{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T04:41:47Z","timestamp":1740112907625,"version":"3.37.3"},"reference-count":76,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/100012021","name":"Iran University of Medical Sciences","doi-asserted-by":"publisher","award":["98-2-37-15615"],"id":[{"id":"10.13039\/100012021","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.es","clinicalkey.com.au","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["International Journal of Medical Informatics"],"published-print":{"date-parts":[[2023,12]]},"DOI":"10.1016\/j.ijmedinf.2023.105246","type":"journal-article","created":{"date-parts":[[2023,10,9]],"date-time":"2023-10-09T10:05:38Z","timestamp":1696845938000},"page":"105246","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":10,"special_numbering":"C","title":["Machine learning models to detect and predict patient safety events using electronic health records: A systematic review"],"prefix":"10.1016","volume":"180","author":[{"ORCID":"https:\/\/orcid.org\/0000-0001-5264-2839","authenticated-orcid":false,"given":"Ghasem","family":"Deimazar","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-6879-5415","authenticated-orcid":false,"given":"Abbas","family":"Sheikhtaheri","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ijmedinf.2023.105246_b0005","first-page":"1","article-title":"Actual Position of Patient Safety Culture in the Health System: A Review Study","volume":"4","author":"Taghavi Larijani","year":"2018","journal-title":"Sci. J. Nurs., Midwifery Paramed. Faculty"},{"key":"10.1016\/j.ijmedinf.2023.105246_b0010","doi-asserted-by":"crossref","DOI":"10.1016\/j.jbi.2022.104150","article-title":"Patient safety classifications, taxonomies and ontologies: A systematic review on development and evaluation methodologies","volume":"133","author":"Taheri Moghadam","year":"2022","journal-title":"J. Biomed. Inform."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0015","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1097\/PTS.0000000000000104","article-title":"Screening electronic health record\u2013related patient safety reports using machine learning","volume":"13","author":"Marella","year":"2017","journal-title":"J. Patient Saf."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0020","doi-asserted-by":"crossref","first-page":"226","DOI":"10.1136\/bmjqs-2015-005012","article-title":"Evaluation of the association between Hospital Survey on Patient Safety Culture (HSOPS) measures and catheter-associated infections: results of two national collaboratives","volume":"26","author":"Meddings","year":"2017","journal-title":"BMJ Qual. Saf."},{"year":"2007","series-title":"Medical error and patient safety: Human factors in medicine","author":"Peters","key":"10.1016\/j.ijmedinf.2023.105246_b0025"},{"year":"2017","series-title":"Patient safety: making health care safer","author":"Organization","key":"10.1016\/j.ijmedinf.2023.105246_b0030"},{"key":"10.1016\/j.ijmedinf.2023.105246_b0035","article-title":"Medical error\u2014the third leading cause of death in the US","volume":"353","author":"Makary","year":"2016","journal-title":"BMJ"},{"key":"10.1016\/j.ijmedinf.2023.105246_b0040","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1002\/jhrm.21237","article-title":"Electronic approaches to making sense of the text in the adverse event reporting system","volume":"36","author":"Benin","year":"2016","journal-title":"J. Healthc. Risk Manag."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0045","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1016\/j.jbi.2015.09.011","article-title":"Exploring methods for identifying related patient safety events using structured and unstructured data","volume":"58","author":"Fong","year":"2015","journal-title":"J. Biomed. Inform."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0050","doi-asserted-by":"crossref","first-page":"553","DOI":"10.1093\/jamia\/ocz002","article-title":"Systems engineering and human factors support of a system of novel EHR-integrated tools to prevent harm in the hospital","volume":"26","author":"Dalal","year":"2019","journal-title":"J. Am. Med. Inform. Assoc."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0055","doi-asserted-by":"crossref","first-page":"338","DOI":"10.3414\/ME15-01-0010","article-title":"An evaluation of patient safety event report categories using unsupervised topic modeling","volume":"54","author":"Fong","year":"2015","journal-title":"Methods Inf. Med."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0060","doi-asserted-by":"crossref","first-page":"120","DOI":"10.1016\/j.ijmedinf.2017.05.005","article-title":"Integrating natural language processing expertise with patient safety event review committees to improve the analysis of medication events","volume":"104","author":"Fong","year":"2017","journal-title":"Int. J. Med. Inf."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0065","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1093\/jamia\/ocz141","article-title":"Extracting medications and associated adverse drug events using a natural language processing system combining knowledge base and deep learning","volume":"27","author":"Chen","year":"2020","journal-title":"J. Am. Med. Inform. Assoc."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0070","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1093\/jamia\/ocz075","article-title":"An ensemble of neural models for nested adverse drug events and medication extraction with subwords","volume":"27","author":"Ju","year":"2020","journal-title":"J. Am. Med. Inform. Assoc."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0075","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1093\/jamia\/ocz063","article-title":"A study of deep learning approaches for medication and adverse drug event extraction from clinical text","volume":"27","author":"Wei","year":"2020","journal-title":"J. Am. Med. Inform. Assoc.: JAMIA"},{"key":"10.1016\/j.ijmedinf.2023.105246_b0080","first-page":"822","article-title":"Natural language processing and its implications for the future of medication safety: a narrative review of recent advances and challenges, Pharmacotherapy: The Journal of Human Pharmacology and Drug","volume":"38","author":"Wong","year":"2018","journal-title":"Therapy"},{"key":"10.1016\/j.ijmedinf.2023.105246_b0085","doi-asserted-by":"crossref","unstructured":"T. Islam, N. Hussain, S. Islam, A. Chakrabarty, Detecting Adverse Drug Reaction with Data Mining And Predicting its Severity With Machine Learning, in: 2018 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), 2018, 1-5.","DOI":"10.1109\/R10-HTC.2018.8629806"},{"key":"10.1016\/j.ijmedinf.2023.105246_b0090","doi-asserted-by":"crossref","first-page":"823","DOI":"10.1109\/TITB.2011.2165727","article-title":"Data mining to generate adverse drug events detection rules","volume":"15","author":"Chazard","year":"2011","journal-title":"IEEE Trans. Inf Technol. Biomed."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0095","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41746-021-00423-6","article-title":"The potential of artificial intelligence to improve patient safety: a scoping review","volume":"4","author":"Bates","year":"2021","journal-title":"npj Digital Med."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0100","doi-asserted-by":"crossref","DOI":"10.2196\/18599","article-title":"Role of artificial intelligence in patient safety outcomes: systematic literature review","volume":"8","author":"Choudhury","year":"2020","journal-title":"JMIR Med. Inform."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0105","article-title":"Analyzing adverse drug reaction using statistical and machine learning methods: A systematic review","volume":"101","author":"Kim","year":"2022","journal-title":"Medicine"},{"key":"10.1016\/j.ijmedinf.2023.105246_b0110","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/2046-4053-4-1","article-title":"Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement","volume":"4","author":"Moher","year":"2015","journal-title":"Syst. Rev."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0115","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s13643-021-01671-z","article-title":"How to properly use the PRISMA Statement","volume":"10","author":"Sarkis-Onofre","year":"2021","journal-title":"Syst. Rev."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0120","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s13643-020-01542-z","article-title":"PRISMA-S: an extension to the PRISMA statement for reporting literature searches in systematic reviews","volume":"10","author":"Rethlefsen","year":"2021","journal-title":"Syst. Rev."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0125","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pmed.1001744","article-title":"Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist","volume":"11","author":"Moons","year":"2014","journal-title":"PLoS Med."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0130","doi-asserted-by":"crossref","unstructured":"F. Cabitza, A. Campagner, The need to separate the wheat from the chaff in medical informatics: Introducing a comprehensive checklist for the (self)-assessment of medical AI studies, Elsevier, 2021, pp. 104510.","DOI":"10.1016\/j.ijmedinf.2021.104510"},{"key":"10.1016\/j.ijmedinf.2023.105246_b0135","doi-asserted-by":"crossref","DOI":"10.1016\/j.ijmedinf.2021.104641","article-title":"Machine learning predictive models for acute pancreatitis: a systematic review","volume":"157","author":"Zhou","year":"2022","journal-title":"Int. J. Med. Inf."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0140","doi-asserted-by":"crossref","first-page":"51","DOI":"10.7326\/M18-1376","article-title":"PROBAST: a tool to assess the risk of bias and applicability of prediction model studies","volume":"170","author":"Wolff","year":"2019","journal-title":"Ann. Intern. Med."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0145","doi-asserted-by":"crossref","DOI":"10.1016\/j.jbi.2021.103968","article-title":"An attentive joint model with transformer-based weighted graph convolutional network for extracting adverse drug event relation","volume":"125","author":"El-Allaly","year":"2022","journal-title":"J. Biomed. Inform."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0150","first-page":"1","article-title":"Combining Machine Learning with a Rule-Based Algorithm to Detect and Identify Related Entities of Documented Adverse Drug Reactions on Hospital Discharge Summaries","author":"Tan","year":"2022","journal-title":"Drug Saf."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0155","doi-asserted-by":"crossref","DOI":"10.1016\/j.ejon.2021.102066","article-title":"Development of a prediction models for chemotherapy-induced adverse drug reactions: A retrospective observational study using electronic health records","volume":"56","author":"On","year":"2022","journal-title":"Eur. J. Oncol. Nurs."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0160","doi-asserted-by":"crossref","unstructured":"Y.X. Zhao, H. Yuan, Y. Wu, Prediction of Adverse Drug Reaction using Machine Learning and Deep Learning Based on an Imbalanced Electronic Medical Records Dataset, in: 2021 5th International Conference on Medical and Health Informatics, 2021, pp. 17\u201321.","DOI":"10.1145\/3472813.3472817"},{"key":"10.1016\/j.ijmedinf.2023.105246_b0165","doi-asserted-by":"crossref","DOI":"10.1016\/j.ijmedinf.2021.104611","article-title":"Automation of penicillin adverse drug reaction categorisation and risk stratification with machine learning natural language processing","volume":"156","author":"Inglis","year":"2021","journal-title":"Int. J. Med. Inf."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0170","first-page":"1","article-title":"Analysis and Prediction of Adverse Reaction of Drugs with Machine Learning Models for Tracking the Severity","author":"Ponraj","year":"2021","journal-title":"Arab. J. Sci. Eng."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0175","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0254358","article-title":"Predicting self-intercepted medication ordering errors using machine learning","volume":"16","author":"King","year":"2021","journal-title":"PLoS One"},{"key":"10.1016\/j.ijmedinf.2023.105246_b0180","doi-asserted-by":"crossref","unstructured":"Z. Yu, H. Ji, J. Xiao, P. Wei, L. Song, T. Tang, X. Hao, J. Zhang, Q. Qi, Y. Zhou, Predicting adverse drug events in Chinese pediatric inpatients with the associated risk factors: a machine learning study, Front. Pharmacol. (2021) 516.","DOI":"10.3389\/fphar.2021.659099"},{"key":"10.1016\/j.ijmedinf.2023.105246_b0185","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0260315","article-title":"Detection of overdose and underdose prescriptions\u2014An unsupervised machine learning approach","volume":"16","author":"Nagata","year":"2021","journal-title":"PLoS One"},{"key":"10.1016\/j.ijmedinf.2023.105246_b0190","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1016\/j.jhin.2021.02.025","article-title":"A machine learning approach to predict healthcare-associated infections at intensive care unit admission: findings from the SPIN-UTI project","volume":"112","author":"Barchitta","year":"2021","journal-title":"J. Hosp. Infect."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0195","unstructured":"D. Mahendran, B.T. McInnes, Extracting adverse drug events from clinical notes, in: AMIA Summits on Translational Science Proceedings, 2021 (2021) 420."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0200","doi-asserted-by":"crossref","DOI":"10.1016\/j.jbi.2020.103382","article-title":"Multiple features for clinical relation extraction: a machine learning approach","volume":"103","author":"Alimova","year":"2020","journal-title":"J. Biomed. Inform."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0205","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1093\/jamia\/ocz100","article-title":"Ensemble method\u2013based extraction of medication and related information from clinical texts","volume":"27","author":"Kim","year":"2020","journal-title":"J. Am. Med. Inform. Assoc."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0210","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1093\/jamia\/ocz101","article-title":"Adverse drug events and medication relation extraction in electronic health records with ensemble deep learning methods","volume":"27","author":"Christopoulou","year":"2020","journal-title":"J. Am. Med. Inform. Assoc."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0215","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1093\/jamia\/ocz144","article-title":"Identifying relations of medications with adverse drug events using recurrent convolutional neural networks and gradient boosting","volume":"27","author":"Yang","year":"2020","journal-title":"J. Am. Med. Inform. Assoc."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0220","first-page":"48","article-title":"Automatic Classification of Discharge Letters to Detect Adverse Drug Reactions","volume":"270","author":"Foufi","year":"2020","journal-title":"Stud. Health Technol. Inform."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0225","doi-asserted-by":"crossref","unstructured":"E. Florez, F. Precioso, R. Pighetti, M. Riveill, Deep Learning for Identification of Adverse Drug Reaction Relations, in: Proceedings of the 2019 International Symposium on Signal Processing Systems, 2019, pp. 149-153.","DOI":"10.1145\/3364908.3365295"},{"key":"10.1016\/j.ijmedinf.2023.105246_b0230","unstructured":"Q. Wei, Z. Ji, Y. Si, J. Du, J. Wang, F. Tiryaki, S. Wu, C. Tao, K. Roberts, H. Xu, Relation extraction from clinical narratives using pre-trained language models, in: AMIA annual symposium proceedings, American Medical Informatics Association, 2019, pp. 1236."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0235","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41746-019-0200-3","article-title":"Preventing inpatient falls with injuries using integrative machine learning prediction: a cohort study","volume":"2","author":"Wang","year":"2019","journal-title":"npj Digital Med."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0240","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0226272","article-title":"Predicting the occurrence of surgical site infections using text mining and machine learning","volume":"14","author":"da Silva","year":"2019","journal-title":"PLoS One"},{"key":"10.1016\/j.ijmedinf.2023.105246_b0245","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1007\/s40264-018-0763-y","article-title":"Detecting adverse drug events with rapidly trained classification models","volume":"42","author":"Chapman","year":"2019","journal-title":"Drug Saf."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0250","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1007\/s40264-018-0764-x","article-title":"Adverse drug events detection in clinical notes by jointly modeling entities and relations using neural networks","volume":"42","author":"Dandala","year":"2019","journal-title":"Drug Saf."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0255","doi-asserted-by":"crossref","first-page":"113","DOI":"10.1007\/s40264-018-0765-9","article-title":"Adverse drug event detection from electronic health records using hierarchical recurrent neural networks with dual-level embedding","volume":"42","author":"Wunnava","year":"2019","journal-title":"Drug Saf."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0260","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1007\/s40264-018-0761-0","article-title":"MADEx: a system for detecting medications, adverse drug events, and their relations from clinical notes","volume":"42","author":"Yang","year":"2019","journal-title":"Drug Saf."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0265","doi-asserted-by":"crossref","DOI":"10.2196\/publichealth.9361","article-title":"Clinical relation extraction toward drug safety surveillance using electronic health record narratives: classical learning versus deep learning","volume":"4","author":"Munkhdalai","year":"2018","journal-title":"JMIR Public Health Surveill."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0270","doi-asserted-by":"crossref","first-page":"555","DOI":"10.1093\/ajcp\/aqy085","article-title":"Using machine learning-based multianalyte delta checks to detect wrong blood in tube errors","volume":"150","author":"Rosenbaum","year":"2018","journal-title":"Am. J. Clin. Pathol."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0275","doi-asserted-by":"crossref","DOI":"10.2196\/12159","article-title":"Extraction of information related to adverse drug events from electronic health record notes: design of an end-to-end model based on deep learning","volume":"6","author":"Li","year":"2018","journal-title":"JMIR Med. Inform."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0280","doi-asserted-by":"crossref","first-page":"2148","DOI":"10.1109\/JBHI.2018.2879744","article-title":"Exploring joint ab-lstm with embedded lemmas for adverse drug reaction discovery","volume":"23","author":"Santiso","year":"2018","journal-title":"IEEE J. Biomed. Health Inform."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0285","unstructured":"B. Dandala, V. Joopudi, M. Devarakonda, IBM Research System at MADE 2018: detecting adverse drug events from electronic health records, in: International Workshop on Medication and Adverse Drug Event Detection, 2018, pp. 39-47."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0290","unstructured":"B. Dandala, V. Joopudi, M. Devarakonda, IBM Research System at MADE 2018: detecting adverse drug events from electronic health records, in: International Workshop on Medication and Adverse Drug Event Detection, 2018, pp. 39-47."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0295","first-page":"43","article-title":"Identifying hospital patient safety problems in real-time with electronic medical record data using an ensemble machine learning model","volume":"1","author":"Li","year":"2018","journal-title":"Int. J. Clin. Med. Inform."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0300","doi-asserted-by":"crossref","unstructured":"I. Karlsson, H. Bostr\u00f6m, Predicting adverse drug events using heterogeneous event sequences, in: 2016 IEEE International Conference on Healthcare Informatics (ICHI), IEEE, 2016, pp. 356-362.","DOI":"10.1109\/ICHI.2016.64"},{"key":"10.1016\/j.ijmedinf.2023.105246_b0305","doi-asserted-by":"crossref","unstructured":"A.N. Jagannatha, H. Yu, Bidirectional RNN for medical event detection in electronic health records, in: Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting, NIH Public Access, 2016, pp. 473.","DOI":"10.18653\/v1\/N16-1056"},{"key":"10.1016\/j.ijmedinf.2023.105246_b0310","doi-asserted-by":"crossref","first-page":"S1","DOI":"10.1186\/1472-6947-15-S4-S1","article-title":"Predictive modeling of structured electronic health records for adverse drug event detection","volume":"15","author":"Zhao","year":"2015","journal-title":"BMC Med. Inf. Decis. Making"},{"key":"10.1016\/j.ijmedinf.2023.105246_b0315","doi-asserted-by":"crossref","unstructured":"J. Zhao, A. Henriksson, L. Asker, H. Bostr\u00f6m, Detecting adverse drug events with multiple representations of clinical measurements, in: 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), IEEE, 2014, pp. 536-543.","DOI":"10.1109\/BIBM.2014.6999216"},{"key":"10.1016\/j.ijmedinf.2023.105246_b0320","doi-asserted-by":"crossref","unstructured":"I. Karlsson, H. Bostr\u00f6m, Handling sparsity with random forests when predicting adverse drug events from electronic health records, in: 2014 IEEE international conference on healthcare informatics, IEEE, 2014, pp. 17-22.","DOI":"10.1109\/ICHI.2014.10"},{"key":"10.1016\/j.ijmedinf.2023.105246_b0325","doi-asserted-by":"crossref","unstructured":"I. Karlsson, J. Zhao, L. Asker, H. Bostr\u00f6m, Predicting adverse drug events by analyzing electronic patient records, Artificial Intelligence in Medicine: 14th Conference on Artificial Intelligence in Medicine, AIME 2013, Murcia, Spain, May 29\u2013June 1, 2013. Proceedings 14, Springer, 2013, pp. 125-129.","DOI":"10.1007\/978-3-642-38326-7_19"},{"key":"10.1016\/j.ijmedinf.2023.105246_b0330","first-page":"739","article-title":"Extraction of adverse drug effects from clinical records","author":"Aramaki","year":"2010","journal-title":"Stud. Health Technol. Inform."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0335","doi-asserted-by":"crossref","first-page":"164","DOI":"10.1093\/bib\/bbz140","article-title":"A survey on adverse drug reaction studies: data, tasks and machine learning methods","volume":"22","author":"Nguyen","year":"2021","journal-title":"Brief. Bioinform."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0340","doi-asserted-by":"crossref","first-page":"764","DOI":"10.1016\/j.amjsurg.2018.07.041","article-title":"Enhanced neonatal surgical site infection prediction model utilizing statistically and clinically significant variables in combination with a machine learning algorithm","volume":"216","author":"Bartz-Kurycki","year":"2018","journal-title":"Am. J. Surg."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0345","doi-asserted-by":"crossref","unstructured":"R.R. Fletcher, O. Olubeko, H. Sonthalia, F. Kateera, T. Nkurunziza, J.L. Ashby, R. Riviello, B. Hedt-Gauthier, Application of machine learning to prediction of surgical site infection, in: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2019, pp. 2234-2237.","DOI":"10.1109\/EMBC.2019.8857942"},{"key":"10.1016\/j.ijmedinf.2023.105246_b0350","article-title":"Machine-learning models for predicting surgical site infections using patient pre-operative risk and surgical procedure factors","author":"Mamlook","year":"2022","journal-title":"Am. J. Infect. Control"},{"key":"10.1016\/j.ijmedinf.2023.105246_b0355","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/1471-2288-14-40","article-title":"External validation of multivariable prediction models: a systematic review of methodological conduct and reporting","volume":"14","author":"Collins","year":"2014","journal-title":"BMC Med. Res. Method."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0360","first-page":"182","article-title":"Unveiling Originated Stages of Medication Errors: An Automated Pipeline Approach","author":"Zhou","year":"2018","journal-title":"Nursing Informatics"},{"key":"10.1016\/j.ijmedinf.2023.105246_b0365","first-page":"153","article-title":"Patient safety classifications for health information technology (HIT) and medical devices: A review on available systems","volume":"293","author":"Taheri Moghadam","year":"2022","journal-title":"Stud. Health Technol. Inform."},{"key":"10.1016\/j.ijmedinf.2023.105246_bib380","doi-asserted-by":"crossref","DOI":"10.1016\/j.jbi.2023.104549","article-title":"Patient safety classifications, taxonomies and ontologies, Part 2: A systematic review on content coverage","author":"Taheri Moghadam","year":"2023","journal-title":"J. Biomed. Inform."},{"key":"10.1016\/j.ijmedinf.2023.105246_b0370","doi-asserted-by":"crossref","unstructured":"A. Shinozaki, Electronic medical records and machine learning in approaches to drug development, Artificial Intelligence in Oncology Drug Discovery and Development, IntechOpen; 2020.","DOI":"10.5772\/intechopen.92613"},{"key":"10.1016\/j.ijmedinf.2023.105246_b0375","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1093\/jamia\/ocz166","article-title":"2018 n2c2 shared task on adverse drug events and medication extraction in electronic health records","volume":"27","author":"Henry","year":"2020","journal-title":"J. Am. Med. Inform. Assoc."}],"container-title":["International Journal of Medical Informatics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1386505623002642?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1386505623002642?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,12,21]],"date-time":"2023-12-21T23:37:49Z","timestamp":1703201869000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1386505623002642"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,12]]},"references-count":76,"alternative-id":["S1386505623002642"],"URL":"https:\/\/doi.org\/10.1016\/j.ijmedinf.2023.105246","relation":{},"ISSN":["1386-5056"],"issn-type":[{"type":"print","value":"1386-5056"}],"subject":[],"published":{"date-parts":[[2023,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Machine learning models to detect and predict patient safety events using electronic health records: A systematic review","name":"articletitle","label":"Article Title"},{"value":"International Journal of Medical Informatics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ijmedinf.2023.105246","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"105246"}}