{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,23]],"date-time":"2024-08-23T21:02:25Z","timestamp":1724446945539},"reference-count":42,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Image and Vision Computing"],"published-print":{"date-parts":[[2022,6]]},"DOI":"10.1016\/j.imavis.2022.104431","type":"journal-article","created":{"date-parts":[[2022,3,18]],"date-time":"2022-03-18T01:47:30Z","timestamp":1647568050000},"page":"104431","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":10,"special_numbering":"C","title":["Grassmann manifold based framework for automated fall detection from a camera"],"prefix":"10.1016","volume":"122","author":[{"given":"Pramod Kumar","family":"Soni","sequence":"first","affiliation":[]},{"given":"Ayesha","family":"Choudhary","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.imavis.2022.104431_bb0005","series-title":"Proceedings of International Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"2705","article-title":"Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching","author":"Harandi","year":"2011"},{"issue":"12","key":"10.1016\/j.imavis.2022.104431_bb0010","doi-asserted-by":"crossref","first-page":"5082","DOI":"10.1109\/JSEN.2018.2829815","article-title":"A movement decomposition and machine learning-based fall detection system using wrist wearable device","volume":"18","author":"de Quadros","year":"2018","journal-title":"IEEE Sensors J."},{"key":"10.1016\/j.imavis.2022.104431_bb0015","series-title":"IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)","first-page":"1850","article-title":"A low budget multifunctional wearable device for motion and falls detection","author":"Alesin","year":"2018"},{"key":"10.1016\/j.imavis.2022.104431_bb0020","first-page":"241","article-title":"Wearable low power pre-fall detection system with IoT and bluetooth capabilities","author":"Rathi","year":"2017","journal-title":"IEEE Nat. Aerospace Electron. Conf. (NAECON)"},{"key":"10.1016\/j.imavis.2022.104431_bb0025","series-title":"IEEE International Conference on Intelligent Computing and Control Systems (ICICCS)","first-page":"1135","article-title":"Smart wearable system for fall detection in elderly people using internet of things platform","author":"Chavan","year":"2017"},{"issue":"7","key":"10.1016\/j.imavis.2022.104431_bb0030","doi-asserted-by":"crossref","first-page":"1602","DOI":"10.1109\/TBME.2016.2614230","article-title":"Wavelet-based sit-to-stand detection and assessment of fall risk in older people using a wearable pendant device","volume":"64","author":"Ejupi","year":"2017","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"3","key":"10.1016\/j.imavis.2022.104431_bb0035","doi-asserted-by":"crossref","first-page":"489","DOI":"10.1016\/j.cmpb.2014.09.005","article-title":"Human fall detection on embedded platform using depth maps and wireless accelerometer","volume":"117","author":"Kwolek","year":"2014","journal-title":"Comput. Methods Prog. Biomed."},{"key":"10.1016\/j.imavis.2022.104431_bb0040","series-title":"DIRO-Universit\u00e9 de Montr\u00e9al","first-page":"1350","article-title":"Multiple cameras fall dataset","author":"Auvinet","year":"2010"},{"key":"10.1016\/j.imavis.2022.104431_bb0045","doi-asserted-by":"crossref","first-page":"77702","DOI":"10.1109\/ACCESS.2019.2922708","article-title":"Research of fall detection and fall prevention technologies: a systematic review","volume":"7","author":"Ren","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.imavis.2022.104431_bb0050","series-title":"IEEE Transactions on Circuits and Systems II: Express Briefs","article-title":"Fall detection using standoff radar-based sensing and deep convolutional neural network","author":"Sadreazami","year":"2019"},{"issue":"4","key":"10.1016\/j.imavis.2022.104431_bb0055","doi-asserted-by":"crossref","first-page":"1084","DOI":"10.1109\/TLA.2018.8362141","article-title":"SDQI-fall detection system for Elderl","volume":"16","author":"Junior","year":"2018","journal-title":"IEEE Lat. Am. Trans."},{"key":"10.1016\/j.imavis.2022.104431_bb0060","series-title":"12th IEEE International Conference on Semantic Computing (ICSC)","first-page":"329","article-title":"Context-aware, accurate, and real time fall detection system for elderly people","author":"Muheidat","year":"2018"},{"key":"10.1016\/j.imavis.2022.104431_bb0065","first-page":"0819","article-title":"Range-Doppler radar sensor fusion for fall detection","author":"Erol","year":"2017","journal-title":"IEEE Radar Conf. (RadarConf)"},{"issue":"3","key":"10.1016\/j.imavis.2022.104431_bb0070","doi-asserted-by":"crossref","first-page":"756","DOI":"10.1109\/JBHI.2016.2570300","article-title":"Silhouette orientation volumes for efficient fall detection in depth videos","volume":"21","author":"Akag\u00fcnd\u00fcz","year":"2016","journal-title":"IEEE J. Biomed. Health Inform."},{"key":"10.1016\/j.imavis.2022.104431_bb0075","series-title":"IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","first-page":"799","article-title":"Automatic human fall detection in fractional Fourier domain for assisted living","author":"Liu","year":"2016"},{"key":"10.1016\/j.imavis.2022.104431_bb0080","series-title":"Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)","first-page":"930","article-title":"Multi sensor system for automatic fall detection","author":"Nadee","year":"2015"},{"key":"10.1016\/j.imavis.2022.104431_bb0085","series-title":"Fourth International Conference on Advances in Biomedical Engineering (ICABME)","first-page":"1","article-title":"CS-based fall detection for connected health applications","author":"Djelouat","year":"2017"},{"key":"10.1016\/j.imavis.2022.104431_bb0090","series-title":"Proceedings of the 19th ACM International Conference on Multimodal Interaction","first-page":"416","article-title":"Computer vision based fall detection by a convolutional neural network","author":"Miao","year":"2017"},{"issue":"3","key":"10.1016\/j.imavis.2022.104431_bb0095","doi-asserted-by":"crossref","DOI":"10.3390\/s20030946","article-title":"Human fall detection based on body posture spatio-temporal evolution","volume":"20","author":"Zhang","year":"2020","journal-title":"Sensors"},{"issue":"1","key":"10.1016\/j.imavis.2022.104431_bb0100","doi-asserted-by":"crossref","first-page":"314","DOI":"10.1109\/JBHI.2018.2808281","article-title":"Deep learning for fall detection: three-dimensional CNN combined with LSTM on video kinematic data","volume":"23","author":"Lu","year":"2019","journal-title":"IEEE J. Biomed. Health Informat."},{"key":"10.1016\/j.imavis.2022.104431_bb0105","series-title":"Proceedings of Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC)","first-page":"172","article-title":"Fall detection algorithm for the elderly based on human posture estimation","author":"Sun","year":"2020"},{"issue":"1","key":"10.1016\/j.imavis.2022.104431_bb0110","doi-asserted-by":"crossref","first-page":"172","DOI":"10.1109\/TPAMI.2019.2929257","article-title":"OpenPose: realtime multi-person 2D pose estimation using part affinity fields","volume":"43","author":"Cao","year":"2021","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"1","key":"10.1016\/j.imavis.2022.104431_bb0115","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.dcan.2015.12.001","article-title":"3D depth image analysis for indoor fall detection of elderly people","volume":"2","author":"Yang","year":"2016","journal-title":"Digit. Commun. Netw."},{"issue":"2","key":"10.1016\/j.imavis.2022.104431_bb0120","doi-asserted-by":"crossref","first-page":"430","DOI":"10.1109\/JBHI.2014.2319372","article-title":"Fall detection based on body part tracking using a depth camera","volume":"19","author":"Bian","year":"2014","journal-title":"IEEE J. Biomed. Health Inform."},{"issue":"1","key":"10.1016\/j.imavis.2022.104431_bb0125","doi-asserted-by":"crossref","first-page":"290","DOI":"10.1109\/JBHI.2014.2312180","article-title":"Fall detection in homes of older adults using the Microsoft Kinect","volume":"19","author":"Stone","year":"2015","journal-title":"IEEE J. Biomed. Health Inform."},{"key":"10.1016\/j.imavis.2022.104431_bb0130","series-title":"International Conference on Advances in Biomedical Engineering (ICABME)","first-page":"93","article-title":"Towards a usable and an efficient elder fall detection system","author":"Daher","year":"2015"},{"key":"10.1016\/j.imavis.2022.104431_bb0135","series-title":"IEEE International Conference on Image Processing (ICIP)","first-page":"3280","article-title":"Human fall detection via shape analysis on Riemannian manifolds with applications to elderly care","author":"Yun","year":"2015"},{"issue":"2","key":"10.1016\/j.imavis.2022.104431_bb0140","doi-asserted-by":"crossref","first-page":"427","DOI":"10.1109\/TBME.2012.2228262","article-title":"Automatic monocular system for human fall detection based on variations in silhouette area","volume":"60","author":"Mirmahboub","year":"2012","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"6","key":"10.1016\/j.imavis.2022.104431_bb0145","doi-asserted-by":"crossref","first-page":"1063","DOI":"10.1007\/s00779-012-0552-z","article-title":"Introducing the use of depth data for fall detection","volume":"17","author":"Planinc","year":"2013","journal-title":"Pers. Ubiquit. Comput."},{"issue":"5","key":"10.1016\/j.imavis.2022.104431_bb0150","doi-asserted-by":"crossref","first-page":"611","DOI":"10.1109\/TCSVT.2011.2129370","article-title":"Robust video surveillance for fall detection based on human shape deformation","volume":"21","author":"Rougier","year":"2011","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"10.1016\/j.imavis.2022.104431_bb0155","series-title":"5th International Conference on Computer Science and Network Technology (ICCSNT)","first-page":"781","article-title":"An automatic human fall detection approach using rgbd cameras","author":"Zhang","year":"2016"},{"key":"10.1016\/j.imavis.2022.104431_bb0160","series-title":"IEEE International Conference on Signal and Image Processing (ICSIP)","first-page":"586","article-title":"Depth camera based fall detection using human shape and movement","author":"Merrouche","year":"2016"},{"issue":"6","key":"10.1016\/j.imavis.2022.104431_bb0165","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1109\/MIM.2017.8121952","article-title":"Vision-based fall detection system for improving safety of elderly people","volume":"20","author":"Harrou","year":"2017","journal-title":"IEEE Instrum. Meas. Mag."},{"key":"10.1016\/j.imavis.2022.104431_bb0170","series-title":"Proc. IEEE 6th Global Conf. Consum. Electron. (GCCE)","first-page":"1","article-title":"A novel approachfor fall detection in home environment","author":"Bhandari","year":"2017"},{"key":"10.1016\/j.imavis.2022.104431_bb0175","series-title":"Proc. 8th Int. Conf. Model., Identificat. Control (ICMIC)","first-page":"665","article-title":"Fall detection using supervised machine learning algorithms: A comparative study","author":"Zerrouki","year":"2016"},{"issue":"6","key":"10.1016\/j.imavis.2022.104431_bb0180","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1109\/MIM.2017.8121952","article-title":"Vision-based fall detection system for improving safety of elderly people","volume":"20","author":"Harrou","year":"2017","journal-title":"IEEE Instrum. Meas. Mag."},{"key":"10.1016\/j.imavis.2022.104431_bb0185","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1155\/2017\/9474806","article-title":"Vision-based fall detection with convolutional neural networks","volume":"2017","author":"Marcos","year":"2017","journal-title":"Wirel. Commun. Mob. Comput."},{"key":"10.1016\/j.imavis.2022.104431_bb0190","doi-asserted-by":"crossref","first-page":"242","DOI":"10.1016\/j.patrec.2018.08.031","article-title":"Spatiotemporal fall event detection in complex scenes using attention guided LSTM","volume":"130","author":"Feng","year":"2020","journal-title":"Pattern Recogn. Lett."},{"key":"10.1016\/j.imavis.2022.104431_bb0195","doi-asserted-by":"crossref","first-page":"44493","DOI":"10.1109\/ACCESS.2020.2978249","article-title":"Vision-based fall detection with multi-task hourglass convolutional auto-encoder","volume":"8","author":"Cai","year":"2020","journal-title":"IEEE Access"},{"issue":"11","key":"10.1016\/j.imavis.2022.104431_bb0200","doi-asserted-by":"crossref","first-page":"1522","DOI":"10.1109\/TCSVT.2008.2005606","article-title":"A real-time, multiview fall detection system: A LHMM-based approach","volume":"18","author":"Thome","year":"2008","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"issue":"2","key":"10.1016\/j.imavis.2022.104431_bb0205","doi-asserted-by":"crossref","first-page":"290","DOI":"10.1109\/TITB.2010.2087385","article-title":"Fall detection with multiple cameras: an occlusion resistant method based on 3-D silhouette vertical distribution","volume":"15","author":"Auvinet","year":"2011","journal-title":"IEEE Trans. Inf. Technol. Biomed."},{"issue":"6","key":"10.1016\/j.imavis.2022.104431_bb0210","doi-asserted-by":"crossref","first-page":"1915","DOI":"10.1109\/JBHI.2014.2304357","article-title":"Depth-based human fall detection via shape features and improved extreme learning machine","volume":"18","author":"Ma","year":"2014","journal-title":"IEEE J. Biomed. Health Inform."}],"container-title":["Image and Vision Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0262885622000609?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0262885622000609?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,1,20]],"date-time":"2023-01-20T22:07:56Z","timestamp":1674252476000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0262885622000609"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,6]]},"references-count":42,"alternative-id":["S0262885622000609"],"URL":"https:\/\/doi.org\/10.1016\/j.imavis.2022.104431","relation":{},"ISSN":["0262-8856"],"issn-type":[{"value":"0262-8856","type":"print"}],"subject":[],"published":{"date-parts":[[2022,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Grassmann manifold based framework for automated fall detection from a camera","name":"articletitle","label":"Article Title"},{"value":"Image and Vision Computing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.imavis.2022.104431","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"104431"}}