{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,5,1]],"date-time":"2025-05-01T20:06:35Z","timestamp":1746129995602,"version":"3.37.3"},"reference-count":135,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,3,11]],"date-time":"2024-03-11T00:00:00Z","timestamp":1710115200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100005416","name":"Research Council of Norway","doi-asserted-by":"publisher","award":["333913"],"id":[{"id":"10.13039\/501100005416","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.es","clinicalkey.com.au","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["International Journal of Medical Informatics"],"published-print":{"date-parts":[[2024,5]]},"DOI":"10.1016\/j.ijmedinf.2024.105413","type":"journal-article","created":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T08:05:13Z","timestamp":1710230713000},"page":"105413","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":15,"special_numbering":"C","title":["Can I trust my fake data \u2013 A comprehensive quality assessment framework for synthetic tabular data in healthcare"],"prefix":"10.1016","volume":"185","author":[{"given":"Vibeke Binz","family":"Vallevik","sequence":"first","affiliation":[]},{"given":"Aleksandar","family":"Babic","sequence":"additional","affiliation":[]},{"given":"Serena E.","family":"Marshall","sequence":"additional","affiliation":[]},{"given":"Severin","family":"Elvatun","sequence":"additional","affiliation":[]},{"given":"Helga M.B.","family":"Br\u00f8gger","sequence":"additional","affiliation":[]},{"given":"Sharmini","family":"Alagaratnam","sequence":"additional","affiliation":[]},{"given":"Bj\u00f8rn","family":"Edwin","sequence":"additional","affiliation":[]},{"given":"Narasimha R.","family":"Veeraragavan","sequence":"additional","affiliation":[]},{"given":"Anne Kjersti","family":"Befring","sequence":"additional","affiliation":[]},{"given":"Jan F.","family":"Nyg\u00e5rd","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ijmedinf.2024.105413_b0005","first-page":"493","article-title":"Synthetic data in machine learning for medicine and healthcare, nature","volume":"5","author":"Chen","year":"2021","journal-title":"Biomed. Eng."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0010","doi-asserted-by":"crossref","first-page":"359","DOI":"10.1163\/15718093-bja10084","article-title":"Transformation of medical Care through gene therapy and human rights to life and health-balancing risks and benefits","volume":"29","author":"Befring","year":"2022","journal-title":"Eur. J. Health Law"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0015","unstructured":"2021\/0106 (COD) Proposal for a Regulation of the European Parliament and of the council laying down harmonised rules on Artificial Intelligence (Artificial Intelligence Act) and amending certain union legislative acts, https:\/\/media.licdn.com\/dms\/document\/media\/D4E1FAQF1e5-c80Uqgw\/feedshare-document-pdf-analyzed\/0\/1705928091363?e=1708560000&v=beta&t=Il78kyGrOc8_IMmaEuxBdxzdaHdf_DCArg6K5z__qyM, 2023 (accessed 06.02.2024)."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0020","doi-asserted-by":"crossref","first-page":"186","DOI":"10.1038\/s41746-023-00927-3","article-title":"Harnessing the power of synthetic data in healthcare: innovation, application, and privacy","volume":"6","author":"Giuffr\u00e8","year":"2023","journal-title":"npj Digital Med."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0025","doi-asserted-by":"crossref","first-page":"031","DOI":"10.1055\/a-2023-9181","article-title":"Evaluating the impact of health Care data completeness for deep generative models","volume":"62","author":"Smith","year":"2023","journal-title":"Methods Inf. Med."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0030","doi-asserted-by":"crossref","first-page":"2733","DOI":"10.3390\/math10152733","article-title":"Survey on synthetic data generation, evaluation methods and GANs","volume":"10","author":"Figueira","year":"2022","journal-title":"Mathematics"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0035","article-title":"Comparison of tabular synthetic data generation techniques using propensity and cluster log metric","volume":"3","author":"Pathare","year":"2023","journal-title":"Int. J. Inf. Manage. Data Insights"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0040","doi-asserted-by":"crossref","DOI":"10.1016\/j.cosrev.2023.100546","article-title":"Synthetic data generation: state of the art in health care domain","volume":"48","author":"Murtaza","year":"2023","journal-title":"Computer Sci. Rev"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0045","doi-asserted-by":"crossref","unstructured":"A. Boyce, M. Dacey, T. Bashford, An Effective Approach for Extending Medical Data to the Cloud Through Synthetic Data Generation for Educational Environments, Digital Professionalism in Health and Care: Developing the Workforce, Building the Future: Proceedings of the EFMI Special Topic Conference 2022, IOS Press, 2022, pp. 147.","DOI":"10.3233\/SHTI220925"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0050","article-title":"Synthetic data enable experiments in atomistic machine learning, digital","author":"Gardner","year":"2023","journal-title":"Discovery"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0055","doi-asserted-by":"crossref","first-page":"819","DOI":"10.1111\/coin.12427","article-title":"Generating and evaluating cross-sectional synthetic electronic healthcare data: preserving data utility and patient privacy","volume":"37","author":"Wang","year":"2021","journal-title":"Comput. Intell."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0060","first-page":"49","article-title":"Bayesboost: identifying and handling bias using synthetic data generators, third international workshop on Learning with imbalanced domains: theory and applications","author":"Draghi","year":"2021","journal-title":"PMLR"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0065","series-title":"Ten simple rules to make your computing more environmentally sustainable","first-page":"e1009324","author":"Lannelongue","year":"2021"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0070","unstructured":"News article on EU AI Act: first regulation on artificial intelligence, https:\/\/www.europarl.europa.eu\/news\/en\/headlines\/society\/20230601STO93804\/eu-ai-act-first-regulation-on-artificial-intelligence, 2023 (accessed 26.09.2023)."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0075","unstructured":"Deployers of High-Risk AI Systems: What Will Be Your Obligations Under the EU AI Act?, https:\/\/competitionlawblog.kluwercompetitionlaw.com\/2023\/06\/02\/deployers-of-high-risk-ai-systems-what-will-be-your-obligations-under-the-eu-ai-act\/#:\u223c:text=The%20EP%20version%20of%20the%20EU%20AI%20Act%20adds%20up,is%20properly%20qualified%20and%20trained., 2023 (accessed 9.10.2023)."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0080","article-title":"Synthetic tabular data evaluation in the health domain covering resemblance, utility, and privacy dimensions","author":"Hernandez","year":"2023","journal-title":"Methods Inf. Med."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0085","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s12874-020-00977-1","article-title":"Generation and evaluation of synthetic patient data","volume":"20","author":"Goncalves","year":"2020","journal-title":"BMC Med. Res. Method."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0090","doi-asserted-by":"crossref","first-page":"388","DOI":"10.1001\/jama.2017.19163","article-title":"Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: the PRISMA-DTA statement","volume":"319","author":"McInnes","year":"2018","journal-title":"JAMA"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0095","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1016\/j.neucom.2022.04.053","article-title":"Synthetic data generation for tabular health records: a systematic review","volume":"493","author":"Hernandez","year":"2022","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0100","unstructured":"Beall's list of predatory journals https:\/\/beallslist.net\/, (accessed 28.09)."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0105","doi-asserted-by":"crossref","first-page":"12320","DOI":"10.3390\/app122312320","article-title":"Privacy and utility of private synthetic data for medical data analyses","volume":"12","author":"Appenzeller","year":"2022","journal-title":"Appl. Sci."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0110","doi-asserted-by":"crossref","first-page":"11147","DOI":"10.1109\/ACCESS.2022.3144765","article-title":"A multi-dimensional evaluation of synthetic data generators","volume":"10","author":"Dankar","year":"2022","journal-title":"IEEE Access"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0115","first-page":"290","article-title":"How faithful is your synthetic data? sample-level metrics for evaluating and auditing generative models","author":"Alaa","year":"2022","journal-title":"Int. Conf. Mach. Learn., PMLR"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0120","article-title":"A universal metric for robust evaluation of synthetic Tabular data, IEEE transactions on","author":"Chundawat","year":"2022","journal-title":"Artif. Intell."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0125","series-title":"A Novel evaluation metric for synthetic data generation, international conference on intelligent data engineering and automated Learning","first-page":"25","author":"Galloni","year":"2020"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0130","unstructured":"R. Pirsig, Lila: An inquiry into morals, Bantam2013."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0135","unstructured":"TEHDAS, The European Health Data Space Data Quality Framework, TEHDAS, 2022."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0140","series-title":"Proceedings of the Conference on Artificial Intelligence for Data Discovery and Reuse","first-page":"1","article-title":"Assessing privacy and quality of synthetic health data","author":"Yale","year":"2019"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0145","first-page":"34793","article-title":"Synthetic data, real errors: how (not) to publish and use synthetic data","author":"van Breugel","year":"2023","journal-title":"Proc. Mach. Learn. Res."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0150","doi-asserted-by":"crossref","DOI":"10.1016\/j.jbi.2021.103977","article-title":"Membership inference attacks against synthetic health data","volume":"125","author":"Zhang","year":"2022","journal-title":"J. Biomed. Inform."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0155","doi-asserted-by":"crossref","DOI":"10.1016\/j.isci.2022.105331","article-title":"Synthetic data as an enabler for machine learning applications in medicine","volume":"25","author":"Rajotte","year":"2022","journal-title":"Iscience"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0160","doi-asserted-by":"crossref","DOI":"10.1016\/j.heliyon.2024.e24164","article-title":"Identifying and handling data bias within primary healthcare data using synthetic data generators","author":"Draghi","year":"2024","journal-title":"Heliyon"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0165","unstructured":"Measuring greenhouse gas emissions in data centres: the environmental impact of cloud computing, https:\/\/www.climatiq.io\/blog\/measure-greenhouse-gas-emissions-carbon-data-centres-cloud-computing, 2022 (accessed 10.10.2023)."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0170","doi-asserted-by":"crossref","first-page":"7609","DOI":"10.1038\/s41467-022-35295-1","article-title":"A multifaceted benchmarking of synthetic electronic health record generation models","volume":"13","author":"Yan","year":"2022","journal-title":"Nat. Commun."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0175","doi-asserted-by":"crossref","first-page":"2158","DOI":"10.3390\/app11052158","article-title":"Fake it till you make it: guidelines for effective synthetic data generation","volume":"11","author":"Dankar","year":"2021","journal-title":"Appl. Sci."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0180","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1109\/MSEC.2020.2992821","article-title":"Seven ways to evaluate the utility of synthetic data","volume":"18","author":"El Emam","year":"2020","journal-title":"IEEE Secur. Priv."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0185","unstructured":"C. Arnold, M. Neunhoeffer, Really Useful Synthetic Data--A Framework to Evaluate the Quality of Differentially Private Synthetic Data, arXiv preprint arXiv:2004.07740, (2020)."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0190","unstructured":"J. Djolonga, M. Lu\u010di\u0107, M. Cuturi, O.F. Bachem, O. Bousquet, S. Gelly, Evaluating generative models using divergence frontiers, (2020)."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0195","unstructured":"] H. Alqahtani, M. Kavakli-Thorne, G. Kumar, F. SBSSTC, An analysis of evaluation metrics of GANs, International Conference on Information Technology and Applications (ICITA), 2019."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0200","doi-asserted-by":"crossref","unstructured":"S. McLachlan, K. Dube, T. Gallagher, B. Daley, J. Walonoski, The ATEN framework for creating the realistic synthetic electronic health record, (2018).","DOI":"10.5220\/0006677602200230"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0205","doi-asserted-by":"crossref","first-page":"2220","DOI":"10.3390\/electronics10182220","article-title":"Generative adversarial networks for anonymized healthcare of lung cancer patients","volume":"10","author":"Gonzalez-Abril","year":"2021","journal-title":"Electronics"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0210","doi-asserted-by":"crossref","first-page":"98","DOI":"10.1038\/s41746-023-00834-7","article-title":"Generating synthetic mixed-type longitudinal electronic health records for artificial intelligent applications","volume":"6","author":"Li","year":"2023","journal-title":"NPJ Digital Med."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0215","doi-asserted-by":"crossref","DOI":"10.1016\/j.jbi.2023.104404","article-title":"Generating synthetic personal health data using conditional generative adversarial networks combining with differential privacy","author":"Sun","year":"2023","journal-title":"J. Biomed. Inform."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0220","unstructured":"EC, The Medical Device Regulation: REGULATION (EU) 2017\/745 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 5 April 2017 on medical devices (MDR) Document 32017R0745, The Medical Device Regulation: REGULATION (EU) 2017\/745 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 5 April 2017 on medical devices (MDR) 2017."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0225","unstructured":"Food, D. Administration, Proposed regulatory framework for modifications to artificial intelligence\/machine learning (AI\/ML)-based software as a medical device (SaMD), 2019."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0230","unstructured":"B. van Breugel, M. van der Schaar, Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic Data, arXiv preprint arXiv:2304.03722, (2023)."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0235","unstructured":"A. Gupta, D. Bhatt, A. Pandey, Transitioning from Real to Synthetic data: Quantifying the bias in model. arXiv 2021, arXiv preprint arXiv:2105.04144."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0240","series-title":"International Conference on Science of Cyber Security","first-page":"167","article-title":"A survey on privacy preserving synthetic data generation and a discussion on a privacy-utility trade-off problem","author":"Ghatak","year":"2022"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0245","article-title":"Are gans created equal? a large-scale study","volume":"31","author":"Lucic","year":"2018","journal-title":"Adv. Neural Inf. Proces. Syst."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0250","doi-asserted-by":"crossref","first-page":"7075","DOI":"10.3390\/app12147075","article-title":"GAN-based approaches for generating structured data in the medical domain","volume":"12","author":"Abedi","year":"2022","journal-title":"Appl. Sci."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0255","unstructured":"M.H. page, Artificial Intelligence - Making an image with generative AI uses as much energy as charging your phone, MIT Technology ReviewMIT, 2023."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0260","unstructured":"N.C. Thompson, K. Greenewald, K. Lee, G.F. Manso, The computational limits of deep learning, arXiv preprint arXiv:2007.05558, (2020)."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0265","doi-asserted-by":"crossref","first-page":"1165","DOI":"10.3390\/e23091165","article-title":"The problem of fairness in synthetic healthcare data","volume":"23","author":"Bhanot","year":"2021","journal-title":"Entropy"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0270","article-title":"MedWGAN based synthetic dataset generation for uveitis pathology","volume":"18","author":"Sliman","year":"2023","journal-title":"Intell. Syst. Appl."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0275","doi-asserted-by":"crossref","first-page":"3277","DOI":"10.3390\/electronics11203277","article-title":"Statistical validation of synthetic data for lung cancer patients generated by using generative Adversarial networks","volume":"11","author":"Gonzalez-Abril","year":"2022","journal-title":"Electronics"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0280","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2022.106077","article-title":"Improving mortality prediction in acute pancreatitis by machine learning and data augmentation","volume":"150","author":"Hameed","year":"2022","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0285","article-title":"Synthetic patient data generation and evaluation in disease prediction using small and imbalanced datasets","author":"Rodriguez-Almeida","year":"2022","journal-title":"IEEE J. Biomed. Health Inform."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0290","doi-asserted-by":"crossref","first-page":"541","DOI":"10.1007\/s11227-022-04679-x","article-title":"GAAE: a novel genetic algorithm based on autoencoder with ensemble classifiers for imbalanced healthcare data","volume":"79","author":"Ram","year":"2023","journal-title":"J. Supercomput."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0295","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2021.104520","article-title":"A computational pipeline for data augmentation towards the improvement of disease classification and risk stratification models: a case study in two clinical domains","volume":"134","author":"Pezoulas","year":"2021","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0300","doi-asserted-by":"crossref","first-page":"135","DOI":"10.3390\/data8090135","article-title":"Enhancing small Tabular clinical trial dataset through hybrid data augmentation: combining SMOTE and WCGAN-GP","volume":"8","author":"Wang","year":"2023","journal-title":"Data"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0305","doi-asserted-by":"crossref","first-page":"2194","DOI":"10.1093\/bioinformatics\/btac095","article-title":"ACTIVA: realistic single-cell RNA-seq generation with automatic cell-type identification using introspective variational autoencoders","volume":"38","author":"Heydari","year":"2022","journal-title":"Bioinformatics"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0310","doi-asserted-by":"crossref","DOI":"10.1177\/14604582221077000","article-title":"A method for machine learning generation of realistic synthetic datasets for validating healthcare applications","volume":"28","author":"Arvanitis","year":"2022","journal-title":"Health Informatics J."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0315","first-page":"910","article-title":"Effect of incorporating metadata to the generation of synthetic time series in a healthcare context","author":"Isasa","year":"2023"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0320","doi-asserted-by":"crossref","first-page":"15031","DOI":"10.1038\/s41598-023-41544-0","article-title":"Improved patient mortality predictions in emergency departments with deep learning data-synthesis and ensemble models","volume":"13","author":"Son","year":"2023","journal-title":"Sci. Rep."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0325","first-page":"7","article-title":"Synthetic subject generation with coupled coherent time series data","volume":"18","author":"Larrea","year":"2022","journal-title":"Eng. Proc."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0330","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s12874-023-01869-w","article-title":"A method for generating synthetic longitudinal health data","volume":"23","author":"Mosquera","year":"2023","journal-title":"BMC Med. Res. Method."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0335","series-title":"International conference on intelligent data engineering and automated Learning","first-page":"104","article-title":"Benchmarking data augmentation techniques for Tabular data","author":"Machado","year":"2022"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0340","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1038\/s41746-023-00888-7","article-title":"EHR-safe: generating high-fidelity and privacy-preserving synthetic electronic health records","volume":"6","author":"Yoon","year":"2023","journal-title":"NPJ Digital Med."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0345","first-page":"93","article-title":"Data balancing using deep convolutional generative Adversarial networks (DCGAN) in patients with congenital syndrome by zika virus","author":"Assis","year":"2022","journal-title":"HEALTHINF"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0350","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2022.105916","article-title":"Application of data augmentation techniques towards metabolomics","volume":"148","author":"Moreno-Barea","year":"2022","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0355","article-title":"Data augmentation guided breast cancer diagnosis and prognosis using an integrated deep-generative framework based on breast tumor\u2019s morphological information","volume":"37","author":"Inan","year":"2023","journal-title":"Inf. Med. Unlocked"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0360","first-page":"32","article-title":"GLSTM: a novel approach for prediction of real & synthetic PID diabetes data using GANs and LSTM classification model, international journal of Experimental Research and ReviewOpen","volume":"30","author":"Jaiswal","year":"2023","journal-title":"Access"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0365","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1038\/s41746-023-00822-x","article-title":"Synthetic electronic health records generated with variational graph autoencoders","volume":"6","author":"Nikolentzos","year":"2023","journal-title":"npj Digital Med."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0370","doi-asserted-by":"crossref","first-page":"485","DOI":"10.1016\/j.ins.2021.12.018","article-title":"Differentially private synthetic medical data generation using convolutional GANs","volume":"586","author":"Torfi","year":"2022","journal-title":"Inf. Sci."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0375","doi-asserted-by":"crossref","first-page":"4119","DOI":"10.3390\/app13074119","article-title":"Evaluation of synthetic categorical data generation techniques for predicting Cardiovascular diseases and post-hoc interpretability of the risk factors","volume":"13","author":"Garc\u00eda-Vicente","year":"2023","journal-title":"Appl. Sci."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0380","article-title":"Generating synthetic clinical data that capture class imbalanced distributions with generative adversarial networks: example using antiretroviral therapy for HIV","volume":"144","author":"Nicholas","year":"2023","journal-title":"J. Biomed. Inform."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0385","doi-asserted-by":"crossref","first-page":"e35734","DOI":"10.2196\/35734","article-title":"Utility metrics for evaluating synthetic health data generation methods: validation study","volume":"10","author":"El Emam","year":"2022","journal-title":"JMIR Med. Inform."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0390","series-title":"Generating electronic health records with multiple data types and constraints","first-page":"1335","author":"Yan","year":"2020"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0395","series-title":"International conference on artificial intelligence and statistics","first-page":"10279","article-title":"SurvivalGAN: generating time-to-event data for survival analysis","author":"Norcliffe","year":"2023"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0400","doi-asserted-by":"crossref","first-page":"1427","DOI":"10.1007\/s13042-022-01707-3","article-title":"KGA: integrating KPCA and GAN for microbial data augmentation","volume":"14","author":"Wen","year":"2023","journal-title":"Int. J. Mach. Learn. Cybern."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0405","series-title":"2021 International Conference on Computer Communications and Networks (ICCCN)","first-page":"1","article-title":"Synthetic and private smart health care data generation using GANs","author":"Imtiaz","year":"2021"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0410","doi-asserted-by":"crossref","first-page":"13","DOI":"10.3390\/electronics12010013","article-title":"A hybrid gan-based dl approach for the automatic detection of shockable rhythms in aed for solving imbalanced data problems","volume":"12","author":"Dahal","year":"2022","journal-title":"Electronics"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0415","first-page":"41","article-title":"Enhanced dataset synthesis using conditional generative adversarial networks, biomedical","volume":"13","author":"Mert","year":"2023","journal-title":"Eng. Lett."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0420","doi-asserted-by":"crossref","first-page":"5305","DOI":"10.1038\/s41467-023-41093-0","article-title":"Synthesize high-dimensional longitudinal electronic health records via hierarchical autoregressive language model","volume":"14","author":"Theodorou","year":"2023","journal-title":"Nat. Commun."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0425","doi-asserted-by":"crossref","first-page":"1411","DOI":"10.1093\/jamia\/ocaa119","article-title":"Generating sequential electronic health records using dual adversarial autoencoder","volume":"27","author":"Lee","year":"2020","journal-title":"J. Am. Med. Inform. Assoc."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0430","article-title":"PATE-GAN: generating synthetic data with differential privacy guarantees","author":"Jordon","year":"2018","journal-title":"International Conference on Learning Representations"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0435","doi-asserted-by":"crossref","unstructured":"N.C. Abay, Y. Zhou, M. Kantarcioglu, B. Thuraisingham, L. Sweeney, Privacy preserving synthetic data release using deep learning, Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2018, Dublin, Ireland, September 10\u201314, 2018, Proceedings, Part I 18, Springer, 2019, pp. 510-526.","DOI":"10.1007\/978-3-030-10925-7_31"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0440","doi-asserted-by":"crossref","first-page":"e005122","DOI":"10.1161\/CIRCOUTCOMES.118.005122","article-title":"Privacy-preserving generative deep neural networks support clinical data sharing","volume":"12","author":"Beaulieu-Jones","year":"2019","journal-title":"Circ. Cardiovasc. Qual. Outcomes"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0445","doi-asserted-by":"crossref","first-page":"244","DOI":"10.1016\/j.neucom.2019.12.136","article-title":"Generation and evaluation of privacy preserving synthetic health data","volume":"416","author":"Yale","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0450","article-title":"Privacy preserving synthetic health data, ESANN 2019-european symposium on artificial neural networks","author":"Yale","year":"2019","journal-title":"Comput. Intell. Mach. Learn."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0455","doi-asserted-by":"crossref","first-page":"228","DOI":"10.1093\/jamia\/ocy142","article-title":"Synthesizing electronic health records using improved generative adversarial networks","volume":"26","author":"Baowaly","year":"2019","journal-title":"J. Am. Med. Inform. Assoc."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0460","doi-asserted-by":"crossref","unstructured":"L. Wang, W. Zhang, X. He, Continuous patient-centric sequence generation via sequentially coupled adversarial learning, Database Systems for Advanced Applications: 24th International Conference, DASFAA 2019, Chiang Mai, Thailand, April 22\u201325, 2019, Proceedings, Part II 24, Springer, 2019, pp. 36-52.","DOI":"10.1007\/978-3-030-18579-4_3"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0465","series-title":"2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","first-page":"906","article-title":"Grouped correlational generative adversarial networks for discrete electronic health records","author":"Yang","year":"2019"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0470","doi-asserted-by":"crossref","first-page":"596","DOI":"10.1093\/jamia\/ocaa262","article-title":"SynTEG: a framework for temporal structured electronic health data simulation","volume":"28","author":"Zhang","year":"2021","journal-title":"J. Am. Med. Inform. Assoc."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0475","doi-asserted-by":"crossref","first-page":"giab005","DOI":"10.1093\/gigascience\/giab005","article-title":"MB-GAN: microbiome simulation via generative adversarial network","volume":"10","author":"Rong","year":"2021","journal-title":"GigaScience"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0480","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2023.107024","article-title":"MS-ACGAN: a modified auxiliary classifier generative adversarial network for schizophrenia's samples augmentation based on microarray gene expression data","volume":"162","author":"Jahanyar","year":"2023","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0485","doi-asserted-by":"crossref","first-page":"1989","DOI":"10.3390\/electronics12091989","article-title":"Deep-Learning-driven techniques for real-time multimodal health and physical data synthesis","volume":"12","author":"Haleem","year":"2023","journal-title":"Electronics"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0490","article-title":"Predicting visit cost of obstructive sleep apnea using electronic Healthcare records with Transformer","author":"Chen","year":"2023","journal-title":"IEEE J. Transl. Eng. Health Med."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0495","doi-asserted-by":"crossref","first-page":"2378","DOI":"10.1109\/JBHI.2020.2980262","article-title":"Anonymization through data synthesis using generative adversarial networks (ads-gan)","volume":"24","author":"Yoon","year":"2020","journal-title":"IEEE J. Biomed. Health Inform."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0500","doi-asserted-by":"crossref","first-page":"13690","DOI":"10.3390\/su151813690","article-title":"Synthetic data as a proxy for real-world electronic health Records in the Patient Length of stay prediction","volume":"15","author":"Bietsch","year":"2023","journal-title":"Sustainability"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0505","doi-asserted-by":"crossref","unstructured":"B. Oprisanu, G. Ganev, E. De Cristofaro, On utility and privacy in synthetic genomic data, Proceedings of the 29th Network and Distributed System Security Symposium (NDSS 2022), 2022.","DOI":"10.14722\/ndss.2022.24092"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0510","doi-asserted-by":"crossref","first-page":"801","DOI":"10.1093\/jamia\/ocaa303","article-title":"Application of bayesian networks to generate synthetic health data","volume":"28","author":"Kaur","year":"2021","journal-title":"J. Am. Med. Inform. Assoc."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0515","unstructured":"A. Torfi, E.A. Fox, CorGAN: correlation-capturing convolutional generative adversarial networks for generating synthetic healthcare records, 33rd International FLAIRS Conference, AI in Healthcare Informatics, 2020."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0520","article-title":"GANerAid: realistic synthetic patient data for clinical trials","volume":"35","author":"Krenmayr","year":"2022","journal-title":"Inf. Med. Unlocked"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0525","doi-asserted-by":"crossref","DOI":"10.3389\/frai.2022.918813","article-title":"Generating high-fidelity privacy-conscious synthetic patient data for causal effect estimation with multiple treatments","volume":"5","author":"Shi","year":"2022","journal-title":"Frontiers in Artificial Intelligence"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0530","unstructured":"E. Bilici Ozyigit, T.N. Arvanitis, G. Despotou, Generation of realistic synthetic validation healthcare datasets using generative adversarial networks, The Importance of Health Informatics in Public Health during a Pandemic, IOS Press2020, pp. 322-325."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0535","series-title":"International Conference on Multimedia Modeling","first-page":"434","article-title":"Generation of synthetic Tabular Healthcare data using generative Adversarial networks","author":"Nik","year":"2023"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0540","doi-asserted-by":"crossref","first-page":"693","DOI":"10.1038\/s41597-022-01784-7","article-title":"The health gym: synthetic health-related datasets for the development of reinforcement learning algorithms","volume":"9","author":"Kuo","year":"2022","journal-title":"Sci. Data"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0545","series-title":"International Conference on Database Systems for Advanced Applications","first-page":"159","article-title":"CB-GAN: generate sensitive data with a convolutional bidirectional generative Adversarial networks","author":"Hu","year":"2023"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0550","doi-asserted-by":"crossref","DOI":"10.1109\/JBHI.2023.3236722","article-title":"Characterization of synthetic health data using rule-based artificial intelligence models","author":"Lenatti","year":"2023","journal-title":"IEEE J. Biomed. Health Inform."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0555","unstructured":"K. Chin-Cheong, T. Sutter, J.E. Vogt, Generation of heterogeneous synthetic electronic health records using GANs, workshop on machine learning for health (ML4H) at the 33rd conference on neural information processing systems (NeurIPS 2019), ETH Zurich, Institute for Machine Learning, 2019."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0560","doi-asserted-by":"crossref","first-page":"368","DOI":"10.1016\/j.neucom.2022.04.097","article-title":"Investigating synthetic medical time-series resemblance","volume":"494","author":"Bhanot","year":"2022","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0565","doi-asserted-by":"crossref","first-page":"577","DOI":"10.1038\/s42003-022-03473-y","article-title":"LSH-GAN enables in-silico generation of cells for small sample high dimensional scRNA-seq data","volume":"5","author":"Lall","year":"2022","journal-title":"Communications Biology"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0570","article-title":"Multi-label clinical time-series generation via conditional gan","author":"Lu","year":"2023","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0575","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1093\/bioinformatics\/btab608","article-title":"Multi-omics data integration by generative adversarial network","volume":"38","author":"Ahmed","year":"2022","journal-title":"Bioinformatics"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0580","series-title":"2019 IEEE Second International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)","first-page":"289","article-title":"Realistic data synthesis using enhanced generative adversarial networks","author":"Baowaly","year":"2019"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0585","doi-asserted-by":"crossref","unstructured":"S. Rashidian, F. Wang, R. Moffitt, V. Garcia, A. Dutt, W. Chang, V. Pandya, J. Hajagos, M. Saltz, J. Saltz, SMOOTH-GAN: towards sharp and smooth synthetic EHR data generation, Artificial Intelligence in Medicine: 18th International Conference on Artificial Intelligence in Medicine, AIME 2020, Minneapolis, MN, USA, August 25\u201328, 2020, Proceedings 18, Springer, 2020, pp. 37-48.","DOI":"10.1007\/978-3-030-59137-3_4"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0590","doi-asserted-by":"crossref","unstructured":"A. Yale, S. Dash, K. Bhanot, I. Guyon, J.S. Erickson, K.P. Bennett, Synthesizing quality open data assets from private health research studies, Business Information Systems Workshops: BIS 2020 International Workshops, Colorado Springs, CO, USA, June 8\u201310, 2020, Revised Selected Papers 23, Springer, 2020, pp. 324-335.","DOI":"10.1007\/978-3-030-61146-0_26"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0595","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpbup.2021.100020","article-title":"Propensity score synthetic augmentation matching using generative adversarial networks (PSSAM-GAN)","volume":"1","author":"Ghosh","year":"2021","journal-title":"Computer Methods Programs Biomedicine Update"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0600","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41746-020-00353-9","article-title":"Generating high-fidelity synthetic patient data for assessing machine learning healthcare software","volume":"3","author":"Tucker","year":"2020","journal-title":"NPJ Digital Med."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0605","doi-asserted-by":"crossref","first-page":"339","DOI":"10.1016\/j.neunet.2022.06.022","article-title":"Privacy preserving generative adversarial networks to model electronic health records","volume":"153","author":"Venugopal","year":"2022","journal-title":"Neural Netw."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0610","series-title":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","first-page":"1017","article-title":"Weighted itemsets error (WIE) approach for evaluating generated synthetic patient data","author":"Zare","year":"2018"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0615","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s12874-021-01237-6","article-title":"Deep generative models in DataSHIELD","volume":"21","author":"Lenz","year":"2021","journal-title":"BMC Med. Res. Method."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0620","doi-asserted-by":"crossref","first-page":"231","DOI":"10.1109\/TRPMS.2021.3104297","article-title":"Learning-based cancer treatment outcome prognosis using multimodal biomarkers","volume":"6","author":"Saad","year":"2021","journal-title":"IEEE Trans. Radiation Plasma Medical Sci."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0625","doi-asserted-by":"crossref","first-page":"ooac083","DOI":"10.1093\/jamiaopen\/ooac083","article-title":"Validating a membership disclosure metric for synthetic health data","volume":"5","author":"El Emam","year":"2022","journal-title":"JAMIA Open"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0630","doi-asserted-by":"crossref","unstructured":"S. Sun, F. Wang, S. Rashidian, T. Kurc, K. Abell-Hart, J. Hajagos, W. Zhu, M. Saltz, J. Saltz, Generating longitudinal synthetic ehr data with recurrent autoencoders and generative adversarial networks, Heterogeneous Data Management, Polystores, and Analytics for Healthcare: VLDB Workshops, Poly 2021 and DMAH 2021, Virtual Event, August 20, 2021, Revised Selected Papers 7, Springer, 2021, pp. 153-165.","DOI":"10.1007\/978-3-030-93663-1_12"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0635","series-title":"International Conference on Artificial Intelligence in Medicine","first-page":"178","article-title":"Dp-ctgan: differentially private medical data generation using ctgans","author":"Fang","year":"2022"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0640","doi-asserted-by":"crossref","unstructured":"M. Alauthman, A. Al-qerem, B. Sowan, A. Alsarhan, M. Eshtay, A. Aldweesh, N. Aslam, Enhancing Small Medical Dataset Classification Performance Using GAN, Informatics, MDPI, 2023, pp. 28.","DOI":"10.3390\/informatics10010028"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0645","doi-asserted-by":"crossref","first-page":"5481","DOI":"10.1038\/s41598-023-31542-7","article-title":"Explanatory predictive model for COVID-19 severity risk employing machine learning, shapley addition, and LIME","volume":"13","author":"Laatifi","year":"2023","journal-title":"Sci. Rep."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0650","doi-asserted-by":"crossref","first-page":"bbac537","DOI":"10.1093\/bib\/bbac537","article-title":"Incomplete time-series gene expression in integrative study for islet autoimmunity prediction","volume":"24","author":"Tanvir Ahmed","year":"2023","journal-title":"Brief. Bioinform."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0655","series-title":"International Conference on Artificial Intelligence and Statistics","first-page":"3898","article-title":"Longitudinal variational autoencoder","author":"Ramchandran","year":"2021"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0660","doi-asserted-by":"crossref","unstructured":"S. Dash, A. Yale, I. Guyon, K.P. Bennett, Medical time-series data generation using generative adversarial networks, Artificial Intelligence in Medicine: 18th International Conference on Artificial Intelligence in Medicine, AIME 2020, Minneapolis, MN, USA, August 25\u201328, 2020, Proceedings 18, Springer, 2020, pp. 382-391.","DOI":"10.1007\/978-3-030-59137-3_34"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0665","doi-asserted-by":"crossref","first-page":"1749","DOI":"10.3390\/biomedicines11061749","article-title":"Synthesizing electronic health Records for Predictive Models in low-middle-income countries (LMICs)","volume":"11","author":"Ghosheh","year":"2023","journal-title":"Biomedicines"},{"key":"10.1016\/j.ijmedinf.2024.105413_b0670","unstructured":"A.S. Luccioni, A. Hernandez-Garcia, Counting carbon: A survey of factors influencing the emissions of machine learning, arXiv preprint arXiv:2302.08476, (2023)."},{"key":"10.1016\/j.ijmedinf.2024.105413_b0675","unstructured":"ISO\/IEC AWI TR 42103 Information technology - Artificial intelligence - Overview of synthetic data in the context of AI systems https:\/\/www.iso.org\/standard\/86899.html, (accessed February 9th 2024)."}],"container-title":["International Journal of Medical Informatics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1386505624000765?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1386505624000765?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,8,7]],"date-time":"2024-08-07T22:48:37Z","timestamp":1723070917000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1386505624000765"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,5]]},"references-count":135,"alternative-id":["S1386505624000765"],"URL":"https:\/\/doi.org\/10.1016\/j.ijmedinf.2024.105413","relation":{},"ISSN":["1386-5056"],"issn-type":[{"type":"print","value":"1386-5056"}],"subject":[],"published":{"date-parts":[[2024,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Can I trust my fake data \u2013 A comprehensive quality assessment framework for synthetic tabular data in healthcare","name":"articletitle","label":"Article Title"},{"value":"International Journal of Medical Informatics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ijmedinf.2024.105413","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 The Author(s). Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"105413"}}