{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,28]],"date-time":"2024-08-28T21:06:29Z","timestamp":1724879189856},"reference-count":74,"publisher":"Elsevier BV","issue":"1","license":[{"start":{"date-parts":[[2018,2,1]],"date-time":"2018-02-01T00:00:00Z","timestamp":1517443200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["International Journal of Information Management"],"published-print":{"date-parts":[[2018,2]]},"DOI":"10.1016\/j.ijinfomgt.2017.08.002","type":"journal-article","created":{"date-parts":[[2017,9,21]],"date-time":"2017-09-21T10:46:10Z","timestamp":1505990770000},"page":"1-6","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":97,"title":["Characterizing diabetes, diet, exercise, and obesity comments on Twitter"],"prefix":"10.1016","volume":"38","author":[{"given":"Amir","family":"Karami","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6229-0926","authenticated-orcid":false,"given":"Alicia A.","family":"Dahl","sequence":"additional","affiliation":[]},{"given":"Gabrielle","family":"Turner-McGrievy","sequence":"additional","affiliation":[]},{"given":"Hadi","family":"Kharrazi","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5508-3139","authenticated-orcid":false,"suffix":"Jr.","given":"George","family":"Shaw","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0005","series-title":"Proceedings of the 35th international ACM SIGIR conference on research and development in information retrieval","first-page":"1031","article-title":"A topic model of clinical reports","author":"Arnold","year":"2012"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0010","series-title":"AMIA annual symposium proceedings, Vol. 2010","first-page":"26","article-title":"Clinical case-based retrieval using latent topic analysis","author":"Arnold","year":"2010"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0015","series-title":"Proceedings of the 2nd international workshop on data and text mining in bioinformatics","first-page":"77","article-title":"Predicting protein\u2013protein relationships from literature using collapsed variational latent Dirichlet allocation","author":"Asou","year":"2008"},{"issue":"suppl 1","key":"10.1016\/j.ijinfomgt.2017.08.002_bib0020","doi-asserted-by":"crossref","first-page":"s58","DOI":"10.2337\/diacare.27.2007.S58","article-title":"Physical activity\/exercise and diabetes","volume":"27","author":"Association","year":"2004","journal-title":"Diabetes Care"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0025","first-page":"26736H","article-title":"A low-fat vegan diet and a conventional diabetes diet in the treatment of type 2 diabetes: A randomized, controlled, 74-wk clinical trial","author":"Barnard","year":"2009","journal-title":"The American Journal of Clinical Nutrition"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0030","first-page":"993","article-title":"Latent Dirichlet allocation","volume":"3","author":"Blei","year":"2003","journal-title":"Journal of Machine Learning Research"},{"issue":"1","key":"10.1016\/j.ijinfomgt.2017.08.002_bib0035","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.jocs.2010.12.007","article-title":"Twitter mood predicts the stock market","volume":"2","author":"Bollen","year":"2011","journal-title":"Journal of Computational Science"},{"issue":"2","key":"10.1016\/j.ijinfomgt.2017.08.002_bib0040","article-title":"Cultural attitudes toward weight, diet, and physical activity among overweight African American girls","volume":"5","author":"Boyington","year":"2008","journal-title":"Preventing Chronic Disease"},{"issue":"11","key":"10.1016\/j.ijinfomgt.2017.08.002_bib0045","doi-asserted-by":"crossref","first-page":"1936","DOI":"10.2337\/diacare.24.11.1936","article-title":"Projection of diabetes burden through 2050","volume":"24","author":"Boyle","year":"2001","journal-title":"Diabetes Care"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0050","series-title":"Proceedings of the 24th international conference on World Wide Web","first-page":"777","article-title":"This is your Twitter on drugs: Any questions?","author":"Buntain","year":"2015"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0055","series-title":"NAACL HLT 2015","first-page":"1","article-title":"From ADHD to SAD: Analyzing the language of mental health on Twitter through self-reported diagnoses","author":"Coppersmith","year":"2015"},{"issue":"6","key":"10.1016\/j.ijinfomgt.2017.08.002_bib0060","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1016\/S0166-2236(02)02143-4","article-title":"Exercise: A behavioral intervention to enhance brain health and plasticity","volume":"25","author":"Cotman","year":"2002","journal-title":"Trends in Neurosciences"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0065","series-title":"Proceedings of the first workshop on social media analytics","first-page":"115","article-title":"Towards detecting influenza epidemics by analyzing Twitter messages","author":"Culotta","year":"2010"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0070","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/j.copsyc.2015.09.018","article-title":"Integrating social media into weight loss interventions","volume":"9","author":"Dahl","year":"2016","journal-title":"Current Opinion in Psychology"},{"issue":"2","key":"10.1016\/j.ijinfomgt.2017.08.002_bib0075","doi-asserted-by":"crossref","first-page":"159","DOI":"10.1177\/0956797614557867","article-title":"Psychological language on Twitter predicts county-level heart disease mortality","volume":"26","author":"Eichstaedt","year":"2015","journal-title":"Psychological Science"},{"issue":"5","key":"10.1016\/j.ijinfomgt.2017.08.002_bib0080","doi-asserted-by":"crossref","first-page":"491","DOI":"10.1001\/jama.2012.39","article-title":"Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999\u20132010","volume":"307","author":"Flegal","year":"2012","journal-title":"The Journal of the American Medical Association"},{"issue":"12","key":"10.1016\/j.ijinfomgt.2017.08.002_bib0085","doi-asserted-by":"crossref","first-page":"1700","DOI":"10.1016\/j.ajic.2016.04.253","article-title":"How people react to Zika virus outbreaks on Twitter? A computational content analysis","volume":"44","author":"Fu","year":"2016","journal-title":"American Journal of Infection Control"},{"issue":"2","key":"10.1016\/j.ijinfomgt.2017.08.002_bib0090","doi-asserted-by":"crossref","first-page":"90","DOI":"10.1080\/15230406.2013.776210","article-title":"What are we \u2018tweeting\u2019 about obesity? Mapping tweets with topic modeling and geographic information system","volume":"40","author":"Ghosh","year":"2013","journal-title":"Cartography and Geographic Information Science"},{"issue":"6051","key":"10.1016\/j.ijinfomgt.2017.08.002_bib0095","doi-asserted-by":"crossref","first-page":"1878","DOI":"10.1126\/science.1202775","article-title":"Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures","volume":"333","author":"Golder","year":"2011","journal-title":"Science"},{"issue":"9","key":"10.1016\/j.ijinfomgt.2017.08.002_bib0100","doi-asserted-by":"crossref","first-page":"e189","DOI":"10.2196\/jmir.2741","article-title":"An exploration of social circles and prescription drug abuse through Twitter","volume":"15","author":"Hanson","year":"2013","journal-title":"Journal of Medical Internet Research"},{"issue":"7","key":"10.1016\/j.ijinfomgt.2017.08.002_bib0105","doi-asserted-by":"crossref","first-page":"e62","DOI":"10.2105\/AJPH.2013.301860","article-title":"Communication about childhood obesity on Twitter","volume":"104","author":"Harris","year":"2014","journal-title":"American Journal of Public Health"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0110","doi-asserted-by":"crossref","DOI":"10.5888\/pcd10.120215","article-title":"Peer reviewed: Local health department use of Twitter to disseminate diabetes information, United States","volume":"10","author":"Harris","year":"2013","journal-title":"Preventing Chronic Disease"},{"issue":"2","key":"10.1016\/j.ijinfomgt.2017.08.002_bib0115","doi-asserted-by":"crossref","first-page":"351","DOI":"10.1016\/0091-7435(83)90244-X","article-title":"Relationship of obesity to diabetes: Influence of obesity level and body fat distribution","volume":"12","author":"Hartz","year":"1983","journal-title":"Preventive Medicine"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0120","series-title":"Obesity trends","author":"Harvard HSPH","year":"2017"},{"issue":"1","key":"10.1016\/j.ijinfomgt.2017.08.002_bib0125","doi-asserted-by":"crossref","first-page":"126","DOI":"10.1161\/CIRCULATIONAHA.111.087213","article-title":"Energy balance and obesity","volume":"126","author":"Hill","year":"2012","journal-title":"Circulation"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0130","series-title":"Proceedings of the first workshop on social media analytics","first-page":"80","article-title":"Empirical study of topic modeling in Twitter","author":"Hong","year":"2010"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0135","series-title":"Fuzzy topic modeling for medical corpora (Ph.D. thesis)","author":"Karami","year":"2015"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0140","article-title":"FFTM: A fuzzy feature transformation method for medical documents","author":"Karami","year":"2014","journal-title":"Proceedings of the conference of the Association for Computational Linguistics (ACL), Vol. 128"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0145","series-title":"Proceedings of the annual meeting of the North American Fuzzy Information Processing Society (NAFIPS)","article-title":"FLATM: A fuzzy logic approach topic model for medical documents","author":"Karami","year":"2015"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0150","article-title":"A fuzzy approach model for uncovering hidden latent semantic structure in medical text collections","author":"Karami","year":"2015","journal-title":"Proceedings of the iConference"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0155","first-page":"1","article-title":"Fuzzy approach topic discovery in health and medical corpora","author":"Karami","year":"2017","journal-title":"International Journal of Fuzzy Systems"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0160","article-title":"Online review spam detection by new linguistic features","author":"Karami","year":"2015","journal-title":"iConference 2015 proceedings"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0165","article-title":"Exploiting latent content based features for the detection of static SMS spams","author":"Karami","year":"2014","journal-title":"The 77th annual meeting of the Association for Information Science and Technology (ASIST)"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0170","article-title":"Improving static SMS spam detection by using new content-based features","author":"Karami","year":"2014","journal-title":"The 20th Americas Conference on Information Systems (AMCIS)"},{"issue":"10","key":"10.1016\/j.ijinfomgt.2017.08.002_bib0175","doi-asserted-by":"crossref","first-page":"1556","DOI":"10.1001\/archneur.62.10.1556","article-title":"Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease","volume":"62","author":"Kivipelto","year":"2005","journal-title":"Archives of Neurology"},{"issue":"6778","key":"10.1016\/j.ijinfomgt.2017.08.002_bib0180","doi-asserted-by":"crossref","first-page":"635","DOI":"10.1038\/35007508","article-title":"Obesity as a medical problem","volume":"404","author":"Kopelman","year":"2000","journal-title":"Nature"},{"issue":"1","key":"10.1016\/j.ijinfomgt.2017.08.002_bib0185","doi-asserted-by":"crossref","first-page":"158","DOI":"10.2337\/diabetes.54.1.158","article-title":"Physical activity in the prevention of type 2 diabetes","volume":"54","author":"Laaksonen","year":"2005","journal-title":"Diabetes"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0190","series-title":"2010 2nd international workshop on cognitive information processing","first-page":"411","article-title":"Tracking the flu pandemic by monitoring the social web","author":"Lampos","year":"2010"},{"issue":"4","key":"10.1016\/j.ijinfomgt.2017.08.002_bib0195","doi-asserted-by":"crossref","first-page":"72","DOI":"10.1145\/2337542.2337557","article-title":"Nowcasting events from the social web with statistical learning","volume":"3","author":"Lampos","year":"2012","journal-title":"ACM Transactions on Intelligent Systems and Technology"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0200","series-title":"Joint European conference on machine learning and knowledge discovery in databases","first-page":"599","article-title":"Flu detector-tracking epidemics on Twitter","author":"Lampos","year":"2010"},{"issue":"10","key":"10.1016\/j.ijinfomgt.2017.08.002_bib0205","doi-asserted-by":"crossref","first-page":"1109","DOI":"10.1016\/j.ajic.2015.05.025","article-title":"Detecting themes of public concern: A text mining analysis of the Centers for Disease Control and Prevention's Ebola live Twitter chat","volume":"43","author":"Lazard","year":"2015","journal-title":"American Journal of Infection Control"},{"issue":"2","key":"10.1016\/j.ijinfomgt.2017.08.002_bib0210","doi-asserted-by":"crossref","first-page":"178","DOI":"10.1007\/s10791-010-9141-9","article-title":"Investigating task performance of probabilistic topic models: An empirical study of PLSA and LDA","volume":"14","author":"Lu","year":"2011","journal-title":"Information Retrieval"},{"issue":"2","key":"10.1016\/j.ijinfomgt.2017.08.002_bib0215","doi-asserted-by":"crossref","first-page":"101","DOI":"10.1097\/WAD.0b013e318222f0d4","article-title":"Central obesity in the elderly is related to late onset Alzheimer's disease","volume":"26","author":"Luchsinger","year":"2012","journal-title":"Alzheimer Disease and Associated Disorders"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0220","first-page":"121","article-title":"Supervised topic models","author":"Mcauliffe","year":"2008","journal-title":"Proceedings of the advances in neural information processing systems"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0225","series-title":"Mallet: A machine learning for language toolkit","author":"McCallum","year":"2002"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0230","series-title":"Twitter: A digital socioscope","author":"Mejova","year":"2015"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0235","series-title":"Proceedings of the 2nd international conference on knowledge capture","first-page":"70","article-title":"Sentiment analysis: Capturing favorability using natural language processing","author":"Nasukawa","year":"2003"},{"issue":"6","key":"10.1016\/j.ijinfomgt.2017.08.002_bib0240","doi-asserted-by":"crossref","first-page":"563","DOI":"10.1016\/j.ajic.2015.02.023","article-title":"What can we learn about the Ebola outbreak from tweets?","volume":"43","author":"Odlum","year":"2015","journal-title":"American Journal of Infection Control"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0245","series-title":"Twitter Monthly Active Users Crawl To 316M, Dorsey: We are not satisfied","author":"Olanoff","year":"2015"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0250","series-title":"ICWSM, Vol. 20","first-page":"265","article-title":"You are what you tweet: Analyzing Twitter for public health","author":"Paul","year":"2011"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0255","article-title":"A model for mining public health topics from Twitter","volume":"11","author":"Paul","year":"2012","journal-title":"Health"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0260","series-title":"NFL","author":"PLAY 60 Challenge","year":"2017"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0265","series-title":"Niantic, Inc.","author":"Pokeman-Go Game","year":"2017"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0270","series-title":"International conference on social computing, behavioral-cultural modeling, and prediction","first-page":"18","article-title":"Identifying health-related topics on Twitter","author":"Prier","year":"2011"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0275","first-page":"9","article-title":"Using prediction markets and Twitter to predict a swine flu pandemic","author":"Ritterman","year":"2009","journal-title":"1st international workshop on mining social media, Vol. 9"},{"issue":"1","key":"10.1016\/j.ijinfomgt.2017.08.002_bib0280","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1089\/acm.2009.0044","article-title":"The health benefits of yoga and exercise: A review of comparison studies","volume":"16","author":"Ross","year":"2010","journal-title":"The Journal of Alternative and Complementary Medicine"},{"issue":"2","key":"10.1016\/j.ijinfomgt.2017.08.002_bib0285","doi-asserted-by":"crossref","first-page":"92","DOI":"10.7326\/0003-4819-133-2-200007180-00008","article-title":"Reduction in obesity and related comorbid conditions after diet-induced weight loss or exercise-induced weight loss in men. A randomized, controlled trial","volume":"133","author":"Ross","year":"2000","journal-title":"Annals of Internal Medicine"},{"issue":"3","key":"10.1016\/j.ijinfomgt.2017.08.002_bib0290","doi-asserted-by":"crossref","first-page":"182","DOI":"10.1016\/j.ajic.2009.11.004","article-title":"Dissemination of health information through social networks: Twitter and antibiotics","volume":"38","author":"Scanfeld","year":"2010","journal-title":"American Journal of Infection Control"},{"issue":"1","key":"10.1016\/j.ijinfomgt.2017.08.002_bib0295","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1111\/j.1464-0597.2007.00325.x","article-title":"Modeling health behavior change: How to predict and modify the adoption and maintenance of health behaviors","volume":"57","author":"Schwarzer","year":"2008","journal-title":"Applied Psychology"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0300","series-title":"Number of social media users worldwide from 2010 to 2020","author":"Statista","year":"2017"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0305","series-title":"International conference on electronic healthcare","first-page":"18","article-title":"# swineflu: Twitter predicts swine flu outbreak in 2009","author":"Szomszor","year":"2010"},{"issue":"26","key":"10.1016\/j.ijinfomgt.2017.08.002_bib0310","first-page":"21","article-title":"Obesity in the United States: Public perceptions","volume":"53","author":"Tompson","year":"2012","journal-title":"The Food Industry"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0315","series-title":"ICWSM 10","article-title":"Predicting elections with Twitter: What 140 characters reveal about political sentiment","author":"Tumasjan","year":"2010"},{"issue":"2","key":"10.1016\/j.ijinfomgt.2017.08.002_bib0320","doi-asserted-by":"crossref","first-page":"160","DOI":"10.1007\/s13142-015-0308-1","article-title":"Tweet for health: Using an online social network to examine temporal trends in weight loss-related posts","volume":"5","author":"Turner-McGrievy","year":"2015","journal-title":"Translational Behavioral Medicine"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0325","series-title":"Twitter developer documentation","author":"Twitter","year":"2017"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0330","doi-asserted-by":"crossref","DOI":"10.1155\/2015\/105828","article-title":"Inflammation and oxidative stress: The molecular connectivity between insulin resistance, obesity, and Alzheimer's disease","volume":"2015","author":"Verdile","year":"2015","journal-title":"Mediators of Inflammation"},{"issue":"3","key":"10.1016\/j.ijinfomgt.2017.08.002_bib0335","doi-asserted-by":"crossref","first-page":"304","DOI":"10.1007\/s13142-013-0209-0","article-title":"Twitter classification model: The ABC of two million fitness tweets","volume":"3","author":"Vickey","year":"2013","journal-title":"Translational Behavioral Medicine"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0340","series-title":"Proceedings of the 26th annual international conference on machine learning","first-page":"1105","article-title":"Evaluation methods for topic models","author":"Wallach","year":"2009"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0345","series-title":"The geography of obesity: Predicting obesity rates in California based on access to health care","author":"Wartell","year":"2015"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0350","series-title":"New directions in question answering","first-page":"12","article-title":"Recognizing and organizing opinions expressed in the world press","author":"Wiebe","year":"2003"},{"issue":"1","key":"10.1016\/j.ijinfomgt.2017.08.002_bib0355","doi-asserted-by":"crossref","first-page":"117","DOI":"10.2337\/diacare.24.1.117","article-title":"Behavioral science research in diabetes lifestyle changes related to obesity, eating behavior, and physical activity","volume":"24","author":"Wing","year":"2001","journal-title":"Diabetes Care"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0360","series-title":"Obesity and overweight","author":"World Health Organization Fact Sheet","year":"2016"},{"issue":"9","key":"10.1016\/j.ijinfomgt.2017.08.002_bib0365","article-title":"Social media monitoring and analysis: Generating consumer insights from online conversation","volume":"37","author":"Zabin","year":"2008","journal-title":"Aberdeen Group Benchmark Report"},{"key":"10.1016\/j.ijinfomgt.2017.08.002_bib0370","series-title":"European conference on information retrieval","first-page":"338","article-title":"Comparing Twitter and traditional media using topic models","author":"Zhao","year":"2011"}],"container-title":["International Journal of Information Management"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0268401217306126?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0268401217306126?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,8,3]],"date-time":"2022-08-03T04:13:24Z","timestamp":1659500004000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0268401217306126"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,2]]},"references-count":74,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2018,2]]}},"alternative-id":["S0268401217306126"],"URL":"https:\/\/doi.org\/10.1016\/j.ijinfomgt.2017.08.002","relation":{},"ISSN":["0268-4012"],"issn-type":[{"value":"0268-4012","type":"print"}],"subject":[],"published":{"date-parts":[[2018,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Characterizing diabetes, diet, exercise, and obesity comments on Twitter","name":"articletitle","label":"Article Title"},{"value":"International Journal of Information Management","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ijinfomgt.2017.08.002","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}