{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,24]],"date-time":"2025-03-24T08:47:15Z","timestamp":1742806035702},"reference-count":37,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["International Journal of Critical Infrastructure Protection"],"published-print":{"date-parts":[[2022,7]]},"DOI":"10.1016\/j.ijcip.2022.100508","type":"journal-article","created":{"date-parts":[[2022,2,2]],"date-time":"2022-02-02T23:36:48Z","timestamp":1643845008000},"page":"100508","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":50,"special_numbering":"C","title":["FDI attack detection using extra trees algorithm and deep learning algorithm-autoencoder in smart grid"],"prefix":"10.1016","volume":"37","author":[{"given":"Seyed Hossein","family":"Majidi","sequence":"first","affiliation":[]},{"given":"Shahrzad","family":"Hadayeghparast","sequence":"additional","affiliation":[]},{"given":"Hadis","family":"Karimipour","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ijcip.2022.100508_bib0001","unstructured":"Abdallah, A., Security and privacy in smart grid. 2016, UWSpace."},{"key":"10.1016\/j.ijcip.2022.100508_bib0002","article-title":"Cyber-security in smart grid\u2013Survey and challenges","volume":"67","author":"Elmrabet","year":"2018","journal-title":"Comput. Electr. Eng."},{"key":"10.1016\/j.ijcip.2022.100508_bib0003","series-title":"2019 IEEE 7th International Conference on Smart Energy Grid Engineering (SEGE)","article-title":"Smart grid cyber attacks detection using supervised learning and heuristic feature selection","author":"Sakhnini","year":"2019"},{"key":"10.1016\/j.ijcip.2022.100508_bib0004","doi-asserted-by":"crossref","first-page":"877","DOI":"10.1016\/j.comnet.2006.01.005","article-title":"A survey on communication networks for electric system automation","volume":"50","author":"Gungor","year":"2006","journal-title":"Comput. Netw."},{"key":"10.1016\/j.ijcip.2022.100508_bib0005","series-title":"2017 IEEE International Conference on Smart Energy Grid Engineering (SEGE)","article-title":"On false data injection attack against dynamic state estimation on smart power grids","author":"Karimipour","year":"2017"},{"key":"10.1016\/j.ijcip.2022.100508_bib0006","first-page":"80778","volume":"7","author":"Karimipour","year":"2019"},{"key":"10.1016\/j.ijcip.2022.100508_bib0007","first-page":"1","article-title":"Locational detection of false data injection attack in smart grid\u2013A multi-label classification approach","author":"Wang","year":"2020","journal-title":"IEEE Internet Things J."},{"key":"10.1016\/j.ijcip.2022.100508_bib0008","first-page":"1","article-title":"A survey on the detection algorithms for false data injection attacks in smart grids","author":"Musleh","year":"2019","journal-title":"IEEE Trans. Smart Grid"},{"key":"10.1016\/j.ijcip.2022.100508_bib0009","article-title":"On feasibility and limitations of detecting false data injection attacks on power grid state estimation using D-FACTS devices","author":"Li","year":"2019","journal-title":"IEEE Trans. Ind. Inf."},{"key":"10.1016\/j.ijcip.2022.100508_bib0010","first-page":"1","article-title":"Reactance perturbation for detecting and identifying FDI attacks in power system state estimation","author":"Liu","year":"2018","journal-title":"IEEE J. Sel. Top. Signal Process."},{"key":"10.1016\/j.ijcip.2022.100508_bib0011","doi-asserted-by":"crossref","DOI":"10.1109\/TIFS.2018.2800908","article-title":"Real-time detection of hybrid and stealthy cyber-attacks in smart grid","author":"Kurt","year":"2018","journal-title":"IEEE Trans. Inf. Forensics Secur."},{"key":"10.1016\/j.ijcip.2022.100508_bib0012","doi-asserted-by":"crossref","first-page":"370","DOI":"10.1109\/TCNS.2014.2357531","article-title":"Detection of faults and attacks including false data injection attack in smart grid using Kalman filter","volume":"1","author":"Manandhar","year":"2014","journal-title":"IEEE Trans. Control Netw. Syst."},{"issue":"1","key":"10.1016\/j.ijcip.2022.100508_bib0013","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1109\/TII.2017.2720726","article-title":"Joint-transformation-based detection of false data injection attacks in smart grid","volume":"14","author":"Singh","year":"2018","journal-title":"IEEE Trans. Ind. Inf."},{"issue":"4","key":"10.1016\/j.ijcip.2022.100508_bib0014","doi-asserted-by":"crossref","first-page":"2398","DOI":"10.1109\/TSG.2016.2610582","article-title":"An adaptive markov strategy for defending smart grid false data injection from malicious attackers","volume":"9","author":"Hao","year":"2018","journal-title":"IEEE Trans. Smart Grid"},{"key":"10.1016\/j.ijcip.2022.100508_bib0015","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1109\/MNET.2011.6033036","article-title":"An early warning system against malicious activities for smart grid communications","volume":"25","author":"Fadlullah","year":"2011","journal-title":"Netw. IEEE,"},{"key":"10.1016\/j.ijcip.2022.100508_bib0016","first-page":"31762","volume":"7","author":"Xue","year":"2019"},{"issue":"5","key":"10.1016\/j.ijcip.2022.100508_bib0017","doi-asserted-by":"crossref","first-page":"572","DOI":"10.1049\/iet-stg.2020.0029","article-title":"Ensemble CorrDet with adaptive statistics for bad data detection","volume":"3","author":"Nagaraj","year":"2020","journal-title":"IET Smart Grid"},{"issue":"4","key":"10.1016\/j.ijcip.2022.100508_bib0018","doi-asserted-by":"crossref","first-page":"796","DOI":"10.1109\/TSG.2011.2159818","article-title":"Distributed intrusion detection system in a multi-layer network architecture of smart grids","volume":"2","author":"Zhang","year":"2011","journal-title":"IEEE Trans. Smart Grid"},{"key":"10.1016\/j.ijcip.2022.100508_bib0019","series-title":"2014 7th International Symposium on Resilient Control Systems (ISRCS)","article-title":"Machine learning for power system disturbance and cyber-attack discrimination","author":"Hink","year":"2014"},{"issue":"5","key":"10.1016\/j.ijcip.2022.100508_bib0020","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TII.2015.2475695","article-title":"Sparse malicious false data injection attacks and defense mechanisms in smart grids","volume":"11","author":"Hao","year":"2015","journal-title":"IEEE Trans. Ind. Inf."},{"issue":"8","key":"10.1016\/j.ijcip.2022.100508_bib0021","doi-asserted-by":"crossref","first-page":"1773","DOI":"10.1109\/TNNLS.2015.2404803","article-title":"Machine learning methods for attack detection in the smart grid","volume":"27","author":"Ozay","year":"2016","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.ijcip.2022.100508_bib0022","series-title":"2013 IEEE Global Communications Conference (GLOBECOM)","article-title":"Detecting stealthy false data injection using machine learning in smart grid","author":"Esmalifalak","year":"2013"},{"key":"10.1016\/j.ijcip.2022.100508_bib0023","doi-asserted-by":"crossref","first-page":"27518","DOI":"10.1109\/ACCESS.2018.2835527","article-title":"Feature selection\u2013Based detection of covert cyber deception assaults in smart grid communications networks using machine learning","volume":"6","author":"Ahmed","year":"2018","journal-title":"IEEE Access"},{"issue":"10","key":"10.1016\/j.ijcip.2022.100508_bib0024","doi-asserted-by":"crossref","first-page":"2765","DOI":"10.1109\/TIFS.2019.2902822","article-title":"Unsupervised machine learning-based detection of covert data integrity assault in smart grid networks utilizing isolation forest","volume":"14","author":"Ahmed","year":"2019","journal-title":"IEEE Trans. Inf. Forensics Secur."},{"key":"10.1016\/j.ijcip.2022.100508_bib0025","doi-asserted-by":"crossref","first-page":"19921","DOI":"10.1109\/ACCESS.2020.2968934","article-title":"Extremely randomized trees-based scheme for stealthy cyber-attack detection in smart grid networks","volume":"8","author":"Acosta","year":"2020","journal-title":"IEEE Access"},{"issue":"5","key":"10.1016\/j.ijcip.2022.100508_bib0026","doi-asserted-by":"crossref","first-page":"2505","DOI":"10.1109\/TSG.2017.2703842","article-title":"Real-time detection of false data injection attacks in smart grid\u2013A deep learning-based intelligent mechanism","volume":"8","author":"He","year":"2017","journal-title":"IEEE Trans. Smart Grid"},{"key":"10.1016\/j.ijcip.2022.100508_bib0027","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1016\/j.ijepes.2017.03.011","article-title":"Improved-ELM method for detecting false data attack in smart grid","volume":"91","author":"Yang","year":"2017","journal-title":"Int. J. Electr. Power Energy Syst."},{"key":"10.1016\/j.ijcip.2022.100508_bib0028","series-title":"Proceedings of the 16th ACM conference on Computer and communications security","first-page":"21","article-title":"False data injection attacks against state estimation in electric power grids","author":"Liu","year":"2009"},{"key":"10.1016\/j.ijcip.2022.100508_bib0029","series-title":"Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence","article-title":"Chi2\u2013Feature selection and discretization of numeric attributes","author":"Huan","year":"1995"},{"key":"10.1016\/j.ijcip.2022.100508_bib0030","doi-asserted-by":"crossref","unstructured":"Zhou, C. and R. Paffenroth, Anomaly detection with robust deep autoencoders. 2017. 665\u2013674.","DOI":"10.1145\/3097983.3098052"},{"key":"10.1016\/j.ijcip.2022.100508_bib0031","doi-asserted-by":"crossref","unstructured":"Silberer, C. and M. Lapata, Learning grounded meaning representations with autoencoders. 2014. 721\u2013732.","DOI":"10.3115\/v1\/P14-1068"},{"key":"10.1016\/j.ijcip.2022.100508_bib0032","unstructured":"DELGADO, P., Development of a deep learning based attack detection system for smart grids. 2019, Polytechnic De Madrid."},{"key":"10.1016\/j.ijcip.2022.100508_bib0033","first-page":"e1249","article-title":"Ensemble learning\u2013A survey","volume":"8","author":"Sagi","year":"2018","journal-title":"Wiley Interdiscip. Rev."},{"key":"10.1016\/j.ijcip.2022.100508_bib0034","doi-asserted-by":"crossref","first-page":"463","DOI":"10.1109\/TSMCC.2011.2161285","article-title":"A review on ensembles for the class imbalance problem\u2013Bagging-, boosting-, and hybrid-based approaches","volume":"42","author":"Galar","year":"2012","journal-title":"IEEE Trans. Syst. Man Cybern. C"},{"key":"10.1016\/j.ijcip.2022.100508_bib0035","series-title":"2018 IEEE Electrical Power and Energy Conference (EPEC)","article-title":"Multivariate mutual information-based feature selection for cyber intrusion detection","author":"Mohammadi","year":"2018"},{"key":"10.1016\/j.ijcip.2022.100508_bib0036","series-title":"Encyclopedia of Systems Biology","first-page":"38","article-title":"Area under the ROC Curve","author":"Melo","year":"2013"},{"issue":"1","key":"10.1016\/j.ijcip.2022.100508_bib0037","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1109\/TPWRS.2010.2051168","article-title":"MATPOWER\u2013Steady-state operations, planning, and analysis tools for power systems research and education","volume":"26","author":"Zimmerman","year":"2011","journal-title":"IEEE Trans. Power Syst."}],"container-title":["International Journal of Critical Infrastructure Protection"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1874548222000014?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1874548222000014?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,4,16]],"date-time":"2023-04-16T06:49:28Z","timestamp":1681627768000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1874548222000014"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,7]]},"references-count":37,"alternative-id":["S1874548222000014"],"URL":"https:\/\/doi.org\/10.1016\/j.ijcip.2022.100508","relation":{},"ISSN":["1874-5482"],"issn-type":[{"value":"1874-5482","type":"print"}],"subject":[],"published":{"date-parts":[[2022,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"FDI attack detection using extra trees algorithm and deep learning algorithm-autoencoder in smart grid","name":"articletitle","label":"Article Title"},{"value":"International Journal of Critical Infrastructure Protection","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ijcip.2022.100508","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"100508"}}