{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T00:40:56Z","timestamp":1726188056025},"reference-count":66,"publisher":"Elsevier BV","issue":"7","license":[{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100012659","name":"Foundation for Innovative Research Groups of the National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100012659","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Information & Management"],"published-print":{"date-parts":[[2024,11]]},"DOI":"10.1016\/j.im.2024.103922","type":"journal-article","created":{"date-parts":[[2024,1,26]],"date-time":"2024-01-26T19:26:44Z","timestamp":1706297204000},"page":"103922","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"title":["A profile similarity-based personalized federated learning method for wearable sensor-based human activity recognition"],"prefix":"10.1016","volume":"61","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0260-7589","authenticated-orcid":false,"given":"Yidong","family":"Chai","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9237-0708","authenticated-orcid":false,"given":"Haoxin","family":"Liu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6794-0230","authenticated-orcid":false,"given":"Hongyi","family":"Zhu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2806-1740","authenticated-orcid":false,"given":"Yue","family":"Pan","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8004-6038","authenticated-orcid":false,"given":"Anqi","family":"Zhou","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4902-1078","authenticated-orcid":false,"given":"Hongyan","family":"Liu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3336-9368","authenticated-orcid":false,"given":"Jianwei","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Yang","family":"Qian","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.im.2024.103922_bib0001","doi-asserted-by":"crossref","first-page":"2","DOI":"10.1109\/MIS.2014.52","article-title":"Smart and connected health [Guest editors\u2019 introduction]","volume":"29","author":"Leroy","year":"2014","journal-title":"IEEE Intell. Syst."},{"key":"10.1016\/j.im.2024.103922_bib0002","doi-asserted-by":"crossref","first-page":"1020","DOI":"10.1016\/j.im.2016.07.003","article-title":"The promising future of healthcare services: when big data analytics meets wearable technology","volume":"53","author":"Wu","year":"2016","journal-title":"Inf. Manag."},{"key":"10.1016\/j.im.2024.103922_bib0003","doi-asserted-by":"crossref","first-page":"859","DOI":"10.25300\/MISQ\/2021\/15574","article-title":"A deep learning approach for recognizing activity of daily living (ADL) for senior care: exploiting interaction dependency and temporal patterns","volume":"45","author":"Zhu","year":"2021","journal-title":"MIS Q"},{"key":"10.1016\/j.im.2024.103922_bib0004","article-title":"Wearable sensor-based human activity recognition using hybrid deep learning techniques","volume":"2020","author":"Wang","year":"2020","journal-title":"Secur. Commun. Networks."},{"key":"10.1016\/j.im.2024.103922_bib0005","doi-asserted-by":"crossref","first-page":"457","DOI":"10.1080\/07421222.2020.1759961","article-title":"Human identification for activities of daily living: a deep transfer learning approach","volume":"37","author":"Zhu","year":"2020","journal-title":"J. Manag. Inf. Syst."},{"key":"10.1016\/j.im.2024.103922_bib0006","doi-asserted-by":"crossref","first-page":"1355","DOI":"10.25300\/MISQ\/2022\/15763","article-title":"Wearable sensor-based chronic condition severity assessment : an adversarial attention-based deep multisource multitask learning approach","volume":"46","author":"Yu","year":"2022","journal-title":"MIS Q."},{"key":"10.1016\/j.im.2024.103922_bib0007","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2022.109363","article-title":"A survey on unsupervised learning for wearable sensor-based activity recognition","author":"Ige","year":"2022","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.im.2024.103922_bib0008","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.107338","article-title":"A federated learning system with enhanced feature extraction for human activity recognition","volume":"229","author":"Xiao","year":"2021","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.im.2024.103922_bib0009","doi-asserted-by":"crossref","first-page":"1377","DOI":"10.3390\/s22041377","article-title":"FL-PMI: federated learning-based person movement identification through wearable devices in smart healthcare systems","volume":"22","author":"Arikumar","year":"2022","journal-title":"Sensors"},{"key":"10.1016\/j.im.2024.103922_bib0010","doi-asserted-by":"crossref","DOI":"10.1145\/3412357","article-title":"Federated learning in a medical context: a systematic literature review","volume":"21","author":"Pfitzner","year":"2021","journal-title":"ACM Trans. Internet Technol."},{"key":"10.1016\/j.im.2024.103922_bib0011","unstructured":"P.F. Edemekong, P. Annamaraju, M.J. Haydel, Health insurance portability and accountability act (2018)."},{"key":"10.1016\/j.im.2024.103922_bib0012","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1080\/10192557.2019.1646015","article-title":"The future of China's personal data protection law: challenges and prospects","volume":"27","author":"Feng","year":"2019","journal-title":"Asia Pacific Law Rev."},{"key":"10.1016\/j.im.2024.103922_bib0013","doi-asserted-by":"crossref","first-page":"3454","DOI":"10.1109\/TIFS.2020.2988575","article-title":"Federated learning with differential privacy: algorithms and performance analysis","volume":"15","author":"Wei","year":"2020","journal-title":"IEEE Trans. Inf. Forensics Secur."},{"key":"10.1016\/j.im.2024.103922_bib0014","doi-asserted-by":"crossref","DOI":"10.2196\/24207","article-title":"Federated learning of electronic health records to improve mortality prediction in hospitalized patients with COVID-19: machine learning approach","volume":"9","author":"Vaid","year":"2021","journal-title":"JMIR Med. Informatics."},{"key":"10.1016\/j.im.2024.103922_bib0015","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s41666-020-00082-4","article-title":"Federated learning for healthcare informatics","volume":"5","author":"Xu","year":"2021","journal-title":"J. Healthc. Inform. Res."},{"key":"10.1016\/j.im.2024.103922_bib0016","first-page":"1","article-title":"Personalized federated learning with adaptive batchnorm for healthcare","volume":"14","author":"Lu","year":"2022","journal-title":"IEEE Trans. Big Data."},{"key":"10.1016\/j.im.2024.103922_bib0017","series-title":"2017 IEEE Int. Symp. Inf. Theory","first-page":"481","article-title":"Analysis of breakdown probability of wireless sensor networks with unreliable relay nodes","author":"Nozaki","year":"2017"},{"key":"10.1016\/j.im.2024.103922_bib0018","series-title":"2020 USENIX Annu. Tech. Conf. (USENIX ATC 20)","first-page":"493","article-title":"{BatchCrypt}: efficient homomorphic encryption for {Cross-Silo} federated learning","author":"Zhang","year":"2020"},{"key":"10.1016\/j.im.2024.103922_bib0019","series-title":"Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min","first-page":"3845","article-title":"FLOP: federated learning on medical datasets using partial networks","author":"Yang","year":"2021"},{"key":"10.1016\/j.im.2024.103922_bib0020","series-title":"2021 13th Int. Conf. Inf. Commun. Technol. Syst.","first-page":"230","article-title":"Human activity recognition in smart home using deep learning techniques","author":"Kolkar","year":"2021"},{"key":"10.1016\/j.im.2024.103922_bib0021","doi-asserted-by":"crossref","first-page":"47","DOI":"10.2298\/CSIS201221043N","article-title":"Comparative analysis of HAR datasets using classification algorithms","volume":"19","author":"Nayak","year":"2022","journal-title":"Comput. Sci. Inf. Syst."},{"key":"10.1016\/j.im.2024.103922_bib0022","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/JTEHM.2022.3177710","article-title":"Deep CNN-LSTM with self-attention model for human activity recognition using wearable sensor","volume":"10","author":"Khatun","year":"2022","journal-title":"IEEE J. Transl. Eng. Heal. Med."},{"key":"10.1016\/j.im.2024.103922_bib0023","doi-asserted-by":"crossref","first-page":"537","DOI":"10.1007\/s10115-013-0665-3","article-title":"Transfer learning for activity recognition: a survey","volume":"36","author":"Cook","year":"2013","journal-title":"Knowl. Inf. Syst."},{"key":"10.1016\/j.im.2024.103922_bib0024","doi-asserted-by":"crossref","first-page":"138","DOI":"10.1016\/j.pmcj.2012.07.003","article-title":"Activity recognition on streaming sensor data","volume":"10","author":"Krishnan","year":"2014","journal-title":"Pervasive Mob. Comput."},{"key":"10.1016\/j.im.2024.103922_bib0025","first-page":"1","article-title":"Comparison of feature learning methods for human activity recognition using wearable sensors","volume":"18","author":"Li","year":"2018","journal-title":"Sensors (Switzerland)"},{"key":"10.1016\/j.im.2024.103922_bib0026","series-title":"Int. Conf. Internet Things","first-page":"1","article-title":"An overview of human activity recognition using wearable sensors: healthcare and artificial intelligence","author":"Liu","year":"2021"},{"key":"10.1016\/j.im.2024.103922_bib0027","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1016\/j.eswa.2019.04.057","article-title":"A survey on wearable sensor modality centred human activity recognition in health care","volume":"137","author":"Wang","year":"2019","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.im.2024.103922_bib0028","first-page":"185","article-title":"Connecting systems, data, and people: a multidisciplinary research roadmap for chronic disease management","volume":"44","author":"Bardhan","year":"2020","journal-title":"MIS Q."},{"key":"10.1016\/j.im.2024.103922_bib0029","doi-asserted-by":"crossref","first-page":"1095","DOI":"10.1080\/07421222.2021.1990617","article-title":"Fall Detection with motion sensors: an attention-based convolutional neural network with long short-term memory (A-CNN-LSTM) approach","volume":"38","author":"Yu","year":"2021","journal-title":"J. Manag. Inf. Syst."},{"key":"10.1016\/j.im.2024.103922_bib0030","doi-asserted-by":"crossref","first-page":"691","DOI":"10.1109\/TITB.2012.2196440","article-title":"An incremental learning method based on probabilistic neural networks and adjustable fuzzy clustering for human activity recognition by using wearable sensors","volume":"16","author":"Wang","year":"2012","journal-title":"IEEE Trans. Inf. Technol. Biomed."},{"key":"10.1016\/j.im.2024.103922_bib0031","doi-asserted-by":"crossref","first-page":"1082","DOI":"10.1109\/TKDE.2007.1042","article-title":"Sensor-based abnormal human-activity detection","volume":"20","author":"Yin","year":"2008","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.im.2024.103922_bib0032","series-title":"Conf. Proc. - IEEE Int. Conf. Syst. Man Cybern","first-page":"5041","article-title":"Activity recognition from acceleration data based on discrete consine transform and SVM","author":"He","year":"2009"},{"key":"10.1016\/j.im.2024.103922_bib0033","doi-asserted-by":"crossref","DOI":"10.3390\/s20010317","article-title":"Enhanced human activity recognition based on smartphone sensor data using hybrid feature selection model","volume":"20","author":"Ahmed","year":"2020","journal-title":"Sensors (Switzerland)"},{"key":"10.1016\/j.im.2024.103922_bib0034","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1016\/j.knosys.2018.07.043","article-title":"Glaucoma diagnosis based on both hidden features and domain knowledge through deep learning models","volume":"161","author":"Chai","year":"2018","journal-title":"Knowledge-Based Syst."},{"key":"10.1016\/j.im.2024.103922_bib0035","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"Lecun","year":"2015","journal-title":"Nature"},{"key":"10.1016\/j.im.2024.103922_bib0036","first-page":"790","article-title":"An explainable multi-modal hierarchical attention model for developing phishing threat intelligence","volume":"19","author":"Chai","year":"2021","journal-title":"IEEE Trans. Dependable Secur. Comput."},{"key":"10.1016\/j.im.2024.103922_bib0037","doi-asserted-by":"crossref","first-page":"271","DOI":"10.1080\/07421222.2023.2172772","article-title":"Deep learning for information systems research","volume":"40","author":"Samtani","year":"2023","journal-title":"J. Manag. Inf. Syst."},{"key":"10.1016\/j.im.2024.103922_bib0038","doi-asserted-by":"crossref","unstructured":"W.A. Ohoud Nafea, M.A. Ghulam Muhammad, Sensor-based human activity recognition with spatio-temporal deep learning (2021) 1\u201320.","DOI":"10.3390\/s21062141"},{"key":"10.1016\/j.im.2024.103922_bib0039","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2023.119536","article-title":"A hybrid tuple selection pipeline for smartphone based human activity recognition","volume":"217","author":"Panja","year":"2023","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.im.2024.103922_bib0040","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1109\/MIS.2020.2988604","article-title":"FedHealth: a federated transfer learning framework for wearable healthcare","volume":"35","author":"Chen","year":"2020","journal-title":"IEEE Intell. Syst."},{"key":"10.1016\/j.im.2024.103922_bib0041","unstructured":"X. Li, K. Huang, W. Yang, S. Wang, Z. Zhang, On the convergence of FedAvg on Non-IID Data (2019) 1\u201326. http:\/\/arxiv.org\/abs\/1907.02189."},{"key":"10.1016\/j.im.2024.103922_bib0042","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3453476","article-title":"Federated learning for smart healthcare: a survey","volume":"55","author":"Nguyen","year":"2022","journal-title":"ACM Comput. Surv."},{"key":"10.1016\/j.im.2024.103922_bib0043","unstructured":"D. Liu, T. Miller, R. Sayeed, K.D. Mandl, FADL:federated-autonomous deep learning for distributed electronic health record (2018)."},{"key":"10.1016\/j.im.2024.103922_bib0044","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2021.102298","article-title":"Federated learning for computational pathology on gigapixel whole slide images","volume":"76","author":"Lu","year":"2022","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.im.2024.103922_bib0045","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2021.116109","article-title":"Definition of a novel federated learning approach to reduce communication costs","volume":"189","author":"Paragliola","year":"2022","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.im.2024.103922_bib0046","series-title":"2022 IEEE Int. Conf. Pervasive Comput. Commun. PerCom","first-page":"227","article-title":"FedCLAR: federated clustering for personalized sensor-based human activity recognition","volume":"2022","author":"Presotto","year":"2022"},{"key":"10.1016\/j.im.2024.103922_bib0047","series-title":"Proc. Int. Jt. Conf. Neural Networks","article-title":"FedCM: a real-time contribution measurement method for participants in federated learning","volume":"2021-July","author":"Yan","year":"2021"},{"key":"10.1016\/j.im.2024.103922_bib0048","series-title":"SenSys 2021 - Proc. 2021 19th ACM Conf. Embed. Networked Sens. Syst.","first-page":"15","article-title":"FedDL: federated learning via dynamic layer sharing for human activity recognition","author":"Tu","year":"2021"},{"key":"10.1016\/j.im.2024.103922_bib0049","series-title":"2021 IEEE Int. Conf. Pervasive Comput. Commun. PerCom","article-title":"A federated learning aggregation algorithm for pervasive computing: evaluation and comparison","volume":"2021","author":"Ek","year":"2021"},{"key":"10.1016\/j.im.2024.103922_bib0050","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TMC.2020.3002898","article-title":"FedHome: cloud-edge based personalized federated learning for in-home health monitoring","volume":"1233","author":"Wu","year":"2020","journal-title":"IEEE Trans. Mob. Comput."},{"key":"10.1016\/j.im.2024.103922_bib0051","series-title":"AMIA ... Annu. Symp. Proceedings. AMIA Symp.","first-page":"313","article-title":"Predicting adverse drug reactions on distributed health data using federated learning","volume":"2019","author":"Choudhury","year":"2019"},{"key":"10.1016\/j.im.2024.103922_bib0052","first-page":"1103","article-title":"Human activity recognition using federated learning, 16th","author":"Sozinov","year":"2019","journal-title":"IEEE Int. Symp. Parallel Distrib. Process. with Appl."},{"key":"10.1016\/j.im.2024.103922_bib0053","series-title":"Proc. 20th Int. Conf. Artif. Intell. Stat. AISTATS 2017","article-title":"Communication-efficient learning of deep networks from decentralized data","volume":"54","author":"Brendan McMahan","year":"2017"},{"key":"10.1016\/j.im.2024.103922_bib0054","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2021.114989","article-title":"High-end equipment data desensitization method based on improved Stackelberg GAN","volume":"180","author":"Xiang","year":"2021","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.im.2024.103922_bib0055","unstructured":"I. Achituve, G. Chechik, E. Fetaya, Personalized federated learning with Gaussian processes (2020)."},{"key":"10.1016\/j.im.2024.103922_bib0056","unstructured":"L. Collins, H. Hassani, A. Mokhtari, S. Shakkottai, Exploiting shared representations for personalized federated learning (2021). http:\/\/arxiv.org\/abs\/2102.07078."},{"key":"10.1016\/j.im.2024.103922_bib0057","series-title":"2016 IEEE Int. Conf. Pervasive Comput. Commun. PerCom","article-title":"On-body localization of wearable devices: an investigation of position-aware activity recognition","volume":"2016","author":"Sztyler","year":"2016"},{"key":"10.1016\/j.im.2024.103922_bib0058","doi-asserted-by":"crossref","DOI":"10.3390\/s17010198","article-title":"SisFall: a fall and movement dataset","volume":"17","author":"Sucerquia","year":"2017","journal-title":"Sensors (Switzerland)"},{"key":"10.1016\/j.im.2024.103922_bib0059","series-title":"Artif. Intell. Stat.","first-page":"1273","article-title":"Communication-efficient learning of deep networks from decentralized data","author":"McMahan","year":"2017"},{"key":"10.1016\/j.im.2024.103922_bib0060","series-title":"MM 2015 - Proc. 2015 ACM Multimed. Conf.","first-page":"1307","article-title":"Human activity recognition using wearable sensors by deep convolutional neural networks","author":"Jiang","year":"2015"},{"key":"10.1016\/j.im.2024.103922_bib0061","doi-asserted-by":"crossref","DOI":"10.1155\/2018\/7316954","article-title":"Deep residual Bidir-LSTM for human activity recognition using wearable sensors","volume":"2018","author":"Zhao","year":"2018","journal-title":"Math. Probl. Eng."},{"key":"10.1016\/j.im.2024.103922_bib0062","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2021.107330","article-title":"Federated learning for COVID-19 screening from Chest X-ray images","volume":"106","author":"Feki","year":"2021","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.im.2024.103922_bib0063","doi-asserted-by":"crossref","first-page":"7751","DOI":"10.1109\/JIOT.2020.2991401","article-title":"Privacy-preserving traffic flow prediction: a federated learning approach","volume":"7","author":"Liu","year":"2020","journal-title":"IEEE Internet Things J"},{"key":"10.1016\/j.im.2024.103922_bib0064","doi-asserted-by":"crossref","DOI":"10.1016\/j.chb.2020.106260","article-title":"Privacy concerns and benefits of engagement with social media-enabled apps: a privacy calculus perspective","volume":"107","author":"Jozani","year":"2020","journal-title":"Comput. Human Behav."},{"key":"10.1016\/j.im.2024.103922_bib0065","doi-asserted-by":"crossref","first-page":"1","DOI":"10.2196\/jmir.9019","article-title":"Privacy, trust, and data sharing in web-based and mobile research: participant perspectives in a large nationwide sample of men who have sex with men in the United States","volume":"20","author":"Rendina","year":"2018","journal-title":"J. Med. Internet Res."},{"key":"10.1016\/j.im.2024.103922_bib0066","series-title":"WSDM 2022 - Proc. 15th ACM Int. Conf. Web Search Data Min","first-page":"1415","article-title":"PipA!ack: poisoning federated recommender systems for manipulating item promotion","author":"Zhang","year":"2022"}],"container-title":["Information & Management"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0378720624000041?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0378720624000041?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T06:56:55Z","timestamp":1726124215000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0378720624000041"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,11]]},"references-count":66,"journal-issue":{"issue":"7","published-print":{"date-parts":[[2024,11]]}},"alternative-id":["S0378720624000041"],"URL":"https:\/\/doi.org\/10.1016\/j.im.2024.103922","relation":{},"ISSN":["0378-7206"],"issn-type":[{"type":"print","value":"0378-7206"}],"subject":[],"published":{"date-parts":[[2024,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A profile similarity-based personalized federated learning method for wearable sensor-based human activity recognition","name":"articletitle","label":"Article Title"},{"value":"Information & Management","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.im.2024.103922","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"103922"}}