{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,28]],"date-time":"2024-11-28T17:10:36Z","timestamp":1732813836043,"version":"3.30.0"},"reference-count":66,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T00:00:00Z","timestamp":1726012800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.es","clinicalkey.com.au","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["International Journal of Medical Informatics"],"published-print":{"date-parts":[[2024,12]]},"DOI":"10.1016\/j.ijmedinf.2024.105626","type":"journal-article","created":{"date-parts":[[2024,9,24]],"date-time":"2024-09-24T03:05:38Z","timestamp":1727147138000},"page":"105626","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Development of a Natural Language Processing (NLP) model to automatically extract clinical data from electronic health records: results from an Italian comprehensive stroke center"],"prefix":"10.1016","volume":"192","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-0944-9598","authenticated-orcid":false,"given":"Davide","family":"Badalotti","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0009-0007-8888-3977","authenticated-orcid":false,"given":"Akanksha","family":"Agrawal","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4042-4735","authenticated-orcid":false,"given":"Umberto","family":"Pensato","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3264-2721","authenticated-orcid":false,"given":"Giovanni","family":"Angelotti","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7238-4088","authenticated-orcid":false,"given":"Simona","family":"Marcheselli","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ijmedinf.2024.105626_b0005","doi-asserted-by":"crossref","unstructured":"B.C.V. Campbell, D.A. De Silva, M.R. Macleod, et al., Ischaemic stroke, Nat. Rev. Dis. Primers 5(1) (2019) 70 (In eng). DOI: 10.1038\/s41572-019-0118-8.","DOI":"10.1038\/s41572-019-0118-8"},{"key":"#cr-split#-10.1016\/j.ijmedinf.2024.105626_b0010.1","unstructured":"Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol 20"},{"key":"#cr-split#-10.1016\/j.ijmedinf.2024.105626_b0010.2","doi-asserted-by":"crossref","unstructured":"(10) (2021) 795-820. (In eng). DOI: 10.1016\/s1474-4422(21)00252-0.","DOI":"10.1016\/S1474-4422(21)00252-0"},{"issue":"14","key":"10.1016\/j.ijmedinf.2024.105626_b0015","doi-asserted-by":"crossref","first-page":"1205","DOI":"10.1093\/eurheartj\/ehac684","article-title":"Acute ischaemic stroke: recent advances in reperfusion treatment","volume":"44","author":"Widimsky","year":"2023","journal-title":"Eur Heart J"},{"issue":"1","key":"10.1016\/j.ijmedinf.2024.105626_b0020","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1177\/1747493018806157","article-title":"Systematic review of organizational models for intra-arterial treatment of acute ischemic stroke","volume":"14","author":"Ciccone","year":"2019","journal-title":"Int J Stroke"},{"key":"10.1016\/j.ijmedinf.2024.105626_b0025","doi-asserted-by":"crossref","unstructured":"M.J.H.L. Mulder, I.G.H. Jansen, R.-J.B. Goldhoorn, et al., Time to endovascular treatment and outcome in acute ischemic stroke, Circulation 138(3) (2018) 232\u2013240. DOI: doi:10.1161\/CIRCULATIONAHA.117.032600.","DOI":"10.1161\/CIRCULATIONAHA.117.032600"},{"issue":"4","key":"10.1016\/j.ijmedinf.2024.105626_b0030","doi-asserted-by":"crossref","first-page":"304","DOI":"10.1136\/practneurol-2020-002557","article-title":"Diagnosis and management of acute ischaemic stroke","volume":"20","author":"Hurford","year":"2020","journal-title":"Pract. Neurol."},{"issue":"5","key":"10.1016\/j.ijmedinf.2024.105626_b0035","doi-asserted-by":"crossref","first-page":"1921","DOI":"10.1161\/STROKEAHA.120.033785","article-title":"Challenges of outcome prediction for acute stroke treatment decisions","volume":"52","author":"Goyal","year":"2021","journal-title":"Stroke"},{"key":"10.1016\/j.ijmedinf.2024.105626_b0040","doi-asserted-by":"crossref","unstructured":"C. Counsell, M. Dennis, Systematic review of prognostic models in patients with acute stroke, Cerebrovasc Dis. 12(3) (2001) 159-70. (In eng). DOI: 10.1159\/000047699.","DOI":"10.1159\/000047699"},{"key":"10.1016\/j.ijmedinf.2024.105626_b0045","doi-asserted-by":"crossref","unstructured":"J. Bajwa, U. Munir, A. Nori, B. Williams, Artificial intelligence in healthcare: transforming the practice of medicine, Fut. Healthc J. 8(2) (2021) e188-e194. (In eng). DOI: 10.7861\/fhj.2021-0095.","DOI":"10.7861\/fhj.2021-0095"},{"key":"10.1016\/j.ijmedinf.2024.105626_b0050","unstructured":"F. Chollet, On the Measure of Intelligence. ArXiv 2019;abs\/1911.01547."},{"key":"10.1016\/j.ijmedinf.2024.105626_b0055","article-title":"Artificial intelligence in healthcare: complementing, not replacing, doctors and healthcare providers","volume":"9","author":"Sezgin","year":"2023","journal-title":"Digit Health"},{"issue":"4","key":"10.1016\/j.ijmedinf.2024.105626_b0085","doi-asserted-by":"crossref","first-page":"490","DOI":"10.1007\/s11606-012-2304-1","article-title":"Electronic health records and the increasing complexity of medical practice: \u201cit never gets easier, you just go faster\u201d","volume":"28","author":"Mishuris","year":"2013","journal-title":"J. Gen. Int. Med."},{"key":"10.1016\/j.ijmedinf.2024.105626_b0090","unstructured":"Burr Settles. Active Learning Literature Survey. Computer Sciences Tech- nical Report 1648, University of Wisconsin\u2013Madison. 2009."},{"key":"10.1016\/j.ijmedinf.2024.105626_b0100","doi-asserted-by":"crossref","unstructured":"Basra Jehangir, Saravanan Radhakrishnan, Rahul Agarwal, A survey on Named Entity Recognition \u2014datasets, tools, and methodologies, Natural Language Processing Journal, Volume 3, 2023, 100017, ISSN 2949-7191, Doi: 10.1016\/j.nlp.2023.100017.","DOI":"10.1016\/j.nlp.2023.100017"},{"key":"10.1016\/j.ijmedinf.2024.105626_b0105","doi-asserted-by":"crossref","first-page":"3005","DOI":"10.1007\/s10462-022-10246-w","article-title":"Human-in-the-loop machine learning: a state of the art","volume":"56","author":"Mosqueira-Rey","year":"2023","journal-title":"Artif Intell Rev"},{"key":"10.1016\/j.ijmedinf.2024.105626_b0110","doi-asserted-by":"crossref","unstructured":"Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Brij B. Gupta, Xiaojiang Chen, Xin Wang, A survey of deep active learning. ACM Comput. Surv. 54, 9, Article 180 (December 2022) 40 (2021). Doi: 10.1145\/3472291.","DOI":"10.1145\/3472291"},{"key":"10.1016\/j.ijmedinf.2024.105626_b0115","unstructured":"Gal, Yarin, Riashat Islam, Zoubin Ghahramani, Deep bayesian active learning with image data, Int. Conf. Mach. Learn. PMLR, 2017."},{"key":"10.1016\/j.ijmedinf.2024.105626_b0120","doi-asserted-by":"crossref","unstructured":"Liat Ein-Dor, Alon Halfon, Ariel Gera, Eyal Shnarch, Lena Dankin, Leshem Choshen, Marina Danilevsky, Ranit Aharonov, Yoav Katz, Noam Slonim, Active Learning for BERT: An Empirical Study. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 7949\u20137962, Online. Association for Computational Linguistics, 2020.","DOI":"10.18653\/v1\/2020.emnlp-main.638"},{"key":"10.1016\/j.ijmedinf.2024.105626_b0125","doi-asserted-by":"crossref","unstructured":"Aditya Siddhant, Zachary C. Lipton, Deep Bayesian active learning for natural language processing: results of a large-scale empirical study, in: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2904\u20132909, Brussels, Belgium. Association for Computational Linguistics, 2018.","DOI":"10.18653\/v1\/D18-1318"},{"key":"10.1016\/j.ijmedinf.2024.105626_b0130","doi-asserted-by":"crossref","unstructured":"Artem Shelmanov, Dmitri Puzyrev, Lyubov Kupriyanova, Denis Belyakov, Daniil Larionov, Nikita Khromov, Olga Kozlova, Ekaterina Artemova, Dmitry V. Dylov, and Alexander Panchenko, Active Learning for Sequence Tagging with Deep Pre-trained Models and Bayesian Uncertainty Estimates, in: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pages 1698\u20131712, Online. Association for Computational Linguistics, 2021.","DOI":"10.18653\/v1\/2021.eacl-main.145"},{"key":"10.1016\/j.ijmedinf.2024.105626_b0135","unstructured":"Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, in: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171\u20134186, Minneapolis, Minnesota. Association for Computational Linguistics, 2019."},{"key":"10.1016\/j.ijmedinf.2024.105626_b0140","unstructured":"A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, Improving language understanding with unsupervised learning, 2018."},{"key":"10.1016\/j.ijmedinf.2024.105626_b0145","doi-asserted-by":"crossref","unstructured":"Tommaso Mario Buonocore, Claudio Crema, Alberto Redolfi, Riccardo Bellazzi, Enea Parimbelli, Localizing in-domain adaptation of transformer-based biomedical language models, J. Biomed. Inform. 144 (2023) 104431, ISSN 1532-0464, Doi: 10.1016\/j.jbi.2023.104431.","DOI":"10.1016\/j.jbi.2023.104431"},{"key":"10.1016\/j.ijmedinf.2024.105626_b0150","doi-asserted-by":"crossref","unstructured":"Iman Mohammadreza, Hamid Reza Arabnia, Khaled Rasheed, A review of deep transfer learning and recent advancements, Technologies 11.2 (2023): 40.","DOI":"10.3390\/technologies11020040"},{"key":"10.1016\/j.ijmedinf.2024.105626_b0155","doi-asserted-by":"crossref","unstructured":"T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P.V. Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T.L. Scao, S. Gugger, M. Drame, Q. Lhoest, A.M. Rush, HuggingFace's Transformers: State-of-the-art Natural Language Processing. ArXiv, abs\/1910.03771, 2019.","DOI":"10.18653\/v1\/2020.emnlp-demos.6"},{"key":"10.1016\/j.ijmedinf.2024.105626_b0165","doi-asserted-by":"crossref","unstructured":"Jerome H. Friedman, Greedy function approximation: a gradient boosting machine, The Annals of Statistics 29(5) (2001) 1189\u2013232. JSTOR, http:\/\/www.jstor.org\/stable\/2699986. Accessed 9 Mar. 2024.","DOI":"10.1214\/aos\/1013203451"},{"key":"10.1016\/j.ijmedinf.2024.105626_b0170","unstructured":"Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: a highly efficient gradient boosting decision tree. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS'17). Curran Associates Inc., Red Hook, NY, USA, 3149\u20133157."},{"key":"10.1016\/j.ijmedinf.2024.105626_b0175","unstructured":"Bergstra, James, R\u00e9mi Bardenet, Yoshua Bengio, Bal\u00e1zs K\u00e9gl, Algorithms for Hyper-Parameter Optimization, Neural Information Processing Systems (2011)."},{"key":"10.1016\/j.ijmedinf.2024.105626_b0180","doi-asserted-by":"crossref","unstructured":"Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, Masanori Koyama, Optuna: A Next-generation Hyperparameter Optimization Framework. In KDD, 2019.","DOI":"10.1145\/3292500.3330701"},{"key":"10.1016\/j.ijmedinf.2024.105626_b0185","unstructured":"G. Van Rossum, F.L. Drake, Python 3 Reference Manual, CreateSpace, Scotts Valley, CA, 2009."},{"key":"10.1016\/j.ijmedinf.2024.105626_b0190","unstructured":"Kirsch, Andreas, PowerEvaluationBALD: efficient evaluation-oriented deep (Bayesian) active learning with stochastic acquisition functions, 2021, ArXiv abs\/2101.03552."},{"key":"10.1016\/j.ijmedinf.2024.105626_b0200","article-title":"TinyBERT: distilling BERT for natural language understanding","author":"Jiao","year":"2019","journal-title":"Findings"},{"key":"10.1016\/j.ijmedinf.2024.105626_b0205","unstructured":"V. Sanh, L. Debut, J. Chaumond, T. Wolf, DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter, 2019. arXiv preprint arXiv:1910.01108."},{"key":"10.1016\/j.ijmedinf.2024.105626_b0215","doi-asserted-by":"crossref","unstructured":"S.F. Sung, C.H. Chen, R.C. Pan, Y.H. Hu, J.S. Jeng, Natural language processing enhances prediction of functional outcome after acute ischemic stroke, J. Am. Heart Assoc. 10 (2021) e023486.","DOI":"10.1161\/JAHA.121.023486"},{"issue":"12","key":"10.1016\/j.ijmedinf.2024.105626_b0220","article-title":"Prediction of 30-day readmission after stroke using machine learning and natural language processing","volume":"13","author":"Lineback","year":"2021","journal-title":"Front Neurol."},{"issue":"3","key":"10.1016\/j.ijmedinf.2024.105626_b0225","first-page":"e22951","article-title":"Natural language processing and machine learning for identifying incident stroke from electronic health records: algorithm development and validation","volume":"23","author":"Zhao","year":"2021","journal-title":"J. Med. Int. Res."},{"key":"10.1016\/j.ijmedinf.2024.105626_b0230","doi-asserted-by":"crossref","unstructured":"Aggarwal Umang, Adrian Popescu, C\u00e9line Hudelot, Minority class oriented active learning for imbalanced datasets, in: 2020 25th International Conference on Pattern Recognition (ICPR). IEEE, 2021.","DOI":"10.1109\/ICPR48806.2021.9412182"},{"key":"10.1016\/j.ijmedinf.2024.105626_b0235","doi-asserted-by":"crossref","unstructured":"Katrin Tomanek, Udo Hahn, Reducing class imbalance during active learning for named entity annotation, in: Proceedings of the fifth international conference on Knowledge capture (K-CAP '09), Association for Computing Machinery, New York, NY, USA, 2009, 105\u2013112, Doi: 10.1145\/1597735.1597754.","DOI":"10.1145\/1597735.1597754"},{"key":"10.1016\/j.ijmedinf.2024.105626_b0240","unstructured":"Edward J. Hu et al., Lora: Low-rank adaptation of large language models, arXiv preprint arXiv:2106.09685, 2021."},{"key":"10.1016\/j.ijmedinf.2024.105626_b0245","doi-asserted-by":"crossref","unstructured":"M. Schuster, K. Nakajima, Japanese and Korean voice search, in: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 2012, pp. 5149-5152, doi: 10.1109\/ICASSP.2012.6289079.","DOI":"10.1109\/ICASSP.2012.6289079"},{"key":"10.1016\/j.ijmedinf.2024.105626_b0250","unstructured":"V. Krishnan, V. Ganapathy, Named Entity Recognition, 2005."},{"key":"10.1016\/j.ijmedinf.2024.105626_b0255","unstructured":"Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean, Efficient Estimation of Word Representations in Vector Space, 2013."},{"key":"10.1016\/j.ijmedinf.2024.105626_b0260","doi-asserted-by":"crossref","unstructured":"J. Pennington, R. Socher, C. Manning, GloVe: global vectors for word representation, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 1532\u20131543), Association for Computational Linguistics, 2014.","DOI":"10.3115\/v1\/D14-1162"},{"key":"10.1016\/j.ijmedinf.2024.105626_b0265","unstructured":"A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, others, Improving language understanding by generative pre-training, 2018."},{"key":"10.1016\/j.ijmedinf.2024.105626_b0270","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1186\/s12911-021-01395-z","article-title":"A clinical trials corpus annotated with UMLS entities to enhance the access to evidence-based medicine","volume":"21","author":"Campillos-Llanos","year":"2021","journal-title":"BMC Med. Inform. Decis. Mak."},{"key":"10.1016\/j.ijmedinf.2024.105626_b0275","doi-asserted-by":"crossref","unstructured":"Elisa Terumi Rubel Schneider, Jo\u00e3o Vitor Andrioli de Souza, Julien Knafou, Lucas Emanuel Silva e Oliveira, Jenny Copara, Yohan Bonescki Gumiel, Lucas Ferro Antunes de Oliveira, Emerson Cabrera Paraiso, Douglas Teodoro, and Cl\u00e1udia Maria Cabral Moro Barra. BioBERTpt - A Portuguese Neural Language Model for Clinical Named Entity Recognition, in: Proceedings of the 3rd Clinical Natural Language Processing Workshop, pages 65\u201372, Online. Association for Computational Linguistics, 2020.","DOI":"10.18653\/v1\/2020.clinicalnlp-1.7"},{"key":"10.1016\/j.ijmedinf.2024.105626_b0280","doi-asserted-by":"crossref","unstructured":"X. Liu, G. L. Hersch, I. Khalil, M. Devarakonda, Clinical trial information extraction with BERT, in: 2021 IEEE 9th International Conference on Healthcare Informatics (ICHI), Victoria, BC, Canada, 2021, pp. 505-506, doi: 10.1109\/ICHI52183.2021.00092.","DOI":"10.1109\/ICHI52183.2021.00092"},{"key":"10.1016\/j.ijmedinf.2024.105626_b0295","unstructured":"Souza F\u00e1bio, Rodrigo Nogueira, Roberto Lotufo, Portuguese named entity recognition using BERT-CRF, 2019, arXiv preprint arXiv:1909.10649."},{"key":"10.1016\/j.ijmedinf.2024.105626_b0300","doi-asserted-by":"crossref","unstructured":"Y. Shen, H. Yun, Z. Lipton, Y. Kronrod, A. Anandkumar, Deep active learning for named entity recognition, in: Proceedings of the 2nd Workshop on Representation Learning for NLP, Association for Computational Linguistics, 2017, pp. 252\u2013256.","DOI":"10.18653\/v1\/W17-2630"},{"key":"10.1016\/j.ijmedinf.2024.105626_b0305","unstructured":"Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, Dario Amodei, Language Models are Few-Shot Learners, 2020. CoRR, abs\/2005.14165."},{"key":"10.1016\/j.ijmedinf.2024.105626_b0310","unstructured":"Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza Rutherford, Tom Hennigan, Jacob Menick, Albin Cassirer, Richard Powell, George van den Driessche, Lisa Anne Hendricks, Maribeth Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl, Sumanth Dathathri, Saffron Huang, Jonathan Uesato, John Mellor, Irina Higgins, Antonia Creswell, Nat McAleese, Amy Wu, Erich Elsen, Siddhant Jayakumar, Elena Buchatskaya, David Budden, Esme Sutherland, Karen Simonyan, Michela Paganini, Laurent Sifre, Lena Martens, Xiang Lorraine Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena Gribovskaya, Domenic Donato, Angeliki Lazaridou, Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsimpoukelli, Nikolai Grigorev, Doug Fritz, Thibault Sottiaux, Mantas Pajarskas, Toby Pohlen, Zhitao Gong, Daniel Toyama, Cyprien de Masson d'Autume, Yujia Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin, Aidan Clark, Diego de Las Casas, Aurelia Guy, Chris Jones, James Bradbury, Matthew Johnson, Blake Hechtman, Laura Weidinger, Iason Gabriel, William Isaac, Ed Lockhart, Simon Osindero, Laura Rimell, Chris Dyer, Oriol Vinyals, Kareem Ayoub, Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Koray Kavukcuoglu, Geoffrey Irving, Scaling Language Models: Methods, Analysis & Insights from Training Gopher, 2022."},{"key":"10.1016\/j.ijmedinf.2024.105626_b0315","doi-asserted-by":"crossref","unstructured":"A. Roy, S. Pan, Incorporating medical knowledge in BERT for clinical relation extraction, in: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (pp. 5357\u20135366). Association for Computational Linguistics, 2021.","DOI":"10.18653\/v1\/2021.emnlp-main.435"},{"issue":"1","key":"10.1016\/j.ijmedinf.2024.105626_b0320","doi-asserted-by":"crossref","first-page":"e12","DOI":"10.1016\/S2589-7500(23)00225-X","article-title":"Assessing the potential of GPT-4 to perpetuate racial and gender biases in health care: a model evaluation study","volume":"6","author":"Zack","year":"2024","journal-title":"The Lancet Digital Health"},{"issue":"3","key":"10.1016\/j.ijmedinf.2024.105626_b0325","doi-asserted-by":"crossref","first-page":"e0000022","DOI":"10.1371\/journal.pdig.0000022","article-title":"Sources of bias in artificial intelligence that perpetuate healthcare disparities\u2014a global review","volume":"1","author":"Celi","year":"2022","journal-title":"PLOS Digital Health"},{"issue":"6","key":"10.1016\/j.ijmedinf.2024.105626_b0330","doi-asserted-by":"crossref","first-page":"e406","DOI":"10.1016\/S2589-7500(22)00063-2","article-title":"AI recognition of patient race in medical imaging: a modelling study","volume":"4","author":"Gichoya","year":"2022","journal-title":"The Lancet Digital Health"},{"key":"10.1016\/j.ijmedinf.2024.105626_b0335","doi-asserted-by":"crossref","unstructured":"Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, Ting Liu, A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open Questions, 2023.","DOI":"10.1145\/3703155"},{"issue":"11","key":"10.1016\/j.ijmedinf.2024.105626_b0340","doi-asserted-by":"crossref","first-page":"665","DOI":"10.1038\/s42256-020-00257-z","article-title":"Shortcut learning in deep neural networks","volume":"2","author":"Geirhos","year":"2020","journal-title":"Nat. Mach. Intell."},{"key":"10.1016\/j.ijmedinf.2024.105626_b0345","unstructured":"Shuhe Wang, Xiaofei Sun, Xiaoya Li, Rongbin Ouyang, Fei Wu, Tianwei Zhang, Jiwei Li, Guoyin Wang, GPT-NER: Named Entity Recognition via Large Language Models, 2023."},{"key":"10.1016\/j.ijmedinf.2024.105626_b0350","doi-asserted-by":"crossref","unstructured":"Burr Settles, Active Learning. In: Active Learning, 2012.","DOI":"10.1007\/978-3-031-01560-1"},{"key":"10.1016\/j.ijmedinf.2024.105626_b0355","unstructured":"F. Olsson, A literature survey of active machine learning in the context of natural language processing, 2009."},{"issue":"1","key":"10.1016\/j.ijmedinf.2024.105626_b0360","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1109\/TKDE.2020.2981314","article-title":"A survey on deep learning for named entity recognition","volume":"34","author":"Li","year":"2022","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.ijmedinf.2024.105626_b0365","unstructured":"Neil Houlsby, Ferenc Husz\u00e1r, Zoubin Ghahramani, M\u00e1t\u00e9 Lengyel, Bayesian Active Learning for Classification and Preference Learning, 2011."},{"key":"10.1016\/j.ijmedinf.2024.105626_b0370","doi-asserted-by":"crossref","unstructured":"L. Ein-Dor, A. Halfon, A. Gera, E. Shnarch, L. Dankin, L. Choshen, M. Danilevsky, R. Aharonov, Y. Katz, N. Slonim, Active learning for BERT: an empirical study, in: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Association for Computational Linguistics, 2020, pp. 7949\u20137962.","DOI":"10.18653\/v1\/2020.emnlp-main.638"},{"key":"10.1016\/j.ijmedinf.2024.105626_b0375","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/j.jbi.2015.09.010","article-title":"A study of active learning methods for named entity recognition in clinical text","volume":"58","author":"Chen","year":"2015","journal-title":"J. Biomed. Informat."},{"key":"10.1016\/j.ijmedinf.2024.105626_b0380","unstructured":"Mingyi Liu, Zhiying Tu, Zhongjie Wang, Xiaofei Xu, LTP: a new active learning strategy for bert-CRF based named entity recognition, CoRR, abs\/2001.02524, 2020."}],"container-title":["International Journal of Medical Informatics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1386505624002892?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1386505624002892?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,28]],"date-time":"2024-11-28T16:39:52Z","timestamp":1732811992000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1386505624002892"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,12]]},"references-count":66,"alternative-id":["S1386505624002892"],"URL":"https:\/\/doi.org\/10.1016\/j.ijmedinf.2024.105626","relation":{},"ISSN":["1386-5056"],"issn-type":[{"type":"print","value":"1386-5056"}],"subject":[],"published":{"date-parts":[[2024,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Development of a Natural Language Processing (NLP) model to automatically extract clinical data from electronic health records: results from an Italian comprehensive stroke center","name":"articletitle","label":"Article Title"},{"value":"International Journal of Medical Informatics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ijmedinf.2024.105626","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 The Author(s). Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"105626"}}