Vision Pattern Recognit."},{"key":"10.1016\/j.imavis.2022.104447_bb0120","series-title":"Attention-Based View Selection Networks for Light-Field Disparity Estimation. AAAI Conference on Artificial Intelligence (AAAI)","author":"Tsai","year":"2020"},{"key":"10.1016\/j.imavis.2022.104447_bb0125","series-title":"Proceedings of the AAAI Conference on Artificial Intelligence Vol. 35","article-title":"Attention-based multi-level fusion network for light field depth estimation","author":"Chen","year":"2021"},{"key":"10.1016\/j.imavis.2022.104447_bb0130","series-title":"Proceedings of the IEEE International Conference on Computer Vision","article-title":"Neural EPI-volume networks for shape from light field","author":"Heber","year":"2017"},{"key":"10.1016\/j.imavis.2022.104447_bb0135","series-title":"International Joint Conference on Neural Networks (IJCNN)","article-title":"Data-driven light field depth estimation using deep convolutional neural networks","author":"Sun","year":"2016"},{"key":"10.1016\/j.imavis.2022.104447_bb0145","series-title":"Proceedings of the IEEE International Conference on Computer Vision","article-title":"Oriented light-field windows for scene flow","author":"Srinivasan","year":"2015"},{"key":"10.1016\/j.imavis.2022.104447_bb0150","series-title":"Irish Machine Vision and Image Processing Conference","article-title":"Fast and accurate optical flow based depth map estimation from light fields","author":"Chen","year":"2017"},{"key":"10.1016\/j.imavis.2022.104447_bb0160","article-title":"Beyond pixels: exploring new representations and applications for motion analysis","author":"Liu","year":"2009","journal-title":"Diss. Mass. Inst. Technol."},{"key":"10.1016\/j.imavis.2022.104447_bb0165","first-page":"73","article-title":"Scene reconstruction from high spatio-angular resolution light fields","volume":"32.4","author":"Kim","year":"2013","journal-title":"ACM Trans Graph"},{"key":"10.1016\/j.imavis.2022.104447_bb0170","first-page":"287","article-title":"Geometric calibration of micro-lens-based light field cameras using line features","volume":"39.2","author":"Bok","year":"2016","journal-title":"IEEE Trans. Pattern Anal. Mach. Intel."},{"key":"10.1016\/j.imavis.2022.104447_bb0180","series-title":"European conference on computer vision","article-title":"Multi-camera scene reconstruction via graph cuts","author":"Kolmogorov","year":"2002"},{"key":"10.1016\/j.imavis.2022.104447_bb0185","series-title":"Gaussian Belief Propagation: Theory and Aplication Diss.","author":"Bickson","year":"2008"},{"key":"10.1016\/j.imavis.2022.104447_bb0190","series-title":"Proceedings of the 7th international joint conference on Artificial intelligence-Volume 2.","article-title":"An iterative image registration technique with an application to stereo vision","author":"Lucas","year":"1981"},{"issue":"3","key":"10.1016\/j.imavis.2022.104447_bb0195","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1016\/0004-3702(81)90024-2","article-title":"Determining optical flow","volume":"17.1","author":"Horn","year":"1981","journal-title":"Artif. Intell."},{"key":"10.1016\/j.imavis.2022.104447_bb0200","doi-asserted-by":"crossref","first-page":"1873","DOI":"10.1109\/TIP.2017.2666041","article-title":"Robust and dense depth estimation for light field images","volume":"26. 4","author":"Navarro","year":"2017","journal-title":"IEEE Trans. Image Proc."},{"key":"10.1016\/j.imavis.2022.104447_bb0205","doi-asserted-by":"crossref","first-page":"5867","DOI":"10.1109\/TIP.2019.2923323","article-title":"A framework for learning depth from a flexible subset of dense and sparse light field views","volume":"28.12","author":"Shi","year":"2019","journal-title":"IEEE Trans. Image Proc."},{"key":"10.1016\/j.imavis.2022.104447_bb0210","series-title":"IEEE International Conference on Image Processing (ICIP)","article-title":"Light-field flow: a subpixel-accuracy depth flow estimation with geometric occlusion model from a single light-field image. 2017","author":"Zhou","year":"2017"},{"key":"10.1016\/j.imavis.2022.104447_bb0215","doi-asserted-by":"crossref","first-page":"94","DOI":"10.2352\/ISSN.2470-1173.2017.17.COIMG-431","article-title":"Edge-aware light-field flow for depth estimation and occlusion detection","volume":"2017.17","author":"Zhou","year":"2017","journal-title":"Electron. Imaging"},{"key":"10.1016\/j.imavis.2022.104447_bb0220","series-title":"Asian Conference on Computer Vision","article-title":"A dataset and evaluation methodology for depth estimation on 4D light fields","author":"Honauer","year":"2016"}],"container-title":["Image and Vision Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0262885622000762?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0262885622000762?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,5,14]],"date-time":"2022-05-14T01:27:23Z","timestamp":1652491643000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0262885622000762"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,6]]},"references-count":41,"alternative-id":["S0262885622000762"],"URL":"https:\/\/doi.org\/10.1016\/j.imavis.2022.104447","relation":{},"ISSN":["0262-8856"],"issn-type":[{"value":"0262-8856","type":"print"}],"subject":[],"published":{"date-parts":[[2022,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Robust depth estimation on real-world light field images using Gaussian belief propagation","name":"articletitle","label":"Article Title"},{"value":"Image and Vision Computing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.imavis.2022.104447","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"104447"}}