{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T16:19:05Z","timestamp":1726762745214},"reference-count":31,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/100000002","name":"NIH","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100000002","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000049","name":"National Institute on Aging","doi-asserted-by":"publisher","award":["R01 AG34676","R01AG068007","R21 AG58738"],"id":[{"id":"10.13039\/100000049","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.es","clinicalkey.com.au","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["International Journal of Medical Informatics"],"published-print":{"date-parts":[[2022,6]]},"DOI":"10.1016\/j.ijmedinf.2022.104736","type":"journal-article","created":{"date-parts":[[2022,3,8]],"date-time":"2022-03-08T01:10:59Z","timestamp":1646701859000},"page":"104736","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":18,"special_numbering":"C","title":["A hybrid model to identify fall occurrence from electronic health records"],"prefix":"10.1016","volume":"162","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-1691-5179","authenticated-orcid":false,"given":"Sunyang","family":"Fu","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4397-728X","authenticated-orcid":false,"given":"Bjoerg","family":"Thorsteinsdottir","sequence":"additional","affiliation":[]},{"given":"Xin","family":"Zhang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2923-2721","authenticated-orcid":false,"given":"Guilherme S.","family":"Lopes","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0838-1026","authenticated-orcid":false,"given":"Sandeep R.","family":"Pagali","sequence":"additional","affiliation":[]},{"given":"Nathan K.","family":"LeBrasseur","sequence":"additional","affiliation":[]},{"given":"Andrew","family":"Wen","sequence":"additional","affiliation":[]},{"given":"Hongfang","family":"Liu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1832-7664","authenticated-orcid":false,"given":"Walter A.","family":"Rocca","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4944-7789","authenticated-orcid":false,"given":"Janet E.","family":"Olson","sequence":"additional","affiliation":[]},{"given":"Jennifer St.","family":"Sauver","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8256-2602","authenticated-orcid":false,"given":"Sunghwan","family":"Sohn","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"3","key":"10.1016\/j.ijmedinf.2022.104736_b0005","doi-asserted-by":"crossref","first-page":"367","DOI":"10.1093\/geront\/46.3.367","article-title":"Defining a fall and reasons for falling: comparisons among the views of seniors, health care providers, and the research literature","volume":"46","author":"Zecevic","year":"2006","journal-title":"The Gerontologist."},{"issue":"9147","key":"10.1016\/j.ijmedinf.2022.104736_b0010","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1016\/S0140-6736(98)06119-4","article-title":"Prevention of falls in the elderly trial (PROFET): a randomised controlled trial","volume":"353","author":"Close","year":"1999","journal-title":"Lancet"},{"issue":"5","key":"10.1016\/j.ijmedinf.2022.104736_b0015","doi-asserted-by":"crossref","first-page":"362","DOI":"10.1093\/ageing\/25.5.362","article-title":"Falls presenting to the accident and emergency department: types of presentation and risk factor profile","volume":"25","author":"Davies","year":"1996","journal-title":"Age Ageing"},{"issue":"8","key":"10.1016\/j.ijmedinf.2022.104736_b0020","doi-asserted-by":"crossref","first-page":"1050","DOI":"10.1053\/apmr.2001.24893","article-title":"Gait variability and fall risk in community-living older adults: a 1-year prospective study","volume":"82","author":"Hausdorff","year":"2001","journal-title":"Arch. Phys. Med. Rehabil."},{"key":"10.1016\/j.ijmedinf.2022.104736_b0025","series-title":"A Global Report on Falls Prevention Epidemiology of Falls","author":"Yoshida-Intern","year":"2007"},{"issue":"suppl 4","key":"10.1016\/j.ijmedinf.2022.104736_b0030","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1093\/ageing\/30.suppl_4.3","article-title":"Epidemiology of falls","volume":"30","author":"Masud","year":"2001","journal-title":"Age Ageing"},{"key":"10.1016\/j.ijmedinf.2022.104736_b0035","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1016\/j.jsr.2016.05.001","article-title":"The direct costs of fatal and non-fatal falls among older adults\u2014United States","volume":"58","author":"Burns","year":"2016","journal-title":"J. Saf. Res."},{"issue":"Suppl 2(suppl_2)","key":"10.1016\/j.ijmedinf.2022.104736_b0040","doi-asserted-by":"crossref","first-page":"ii60","DOI":"10.1093\/ageing\/afl089","article-title":"Implementation of multifactorial interventions for fall and fracture prevention","volume":"35","author":"Campbell","year":"2006","journal-title":"Age Ageing."},{"issue":"6","key":"10.1016\/j.ijmedinf.2022.104736_b0045","doi-asserted-by":"crossref","first-page":"1168","DOI":"10.2105\/AJPH.2014.302440","article-title":"Improving identification of fall-related injuries in ambulatory care using statistical text mining","volume":"105","author":"Luther","year":"2015","journal-title":"Am. J. Public Health"},{"issue":"4","key":"10.1016\/j.ijmedinf.2022.104736_b0050","doi-asserted-by":"crossref","first-page":"253","DOI":"10.1007\/s10799-009-0061-6","article-title":"Identifying fall-related injuries: Text mining the electronic medical record","volume":"10","author":"Tremblay","year":"2009","journal-title":"Inf. Technol. Manage."},{"issue":"2","key":"10.1016\/j.ijmedinf.2022.104736_b0055","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/1459352.1459355","article-title":"Word sense disambiguation: A survey","volume":"41","author":"Navigli","year":"2009","journal-title":"ACM computing surveys (CSUR)."},{"key":"10.1016\/j.ijmedinf.2022.104736_b0060","series-title":"SIGIR \u201994","first-page":"142","article-title":"Word sense disambiguation and information retrieval","author":"Sanderson","year":"1994"},{"key":"10.1016\/j.ijmedinf.2022.104736_b0065","unstructured":"Association AN. Nursing-sensitive quality indicators for acute care settings and ANA\u2019s safety & quality initiative, Nursing Facts from the ANA, 1999."},{"key":"10.1016\/j.ijmedinf.2022.104736_b0070","unstructured":"V.J. Zhu, T.D. Walker, R.W. Warren, P.B. Jenny, S. Meystre, L.A. Lenert (Eds.), Identifying falls risk screenings not documented with administrative codes using natural language processing, in: AMIA Annual Symposium Proceedings; 2017: American Medical Informatics Association."},{"issue":"1","key":"10.1016\/j.ijmedinf.2022.104736_b0075","doi-asserted-by":"crossref","DOI":"10.1186\/s12911-019-0843-7","article-title":"Development and validation of a pragmatic natural language processing approach to identifying falls in older adults in the emergency department","volume":"19","author":"Patterson","year":"2019","journal-title":"BMC Med. Inform. Decis. Mak."},{"issue":"5","key":"10.1016\/j.ijmedinf.2022.104736_b0080","doi-asserted-by":"crossref","first-page":"906","DOI":"10.1136\/amiajnl-2012-001334","article-title":"Finding falls in ambulatory care clinical documents using statistical text mining","volume":"20","author":"McCart","year":"2013","journal-title":"J. Am. Med. Inform. Assoc."},{"issue":"448","key":"10.1016\/j.ijmedinf.2022.104736_b0085","doi-asserted-by":"crossref","first-page":"448","DOI":"10.1186\/1472-6963-12-448","article-title":"Detecting inpatient falls by using natural language processing of electronic medical records","volume":"12","author":"Toyabe","year":"2012","journal-title":"BMC Health Serv. Res."},{"key":"10.1016\/j.ijmedinf.2022.104736_b0090","doi-asserted-by":"crossref","unstructured":"H.D.P. dos Santos, A.P. Silva, M.C.O. Maciel, H.M.V. Burin, J.S. Urbanetto, R. Vieira (Eds.), Fall detection in ehr using word embeddings and deep learning, in: 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE), IEEE, 2019.","DOI":"10.1109\/BIBE.2019.00054"},{"key":"10.1016\/j.ijmedinf.2022.104736_b0095","unstructured":"J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep bidirectional transformers for language understanding, arXiv preprint arXiv:181004805, 2018."},{"issue":"3\u20134","key":"10.1016\/j.ijmedinf.2022.104736_b0100","doi-asserted-by":"crossref","first-page":"327","DOI":"10.1017\/S1351324904003523","article-title":"UIMA: an architectural approach to unstructured information processing in the corporate research environment","volume":"10","author":"Ferrucci","year":"2004","journal-title":"Natl. Lang. Eng."},{"key":"10.1016\/j.ijmedinf.2022.104736_b0105","first-page":"1","article-title":"UIMA: an architectural approach to unstructured information processing in the corporate research environment","author":"Ferrucci","year":"2004","journal-title":"Nat. Lang. Eng."},{"issue":"9","key":"10.1016\/j.ijmedinf.2022.104736_b0110","doi-asserted-by":"crossref","first-page":"952","DOI":"10.1016\/j.mayocp.2013.06.006","article-title":"The Mayo Clinic Biobank: a building block for individualized medicine","volume":"88","author":"Olson","year":"2013","journal-title":"Mayo Clin. Proc."},{"issue":"11","key":"10.1016\/j.ijmedinf.2022.104736_b0115","doi-asserted-by":"crossref","DOI":"10.1136\/bmjopen-2019-032707","article-title":"Characteristics and utilisation of the Mayo Clinic Biobank, a clinic-based prospective collection in the USA: cohort profile","volume":"9","author":"Olson","year":"2019","journal-title":"BMJ Open."},{"issue":"1","key":"10.1016\/j.ijmedinf.2022.104736_b0120","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s12911-020-1072-9","article-title":"Assessment of the impact of EHR heterogeneity for clinical research through a case study of silent brain infarction","volume":"20","author":"Fu","year":"2020","journal-title":"BMC Med. Inform. Decis Mak."},{"issue":"1\u20132","key":"10.1016\/j.ijmedinf.2022.104736_b0125","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1002\/nav.3800020109","article-title":"The Hungarian method for the assignment problem","volume":"2","author":"Kuhn","year":"1955","journal-title":"Naval Res. Logist. Quart."},{"key":"10.1016\/j.ijmedinf.2022.104736_b0130","doi-asserted-by":"crossref","DOI":"10.1016\/j.jbi.2020.103526","article-title":"Clinical concept extraction: a methodology review","volume":"109","author":"Fu","year":"2020","journal-title":"J. Biomed. Inform."},{"key":"10.1016\/j.ijmedinf.2022.104736_b0135","doi-asserted-by":"crossref","unstructured":"S. Wu, K. Roberts, S. Datta, J. Du, Z. Ji, Y. Si, et al. Deep learning in clinical natural language processing: a methodical review, 2019.","DOI":"10.1093\/jamia\/ocz200"},{"key":"10.1016\/j.ijmedinf.2022.104736_b0140","doi-asserted-by":"crossref","unstructured":"J. Pennington, R. Socher, C.D. Manning (Eds.), Glove: Global vectors for word representation, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014.","DOI":"10.3115\/v1\/D14-1162"},{"issue":"5","key":"10.1016\/j.ijmedinf.2022.104736_b0145","doi-asserted-by":"crossref","first-page":"544","DOI":"10.1136\/amiajnl-2011-000464","article-title":"Natural language processing: an introduction","volume":"18","author":"Nadkarni","year":"2011","journal-title":"J. Am. Med. Inform. Assoc."},{"key":"10.1016\/j.ijmedinf.2022.104736_b0150","unstructured":"S. Blackburn, The Oxford Dictionary of Philosophy: OUP Oxford, 2005."},{"key":"10.1016\/j.ijmedinf.2022.104736_b0155","doi-asserted-by":"crossref","unstructured":"E. Alsentzer, J.R. Murphy, W. Boag, W.-H. Weng, D. Jin, T. Naumann, et al., Publicly available clinical BERT embeddings. arXiv preprint arXiv:190403323, 2019.","DOI":"10.18653\/v1\/W19-1909"}],"container-title":["International Journal of Medical Informatics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1386505622000508?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1386505622000508?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,20]],"date-time":"2024-05-20T16:22:32Z","timestamp":1716222152000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1386505622000508"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,6]]},"references-count":31,"alternative-id":["S1386505622000508"],"URL":"https:\/\/doi.org\/10.1016\/j.ijmedinf.2022.104736","relation":{},"ISSN":["1386-5056"],"issn-type":[{"value":"1386-5056","type":"print"}],"subject":[],"published":{"date-parts":[[2022,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A hybrid model to identify fall occurrence from electronic health records","name":"articletitle","label":"Article Title"},{"value":"International Journal of Medical Informatics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ijmedinf.2022.104736","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"104736"}}