{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,9]],"date-time":"2024-08-09T13:11:42Z","timestamp":1723209102892},"reference-count":69,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2016,9,1]],"date-time":"2016-09-01T00:00:00Z","timestamp":1472688000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Signal Processing: Image Communication"],"published-print":{"date-parts":[[2016,9]]},"DOI":"10.1016\/j.image.2016.05.019","type":"journal-article","created":{"date-parts":[[2016,6,3]],"date-time":"2016-06-03T00:40:51Z","timestamp":1464914451000},"page":"529-548","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":21,"special_numbering":"C","title":["Nrityabodha: Towards understanding Indian classical dance using a deep learning approach"],"prefix":"10.1016","volume":"47","author":[{"given":"Aparna","family":"Mohanty","sequence":"first","affiliation":[]},{"given":"Pratik","family":"Vaishnavi","sequence":"additional","affiliation":[]},{"given":"Prerana","family":"Jana","sequence":"additional","affiliation":[]},{"given":"Anubhab","family":"Majumdar","sequence":"additional","affiliation":[]},{"given":"Alfaz","family":"Ahmed","sequence":"additional","affiliation":[]},{"given":"Trishita","family":"Goswami","sequence":"additional","affiliation":[]},{"given":"Rajiv R.","family":"Sahay","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.image.2016.05.019_bib1","unstructured":"P. Subrahmanyam, Karana Prakaranam\u2014Marga Tradition Revived, swathi's Sanskriti Series (DVD)."},{"key":"10.1016\/j.image.2016.05.019_bib2","unstructured":"D. Ramanan, Y. Yang, Articulated pose estimation using flexible mixtures of parts, in: CVPR, 2011."},{"key":"10.1016\/j.image.2016.05.019_bib3","doi-asserted-by":"crossref","unstructured":"F. Wang, Y. Li, Beyond physical connections: tree models in human pose estimation, in: CVPR, IEEE, Portland, Oregon, 2013, pp. 596\u2013603.","DOI":"10.1109\/CVPR.2013.83"},{"key":"10.1016\/j.image.2016.05.019_bib4","unstructured":"Y. Lecun, F.J. Huang, L. Bottou, Learning methods for generic object recognition with invariance to pose and lighting, in: CVPR, IEEE, Washington, DC, USA, 2004."},{"key":"10.1016\/j.image.2016.05.019_bib5","unstructured":"A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: Advances in Neural Information Processing Systems, 2012."},{"key":"10.1016\/j.image.2016.05.019_bib6","doi-asserted-by":"crossref","unstructured":"Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, in: Proceedings of the IEEE, 1998, pp. 2278\u20132324.","DOI":"10.1109\/5.726791"},{"key":"10.1016\/j.image.2016.05.019_bib7","doi-asserted-by":"crossref","unstructured":"S. Marcel, Hand posture recognition in a body-face centered space, in: CHI \u201999 Extended Abstracts on Human Factors in Computing Systems, CHI EA \u201999, ACM, New York, NY, USA, 1999, pp. 302\u2013303. http:\/\/dx.doi.org\/10.1145\/632716.632901.","DOI":"10.1145\/632716.632901"},{"key":"10.1016\/j.image.2016.05.019_bib8","unstructured":"J. Triesch, C. Von Der Malsburg, Robust classification of hand postures against complex backgrounds, in: 2nd International Conference on Automatic Face and Gesture Recognition (FG), IEEE, Vermont, USA, 1996, pp. 170\u2013175."},{"key":"10.1016\/j.image.2016.05.019_bib9","first-page":"12","article-title":"A new 2d static hand gesture colour image dataset for asl gestures","volume":"15","author":"Barczak","year":"2011","journal-title":"Res. Lett. Inf. Math. Sci."},{"key":"10.1016\/j.image.2016.05.019_bib10","doi-asserted-by":"crossref","unstructured":"Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, Proc. IEEE 86(11) (1998) 2278\u20132324.","DOI":"10.1109\/5.726791"},{"key":"10.1016\/j.image.2016.05.019_bib11","unstructured":"A. Krizhevsky, G. Hinton, Learning multiple layers of features from tiny images, (Master's thesis), Computer Science Department, University of Toronto, 2009."},{"issue":"3","key":"10.1016\/j.image.2016.05.019_bib12","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1145\/2069276.2069280","article-title":"Nrityakosha","volume":"4","author":"Mallik","year":"2011","journal-title":"J. Comput. Cultural Herit."},{"key":"10.1016\/j.image.2016.05.019_bib13","doi-asserted-by":"crossref","unstructured":"S. Samanta, P. Purkait, B. Chanda, Indian classical dance classification by learning dance pose bases, in: 2012 IEEE Workshop on Applications of Computer Vision (WACV), IEEE, Berckenridge, Colorado, 2012, pp. 265\u2013270.","DOI":"10.1109\/WACV.2012.6163050"},{"key":"10.1016\/j.image.2016.05.019_bib14","doi-asserted-by":"crossref","unstructured":"I. Kapsouras, S. Karanikolos, N. Nikolaidis, A. Tefas, Folk dance recognition using a bag of words approach and ISA\/STIP features, in: Proceedings of the 6th Balkan Conference in Informatics, ACM, Thessaloniki, Greece, 2013, pp. 71\u201374.","DOI":"10.1145\/2490257.2490271"},{"key":"10.1016\/j.image.2016.05.019_bib15","doi-asserted-by":"crossref","unstructured":"I. Kapsouras, S. Karanikolos, N. Nikolaidis, A. Tefas, Feature comparison and feature fusion for traditional dances recognition, in: Engineering Applications of Neural Networks, Springer, Berlin Heidelberg 2013, pp. 172\u2013181.","DOI":"10.1007\/978-3-642-41013-0_18"},{"key":"10.1016\/j.image.2016.05.019_bib16","unstructured":"F. Fleck, D.A. Forsyth, M.M. Fleck, Body plans, in: CVPR, IEEE, San Juan, Puerto Rico 1997, pp. 678\u2013683."},{"issue":"6","key":"10.1016\/j.image.2016.05.019_bib17","doi-asserted-by":"crossref","first-page":"522","DOI":"10.1109\/TPAMI.1980.6447699","article-title":"Model-based image analysis of human motion using constraint propagation","volume":"2","author":"O'Rourke","year":"1980","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.image.2016.05.019_bib18","doi-asserted-by":"crossref","unstructured":"G. Mori, J. Malik, Estimating human body configurations using shape context matching, in: Proceedings of 7th European Conference on Computer Vision-Part III, ECCV \u201902, Springer-Verlag, London, UK, 2002, pp. 666\u2013680.","DOI":"10.1007\/3-540-47977-5_44"},{"key":"10.1016\/j.image.2016.05.019_bib19","unstructured":"X. Ren, A. Berg, J. Malik, Recovering human body configurations using pairwise constraints between parts, in: Proceedings of ICCV, Beijing, China, vol. 1, 2005, pp. 824\u2013831."},{"key":"10.1016\/j.image.2016.05.019_bib20","unstructured":"G. Hua, M.-H. Yang, Y. Wu, Learning to estimate human pose with data driven belief propagation, in: IEEE CVPR, San Diego, CA, USA, vol. 2, 2005, pp. 747\u2013754."},{"key":"10.1016\/j.image.2016.05.019_bib21","doi-asserted-by":"crossref","unstructured":"P. Felzenszwalb, D. McAllester, D. Ramanan, A discriminatively trained, multiscale, deformable part model, in: CVPR, Anchorage, Alaska, USA, IEEE, 2008, pp. 1\u20138.","DOI":"10.1109\/CVPR.2008.4587597"},{"issue":"9","key":"10.1016\/j.image.2016.05.019_bib22","doi-asserted-by":"crossref","first-page":"1627","DOI":"10.1109\/TPAMI.2009.167","article-title":"Object detection with discriminatively trained part-based models","volume":"32","author":"Felzenszwalb","year":"2010","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"1","key":"10.1016\/j.image.2016.05.019_bib23","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1023\/B:VISI.0000042934.15159.49","article-title":"Pictorial structures for object recognition","volume":"61","author":"Felzenszwalb","year":"2005","journal-title":"Int. J. Comput. Vis."},{"key":"10.1016\/j.image.2016.05.019_bib24","doi-asserted-by":"crossref","unstructured":"M. Andriluka, S. Roth, B. Schiele, Pictorial structures revisited: People detection and articulated pose estimation, in: CVPR, IEEE, Miami, Florida, USA, 2009, pp. 1014\u20131021.","DOI":"10.1109\/CVPRW.2009.5206754"},{"key":"10.1016\/j.image.2016.05.019_bib25","unstructured":"H. Ning, W. Xu, Y. Gong, T. Huang, Discriminative learning of visual words for 3d human pose estimation, in: CVPR, IEEE, Anchorage, Alaska, USA, 2008, pp. 1\u20138."},{"key":"10.1016\/j.image.2016.05.019_bib26","doi-asserted-by":"crossref","unstructured":"L. Pishchulin, M. Andriluka, P. Gehler, B. Schiele, Poselet conditioned pictorial structures, in: CVPR, IEEE, Portland, Oregon, 2013, pp. 588\u2013595.","DOI":"10.1109\/CVPR.2013.82"},{"key":"10.1016\/j.image.2016.05.019_bib27","doi-asserted-by":"crossref","unstructured":"S. Johnson, M. Everingham, Learning effective human pose estimation from inaccurate annotation, in: CVPR, IEEE, Colorado Springs, USA, 2011, pp. 1465\u20131472.","DOI":"10.1109\/CVPR.2011.5995318"},{"key":"10.1016\/j.image.2016.05.019_bib28","doi-asserted-by":"crossref","unstructured":"Y. Tian, C.L. Zitnick, S.G. Narasimhan, Exploring the spatial hierarchy of mixture models for human pose estimation, in: Computer Vision\u2013ECCV 2012, Springer, Firenze, Italy, 2012, pp. 256\u2013269.","DOI":"10.1007\/978-3-642-33715-4_19"},{"key":"10.1016\/j.image.2016.05.019_bib29","doi-asserted-by":"crossref","unstructured":"M. Dantone, J. Gall, C. Leistner, L. Van Gool, Human pose estimation using body parts dependent joint regressors, in: CVPR, IEEE, Portland, Oregon, 2013, pp. 3041\u20133048.","DOI":"10.1109\/CVPR.2013.391"},{"key":"10.1016\/j.image.2016.05.019_bib30","doi-asserted-by":"crossref","unstructured":"L. Pishchulin, A. Jain, M. Andriluka, T. Thormahlen, B. Schiele, Articulated people detection and pose estimation: Reshaping the future, in: CVPR, IEEE, Providence Rhode island, USA, 2012, pp. 3178\u20133185.","DOI":"10.1109\/CVPR.2012.6248052"},{"issue":"2","key":"10.1016\/j.image.2016.05.019_bib31","doi-asserted-by":"crossref","first-page":"190","DOI":"10.1007\/s11263-012-0524-9","article-title":"2D articulated human pose estimation and retrieval in (almost) unconstrained still images","volume":"99","author":"Eichner","year":"2012","journal-title":"Int. J. Comput. Vis."},{"key":"10.1016\/j.image.2016.05.019_bib32","unstructured":"R. Rosales, S. Sclaroff, Inferring body pose without tracking body parts, in: CVPR, vol. 2, IEEE, Hilton Head, SC, USA, 2000, pp. 721\u2013727."},{"issue":"1","key":"10.1016\/j.image.2016.05.019_bib33","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1109\/TPAMI.2006.21","article-title":"Recovering 3D human pose from monocular images","volume":"28","author":"Agarwal","year":"2006","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.image.2016.05.019_bib34","doi-asserted-by":"crossref","unstructured":"Y. Yang, D. Ramanan, Articulated pose estimation with flexible mixtures-of-parts, in: CVPR, IEEE, Colorado Springs, USA, 2011, pp. 1385\u20131392.","DOI":"10.1109\/CVPR.2011.5995741"},{"issue":"11","key":"10.1016\/j.image.2016.05.019_bib35","doi-asserted-by":"crossref","first-page":"2030","DOI":"10.1109\/TPAMI.2007.1111","article-title":"Bm3e","volume":"29","author":"Sminchisescu","year":"2007","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"1","key":"10.1016\/j.image.2016.05.019_bib36","doi-asserted-by":"crossref","first-page":"116","DOI":"10.1145\/2398356.2398381","article-title":"Real-time human pose recognition in parts from single depth images","volume":"56","author":"Shotton","year":"2013","journal-title":"Commun. ACM"},{"key":"10.1016\/j.image.2016.05.019_bib37","doi-asserted-by":"crossref","unstructured":"M. Oberweger, P. Wohlhart, V. Lepetit, Training a feedback loop for hand pose estimation, in: Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 2015, pp. 3316\u20133324.","DOI":"10.1109\/ICCV.2015.379"},{"issue":"5","key":"10.1016\/j.image.2016.05.019_bib38","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1145\/2629500","article-title":"Real-time continuous pose recovery of human hands using convolutional networks","volume":"33","author":"Tompson","year":"2014","journal-title":"ACM Trans. Graph."},{"issue":"10","key":"10.1016\/j.image.2016.05.019_bib39","doi-asserted-by":"crossref","first-page":"961","DOI":"10.1109\/34.799904","article-title":"An HMM based threshold model approach for gesture recognition","volume":"21","author":"Lee","year":"1999","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"4","key":"10.1016\/j.image.2016.05.019_bib40","doi-asserted-by":"crossref","first-page":"532","DOI":"10.1016\/j.cviu.2008.12.001","article-title":"A comparative study of two state-of-the-art sequence processing techniques for hand gesture recognition","volume":"113","author":"Just","year":"2009","journal-title":"Comput. Vis. Image Underst."},{"issue":"9","key":"10.1016\/j.image.2016.05.019_bib41","doi-asserted-by":"crossref","first-page":"1685","DOI":"10.1109\/TPAMI.2008.203","article-title":"A unified framework for gesture recognition and spatiotemporal gesture segmentation","volume":"31","author":"Alon","year":"2009","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.image.2016.05.019_bib42","doi-asserted-by":"crossref","first-page":"1102","DOI":"10.1016\/j.imavis.2005.07.016","article-title":"User-adaptive hand gesture recognition system with interactive training","volume":"23","author":"Licsar","year":"2005","journal-title":"Image Vis. Comput."},{"issue":"12","key":"10.1016\/j.image.2016.05.019_bib43","doi-asserted-by":"crossref","first-page":"1449","DOI":"10.1109\/34.977568","article-title":"A system for person-independent hand posture recognition against complex backgrounds","volume":"23","author":"Triesch","year":"2001","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.image.2016.05.019_bib44","unstructured":"V. Athitsos, S. Sclaroff, Estimating 3D hand pose from a cluttered image, in: IEEE CVPR, Madison, Wisconsin, 2003, pp. 432\u2013439."},{"key":"10.1016\/j.image.2016.05.019_bib45","doi-asserted-by":"crossref","unstructured":"I. Oikonomidis, N. Kyriazis, A.A. Argyros, Efficient model-based 3d tracking of hand articulations using kinect., in: BmVC, Dundee, UK, vol. 1, 2011, p. 3.","DOI":"10.5244\/C.25.101"},{"key":"10.1016\/j.image.2016.05.019_bib46","unstructured":"A. Erol, G. Bebis, M. Nicolescu, R.D. Boyle, X. Twombly, Vision-based hand pose estimation: a review, Comput. Vis. Image Underst. 108(1) (2007) 52\u201373."},{"key":"10.1016\/j.image.2016.05.019_bib47","first-page":"466","article-title":"Real-time hand tracking and gesture recognition system using neural networks","volume":"50","author":"Maung","year":"2009","journal-title":"World Acad. Sci. Eng. Technol."},{"issue":"3","key":"10.1016\/j.image.2016.05.019_bib48","doi-asserted-by":"crossref","first-page":"403","DOI":"10.1007\/s11263-012-0560-5","article-title":"Attention based detection and recognition of hand postures against complex backgrounds","volume":"101","author":"Pisharady","year":"2013","journal-title":"Int. J. Comput. Vis."},{"key":"10.1016\/j.image.2016.05.019_bib49","doi-asserted-by":"crossref","unstructured":"Y. Yang, C. Fermuller, Y. Li, Y. Aloimonos, Grasp type revisited: A modern perspective on a classical feature for vision, in: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, Masachusetts, IEEE, 2015, pp. 400\u2013408.","DOI":"10.1109\/CVPR.2015.7298637"},{"issue":"1","key":"10.1016\/j.image.2016.05.019_bib50","first-page":"1929","article-title":"Dropout","volume":"15","author":"Srivastava","year":"2014","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.image.2016.05.019_bib51","doi-asserted-by":"crossref","unstructured":"S. Melax, L. Keselman, S. Orsten, Dynamics based 3d skeletal hand tracking, in: Proceedings of Graphics Interface 2013, Canadian Information Processing Society, Regina, Saskatchewan, Canada, 2013, pp. 63\u201370.","DOI":"10.1145\/2448196.2448232"},{"key":"10.1016\/j.image.2016.05.019_bib52","doi-asserted-by":"crossref","unstructured":"T. Sharp, C. Keskin, D. Robertson, J. Taylor, J. Shotton, D. Kim, C. Rhemann, I. Leichter, A. Vinnikov, Y. Wei, et al., Accurate, robust, and flexible real-time hand tracking, in: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, ACM, Seoul, Republic of Korea, 2015, pp. 3633\u20133642.","DOI":"10.1145\/2702123.2702179"},{"key":"10.1016\/j.image.2016.05.019_bib53","doi-asserted-by":"crossref","unstructured":"S. Sridhar, F. Mueller, A. Oulasvirta, C. Theobalt, Fast and robust hand tracking using detection-guided optimization, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, Massachusetts, 2015, pp. 3213\u20133221.","DOI":"10.1109\/CVPR.2015.7298941"},{"key":"10.1016\/j.image.2016.05.019_bib54","doi-asserted-by":"crossref","unstructured":"D. Tzionas, J. Gall, A comparison of directional distances for hand pose estimation, in: Pattern Recognition, Springer, Berlin Heidelberg, 2013, pp. 131\u2013141.","DOI":"10.1007\/978-3-642-40602-7_14"},{"key":"10.1016\/j.image.2016.05.019_bib55","unstructured":"M. Bray, E. Koller-Meier, P. M\u00fcller, L. Van Gool, N.N. Schraudolph, 3d hand tracking by rapid stochastic gradient descent using a skinning model, in: 1st European Conference on Visual Media Production (CVMP), London, Citeseer, 2004."},{"key":"10.1016\/j.image.2016.05.019_bib56","doi-asserted-by":"crossref","unstructured":"C. Keskin, F. K\u0131ra\u00e7, Y.E. Kara, L. Akarun, Hand pose estimation and hand shape classification using multi-layered randomized decision forests, in: Computer Vision\u2013ECCV 2012, Springer, Florence, Italy, 2012, pp. 852\u2013863.","DOI":"10.1007\/978-3-642-33783-3_61"},{"key":"10.1016\/j.image.2016.05.019_bib57","doi-asserted-by":"crossref","unstructured":"C. Xu, L. Cheng, Efficient hand pose estimation from a single depth image, in: Proceedings of the IEEE International Conference on Computer Vision, Sydney, 2013, pp. 3456\u20133462.","DOI":"10.1109\/ICCV.2013.429"},{"key":"10.1016\/j.image.2016.05.019_bib58","doi-asserted-by":"crossref","unstructured":"D. Tang, H. Chang, A. Tejani, T.-K. Kim, Latent regression forest: Structured estimation of 3d articulated hand posture, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Ohio, 2014, pp. 3786\u20133793.","DOI":"10.1109\/CVPR.2014.490"},{"issue":"3","key":"10.1016\/j.image.2016.05.019_bib59","doi-asserted-by":"crossref","first-page":"328","DOI":"10.1006\/cviu.2000.0892","article-title":"3d articulated models and multiview tracking with physical forces","volume":"81","author":"Delamarre","year":"2001","journal-title":"Comput. Vis. Image Underst."},{"issue":"9","key":"10.1016\/j.image.2016.05.019_bib60","doi-asserted-by":"crossref","first-page":"1372","DOI":"10.1109\/TPAMI.2006.189","article-title":"Model-based hand tracking using a hierarchical Bayesian filter","volume":"28","author":"Stenger","year":"2006","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.image.2016.05.019_bib61","doi-asserted-by":"crossref","unstructured":"D. Hariharan, T. Acharya, S. Mitra, Recognizing hand gestures of a dancer, in: Pattern Recognition and Machine Intelligence, Springer, Moscow, Russia, 2011, pp. 186\u2013192.","DOI":"10.1007\/978-3-642-21786-9_32"},{"key":"10.1016\/j.image.2016.05.019_bib62","doi-asserted-by":"crossref","unstructured":"M. Rohrbach, S. Amin, M. Andriluka, B. Schiele, A database for fine grained activity detection of cooking activities, in: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Providence Rhode island, USA, 2012, pp. 1194\u20131201.","DOI":"10.1109\/CVPR.2012.6247801"},{"key":"10.1016\/j.image.2016.05.019_bib63","doi-asserted-by":"crossref","unstructured":"J. Lei, X. Ren, D. Fox, Fine-grained kitchen activity recognition using rgb-d, in: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, ACM, Pittsburgh, Pennsylvania, US, 2012, pp. 208\u2013211.","DOI":"10.1145\/2370216.2370248"},{"key":"10.1016\/j.image.2016.05.019_bib64","unstructured":"A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: Advances in Neural Information Processing Systems, Lake Tahoe, Nevada, 2012, pp. 1097\u20131105."},{"key":"10.1016\/j.image.2016.05.019_bib65","unstructured":"R.B. Palm, Prediction as a candidate for learning deep hierarchical models of data, (Master's thesis), 2012. URL \u3008https:\/\/github.com\/rasmusbergpalm\/DeepLearnToolbox\u3009"},{"key":"10.1016\/j.image.2016.05.019_bib66","doi-asserted-by":"crossref","unstructured":"A. Vedaldi, K. Lenc, Matconvnet: Convolutional neural networks for matlab, in: Proceedings of the 23rd Annual ACM Conference on Multimedia Conference, ACM, Brisbane, Australia, 2015, pp. 689\u2013692.","DOI":"10.1145\/2733373.2807412"},{"key":"10.1016\/j.image.2016.05.019_bib67","doi-asserted-by":"crossref","unstructured":"C. Rother, V. Kolmogorov, A. Blake, Grabcut: interactive foreground extraction using iterated graph cuts, in: ACM SIGGRAPH, Los Angeles, California USA, vol. 23, 2004, pp. 309\u2013314. http:\/\/dx.doi.org\/10.1145\/1015706.1015720.","DOI":"10.1145\/1015706.1015720"},{"issue":"3","key":"10.1016\/j.image.2016.05.019_bib68","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1145\/1961189.1961199","article-title":"Libsvm","volume":"2","author":"Chang","year":"2011","journal-title":"ACM Trans. Intell. Syst. Technol."},{"issue":"10","key":"10.1016\/j.image.2016.05.019_bib69","doi-asserted-by":"crossref","first-page":"1775","DOI":"10.1109\/TPAMI.2009.83","article-title":"Observing human-object interactions","volume":"31","author":"Gupta","year":"2009","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."}],"container-title":["Signal Processing: Image Communication"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0923596516300844?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0923596516300844?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,11,2]],"date-time":"2019-11-02T16:37:08Z","timestamp":1572712628000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0923596516300844"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016,9]]},"references-count":69,"alternative-id":["S0923596516300844"],"URL":"https:\/\/doi.org\/10.1016\/j.image.2016.05.019","relation":{},"ISSN":["0923-5965"],"issn-type":[{"value":"0923-5965","type":"print"}],"subject":[],"published":{"date-parts":[[2016,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Nrityabodha: Towards understanding Indian classical dance using a deep learning approach","name":"articletitle","label":"Article Title"},{"value":"Signal Processing: Image Communication","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.image.2016.05.019","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2016 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}