{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,8]],"date-time":"2024-09-08T17:10:31Z","timestamp":1725815431707},"reference-count":37,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Signal Processing: Image Communication"],"published-print":{"date-parts":[[2021,11]]},"DOI":"10.1016\/j.image.2021.116490","type":"journal-article","created":{"date-parts":[[2021,9,21]],"date-time":"2021-09-21T00:43:59Z","timestamp":1632185039000},"page":"116490","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":5,"special_numbering":"C","title":["Deep-NC: A secure image transmission using deep learning and network coding"],"prefix":"10.1016","volume":"99","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-5490-904X","authenticated-orcid":false,"given":"Quoc-Tuan","family":"Vien","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0055-8218","authenticated-orcid":false,"given":"Tuan T.","family":"Nguyen","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4105-2558","authenticated-orcid":false,"given":"Huan X.","family":"Nguyen","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.image.2021.116490_b1","first-page":"1","article-title":"Deep learning for image super-resolution: A survey","author":"Wang","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"4","key":"10.1016\/j.image.2021.116490_b2","doi-asserted-by":"crossref","first-page":"1204","DOI":"10.1109\/18.850663","article-title":"Network information flow","volume":"46","author":"Ahlswede","year":"2000","journal-title":"IEEE Trans. Inform. Theory"},{"issue":"5","key":"10.1016\/j.image.2021.116490_b3","doi-asserted-by":"crossref","first-page":"782","DOI":"10.1109\/TNET.2003.818197","article-title":"An algebraic approach to network coding","volume":"11","author":"Koetter","year":"2003","journal-title":"IEEE\/ACM Trans. Netw."},{"key":"10.1016\/j.image.2021.116490_b4","doi-asserted-by":"crossref","unstructured":"S. Zhang, S.C. Liew, P.P. Lam, Hot topic: Physical-layer network coding, in: Proc. ACM MobiCom\u201906, Los Angeles, CA, USA, Sep. 2006, pp. 358\u2013365.","DOI":"10.1145\/1161089.1161129"},{"issue":"3","key":"10.1016\/j.image.2021.116490_b5","doi-asserted-by":"crossref","first-page":"497","DOI":"10.1109\/TNET.2008.923722","article-title":"XORs in the air: Practical wireless network coding","volume":"16","author":"Katti","year":"2008","journal-title":"IEEE\/ACM Trans. Netw."},{"issue":"2","key":"10.1016\/j.image.2021.116490_b6","doi-asserted-by":"crossref","first-page":"464","DOI":"10.1007\/s11036-018-1157-1","article-title":"A physical layer network coding based modify-and-forward with opportunistic secure cooperative transmission protocol","volume":"24","author":"Vien","year":"2019","journal-title":"Mob. Netw. Appl."},{"issue":"1","key":"10.1016\/j.image.2021.116490_b7","doi-asserted-by":"crossref","DOI":"10.1155\/2011\/643920","article-title":"Network coding-based retransmission for relay aided multisource multicast networks","volume":"2011","author":"Vien","year":"2011","journal-title":"EURASIP Journal on Wireless Communications and Networking"},{"key":"10.1016\/j.image.2021.116490_b8","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1016\/j.comnet.2015.06.005","article-title":"Cross-layer topology design for network coding based wireless multicasting","volume":"88","author":"Vien","year":"2015","journal-title":"Computer Networks"},{"issue":"5","key":"10.1016\/j.image.2021.116490_b9","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1109\/MSP.2008.927302","article-title":"Network multicast with network coding [lecture notes]","volume":"25","author":"Soljanin","year":"2008","journal-title":"IEEE Signal Process. Mag."},{"issue":"2","key":"10.1016\/j.image.2021.116490_b10","doi-asserted-by":"crossref","first-page":"914","DOI":"10.1109\/TVT.2008.927729","article-title":"Wireless broadcast using network coding","volume":"58","author":"Nguyen","year":"2009","journal-title":"IEEE Trans. Veh. Technol."},{"issue":"5","key":"10.1016\/j.image.2021.116490_b11","doi-asserted-by":"crossref","first-page":"1195","DOI":"10.1109\/TMM.2013.2241415","article-title":"Network coding meets multimedia: A review","volume":"15","author":"Magli","year":"2013","journal-title":"IEEE Trans. Multimedia"},{"key":"10.1016\/j.image.2021.116490_b12","doi-asserted-by":"crossref","unstructured":"Q.-T. Vien, N.\u00a0Tuan T., N.\u00a0Huan X., A lightweight secure image super resolution using network coding, in: Proceedings of the International Conference on Computer Vision Theory and Applications, VISAPP 2021, Vienna, Austria, Apr. 2021, pp. 653\u2013660.","DOI":"10.5220\/0010212406530660"},{"year":"2016","series-title":"Deep Learning","author":"Goodfellow","key":"10.1016\/j.image.2021.116490_b13"},{"issue":"6","key":"10.1016\/j.image.2021.116490_b14","doi-asserted-by":"crossref","first-page":"1153","DOI":"10.1109\/TASSP.1981.1163711","article-title":"Cubic convolution interpolation for digital image processing","volume":"29","author":"Keys","year":"1981","journal-title":"IEEE Trans. Acoust. Speech Signal Process."},{"issue":"1","key":"10.1016\/j.image.2021.116490_b15","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1016\/S0304-3991(81)80199-4","article-title":"Bilinear interpolation of digital images","volume":"6","author":"Smith","year":"1981","journal-title":"Ultramicroscopy"},{"key":"10.1016\/j.image.2021.116490_b16","series-title":"Computer Vision \u2013 ECCV 2014","first-page":"184","article-title":"Learning a deep convolutional network for image super-resolution","author":"Dong","year":"2014"},{"key":"10.1016\/j.image.2021.116490_b17","doi-asserted-by":"crossref","unstructured":"W. Lai, J. Huang, N. Ahuja, M. Yang, Deep laplacian pyramid networks for fast and accurate super-resolution, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2017, pp. 5835\u20135843.","DOI":"10.1109\/CVPR.2017.618"},{"issue":"3","key":"10.1016\/j.image.2021.116490_b18","first-page":"231","article-title":"Improving resolution by image registration","volume":"53","author":"Irani","year":"1991","journal-title":"CVGIP: Graph. Models Image Process."},{"key":"10.1016\/j.image.2021.116490_b19","doi-asserted-by":"crossref","unstructured":"M. Haris, G. Shakhnarovich, N. Ukita, Deep back-projection networks for super-resolution, in: 2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 1664\u20131673.","DOI":"10.1109\/CVPR.2018.00179"},{"key":"10.1016\/j.image.2021.116490_b20","doi-asserted-by":"crossref","unstructured":"Z. Li, J. Yang, Z. Liu, X. Yang, G. Jeon, W. Wu, Feedback network for image super-resolution, in: 2019 IEEE\/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 3862\u20133871.","DOI":"10.1109\/CVPR.2019.00399"},{"key":"10.1016\/j.image.2021.116490_b21","doi-asserted-by":"crossref","unstructured":"J. Kim, J. Kwon\u00a0Lee, K. Mu\u00a0Lee, Accurate image super-resolution using very deep convolutional networks, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 1646\u20131654.","DOI":"10.1109\/CVPR.2016.182"},{"issue":"7","key":"10.1016\/j.image.2021.116490_b22","doi-asserted-by":"crossref","first-page":"3142","DOI":"10.1109\/TIP.2017.2662206","article-title":"Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising","volume":"26","author":"Zhang","year":"2017","journal-title":"IEEE Trans. Image Process."},{"issue":"5","key":"10.1016\/j.image.2021.116490_b23","doi-asserted-by":"crossref","first-page":"811","DOI":"10.1109\/LGRS.2018.2882058","article-title":"Low-frequency noise suppression method based on improved dncnn in desert seismic data","volume":"16","author":"Zhao","year":"2019","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"10.1016\/j.image.2021.116490_b24","first-page":"1","article-title":"Exploiting de-noising convolutional neural networks dncnns for an efficient watermarking scheme: a case for information retrieval","author":"Rahim","year":"2020","journal-title":"IETE Tech. Rev."},{"key":"10.1016\/j.image.2021.116490_b25","doi-asserted-by":"crossref","first-page":"3482","DOI":"10.1109\/TIFS.2020.2990793","article-title":"Minimal information exchange for secure image hash-based geometric transformations estimation","volume":"15","author":"Guerrini","year":"2020","journal-title":"IEEE Trans. Inf. Forensics Secur."},{"issue":"3","key":"10.1016\/j.image.2021.116490_b26","doi-asserted-by":"crossref","first-page":"2432","DOI":"10.1109\/JIOT.2019.2957747","article-title":"Secure and traceable image transmission scheme based on semitensor product compressed sensing in telemedicine system","volume":"7","author":"Peng","year":"2020","journal-title":"IEEE Internet Things J."},{"issue":"9","key":"10.1016\/j.image.2021.116490_b27","doi-asserted-by":"crossref","first-page":"1411","DOI":"10.1049\/iet-ipr.2018.5333","article-title":"Reversibility-oriented secret image sharing mechanism with steganography and authentication based on code division multiplexing","volume":"13","author":"Xie","year":"2019","journal-title":"IET Image Process."},{"issue":"3.4","key":"10.1016\/j.image.2021.116490_b28","doi-asserted-by":"crossref","first-page":"313","DOI":"10.1147\/sj.353.0313","article-title":"Techniques for data hiding","volume":"35","author":"Bender","year":"1996","journal-title":"IBM Syst. J."},{"key":"10.1016\/j.image.2021.116490_b29","series-title":"Information Hiding","first-page":"7","article-title":"Computer based steganography: How it works and why therefore any restrictions on cryptography are nonsense, at best","author":"Franz","year":"1996"},{"key":"10.1016\/j.image.2021.116490_b30","doi-asserted-by":"crossref","unstructured":"A.I. Hashad, A.S. Madani, A.E.M.A Wahdan, A robust steganography technique using discrete cosine transform insertion, in: 2005 International Conference on Information and Communication Technology, 2005, pp. 255\u2013264.","DOI":"10.1109\/ITICT.2005.1609628"},{"key":"10.1016\/j.image.2021.116490_b31","first-page":"275","article-title":"A DWT based approach for image steganography","author":"Chen","year":"2006","journal-title":"Int. J. Appl. Sci. Eng."},{"issue":"10","key":"10.1016\/j.image.2021.116490_b32","doi-asserted-by":"crossref","first-page":"1479","DOI":"10.1109\/TIP.2005.852196","article-title":"Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization","volume":"14","author":"Chan","year":"2005","journal-title":"IEEE Trans. Image Process."},{"issue":"8","key":"10.1016\/j.image.2021.116490_b33","doi-asserted-by":"crossref","first-page":"1016","DOI":"10.1175\/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2","article-title":"Lanczos filtering in one and two dimensions","volume":"18","author":"Duchon","year":"1979","journal-title":"J. Appl. Meteorol."},{"issue":"3","key":"10.1016\/j.image.2021.116490_b34","doi-asserted-by":"crossref","first-page":"1092","DOI":"10.1109\/TIP.2018.2872876","article-title":"Learning a convolutional neural network for image compact-resolution","volume":"28","author":"Li","year":"2019","journal-title":"IEEE Trans. Image Process."},{"year":"2006","series-title":"The IAPR TC-12 benchmark: A new evaluation resource for visual information systems","author":"Grubinger","key":"10.1016\/j.image.2021.116490_b35"},{"issue":"4","key":"10.1016\/j.image.2021.116490_b36","doi-asserted-by":"crossref","first-page":"600","DOI":"10.1109\/TIP.2003.819861","article-title":"Image quality assessment: from error visibility to structural similarity","volume":"13","author":"Zhou Wang","year":"2004","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.image.2021.116490_b37","doi-asserted-by":"crossref","unstructured":"Y. Zhang, Y. Tian, Y. Kong, B. Zhong, Y. Fu, Residual dense network for image super-resolution, in: 2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 2472\u20132481.","DOI":"10.1109\/CVPR.2018.00262"}],"container-title":["Signal Processing: Image Communication"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0923596521002381?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0923596521002381?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,9,8]],"date-time":"2024-09-08T16:26:06Z","timestamp":1725812766000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0923596521002381"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,11]]},"references-count":37,"alternative-id":["S0923596521002381"],"URL":"https:\/\/doi.org\/10.1016\/j.image.2021.116490","relation":{},"ISSN":["0923-5965"],"issn-type":[{"type":"print","value":"0923-5965"}],"subject":[],"published":{"date-parts":[[2021,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Deep-NC: A secure image transmission using deep learning and network coding","name":"articletitle","label":"Article Title"},{"value":"Signal Processing: Image Communication","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.image.2021.116490","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Crown Copyright \u00a9 2021 Published by Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"116490"}}