{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,30]],"date-time":"2024-08-30T17:21:32Z","timestamp":1725038492906},"reference-count":43,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,4,1]],"date-time":"2017-04-01T00:00:00Z","timestamp":1491004800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,4,2]],"date-time":"2021-04-02T00:00:00Z","timestamp":1617321600000},"content-version":"vor","delay-in-days":1462,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"funder":[{"name":"COIN Centre of Excellence"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["International Journal of Approximate Reasoning"],"published-print":{"date-parts":[[2017,4]]},"DOI":"10.1016\/j.ijar.2017.01.001","type":"journal-article","created":{"date-parts":[[2017,1,11]],"date-time":"2017-01-11T09:32:26Z","timestamp":1484127146000},"page":"21-42","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":8,"special_numbering":"C","title":["Learning Gaussian graphical models with fractional marginal pseudo-likelihood"],"prefix":"10.1016","volume":"83","author":[{"given":"Janne","family":"Lepp\u00e4-aho","sequence":"first","affiliation":[]},{"given":"Johan","family":"Pensar","sequence":"additional","affiliation":[]},{"given":"Teemu","family":"Roos","sequence":"additional","affiliation":[]},{"given":"Jukka","family":"Corander","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.ijar.2017.01.001_br0010","doi-asserted-by":"crossref","first-page":"157","DOI":"10.2307\/2528966","article-title":"Covariance selection","volume":"28","author":"Dempster","year":"1972","journal-title":"Biometrics"},{"key":"10.1016\/j.ijar.2017.01.001_br0020","series-title":"Graphical Models in Applied Multivariate Statistics","author":"Whittaker","year":"1990"},{"key":"10.1016\/j.ijar.2017.01.001_br0030","series-title":"Graphical Models","author":"Lauritzen","year":"1996"},{"issue":"4","key":"10.1016\/j.ijar.2017.01.001_br0040","doi-asserted-by":"crossref","first-page":"388","DOI":"10.1214\/088342305000000304","article-title":"Experiments in stochastic computation for high-dimensional graphical models","volume":"20","author":"Jones","year":"2005","journal-title":"Stat. Sci."},{"issue":"4","key":"10.1016\/j.ijar.2017.01.001_br0050","doi-asserted-by":"crossref","first-page":"790","DOI":"10.1198\/106186008X382683","article-title":"Feature-inclusion stochastic search for Gaussian graphical models","volume":"17","author":"Scott","year":"2008","journal-title":"J. Comput. Graph. Stat."},{"issue":"3","key":"10.1016\/j.ijar.2017.01.001_br0060","doi-asserted-by":"crossref","first-page":"497","DOI":"10.1093\/biomet\/asp017","article-title":"Objective Bayesian model selection in Gaussian graphical models","volume":"96","author":"Carvalho","year":"2009","journal-title":"Biometrika"},{"issue":"3","key":"10.1016\/j.ijar.2017.01.001_br0070","doi-asserted-by":"crossref","first-page":"659","DOI":"10.1214\/14-BA874","article-title":"The performance of covariance selection methods that consider decomposable models only","volume":"9","author":"Fitch","year":"2014","journal-title":"Bayesian Anal."},{"issue":"4","key":"10.1016\/j.ijar.2017.01.001_br0080","doi-asserted-by":"crossref","first-page":"809","DOI":"10.1093\/biomet\/90.4.809","article-title":"Efficient estimation of covariance selection models","volume":"90","author":"Wong","year":"2003","journal-title":"Biometrika"},{"issue":"2","key":"10.1016\/j.ijar.2017.01.001_br0090","doi-asserted-by":"crossref","first-page":"317","DOI":"10.1093\/biomet\/92.2.317","article-title":"A Monte Carlo method for computing the marginal likelihood in nondecomposable Gaussian graphical models","volume":"92","author":"Atay-Kayis","year":"2005","journal-title":"Biometrika"},{"key":"10.1016\/j.ijar.2017.01.001_br0100","first-page":"1285","article-title":"Accelerating Bayesian structural inference for non-decomposable Gaussian graphical models","volume":"vol. 22","author":"Moghaddam","year":"2009"},{"issue":"496","key":"10.1016\/j.ijar.2017.01.001_br0110","doi-asserted-by":"crossref","first-page":"1418","DOI":"10.1198\/jasa.2011.tm10465","article-title":"Bayesian inference for general Gaussian graphical models with application to multivariate lattice data","volume":"106","author":"Dobra","year":"2011","journal-title":"J. Am. Stat. Assoc."},{"issue":"1","key":"10.1016\/j.ijar.2017.01.001_br0120","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1214\/14-BA889","article-title":"Bayesian structure learning in sparse Gaussian graphical models","volume":"10","author":"Mohammadi","year":"2015","journal-title":"Bayesian Anal."},{"issue":"1","key":"10.1016\/j.ijar.2017.01.001_br0130","doi-asserted-by":"crossref","first-page":"159","DOI":"10.1007\/s11222-014-9541-6","article-title":"Efficient local updates for undirected graphical models","volume":"25","author":"Stingo","year":"2015","journal-title":"Stat. Comput."},{"issue":"2","key":"10.1016\/j.ijar.2017.01.001_br0140","doi-asserted-by":"crossref","first-page":"351","DOI":"10.1214\/14-BA916","article-title":"Scaling it up: stochastic search structure learning in graphical models","volume":"10","author":"Wang","year":"2015","journal-title":"Bayesian Anal."},{"issue":"3","key":"10.1016\/j.ijar.2017.01.001_br0150","doi-asserted-by":"crossref","first-page":"432","DOI":"10.1093\/biostatistics\/kxm045","article-title":"Sparse inverse covariance estimation with the graphical lasso","volume":"9","author":"Friedman","year":"2008","journal-title":"Biostatistics"},{"issue":"4","key":"10.1016\/j.ijar.2017.01.001_br0160","doi-asserted-by":"crossref","first-page":"892","DOI":"10.1198\/jcgs.2011.11051a","article-title":"New insights and faster computations for the graphical lasso","volume":"20","author":"Witten","year":"2011","journal-title":"J. Comput. Graph. Stat."},{"issue":"3","key":"10.1016\/j.ijar.2017.01.001_br0170","doi-asserted-by":"crossref","first-page":"1436","DOI":"10.1214\/009053606000000281","article-title":"High-dimensional graphs and variable selection with the lasso","volume":"34","author":"Meinshausen","year":"2006","journal-title":"Ann. Stat."},{"issue":"486","key":"10.1016\/j.ijar.2017.01.001_br0180","doi-asserted-by":"crossref","first-page":"735","DOI":"10.1198\/jasa.2009.0126","article-title":"Partial correlation estimation by joint sparse regression models","volume":"104","author":"Peng","year":"2009","journal-title":"J. Am. Stat. Assoc."},{"issue":"1","key":"10.1016\/j.ijar.2017.01.001_br0190","doi-asserted-by":"crossref","first-page":"196","DOI":"10.1016\/j.jmva.2004.02.009","article-title":"Sparse graphical models for exploring gene expression data","volume":"90","author":"Dobra","year":"2004","journal-title":"J. Multivar. Anal."},{"key":"10.1016\/j.ijar.2017.01.001_br0200","first-page":"49","article-title":"Dependency networks for inference, collaborative filtering, and data visualization","volume":"1","author":"Heckerman","year":"2001","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.ijar.2017.01.001_br0210","article-title":"Marginal pseudo-likelihood learning of discrete Markov network structures","author":"Pensar","year":"2016","journal-title":"Bayesian Anal. Adv. Publ."},{"issue":"4","key":"10.1016\/j.ijar.2017.01.001_br0220","doi-asserted-by":"crossref","first-page":"743","DOI":"10.1111\/j.1467-9469.2011.00785.x","article-title":"Objective Bayes factors for Gaussian directed acyclic graphical models","volume":"39","author":"Consonni","year":"2012","journal-title":"Scand. J. Stat."},{"issue":"1","key":"10.1016\/j.ijar.2017.01.001_br0230","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1111\/j.2517-6161.1995.tb02017.x","article-title":"Fractional Bayes factors for model comparison","volume":"57","author":"O'Hagan","year":"1995","journal-title":"J. R. Stat. Soc. B"},{"issue":"5","key":"10.1016\/j.ijar.2017.01.001_br0240","doi-asserted-by":"crossref","first-page":"1412","DOI":"10.1214\/aos\/1035844981","article-title":"Parameter priors for directed acyclic graphical models and the characterization of several probability distributions","volume":"30","author":"Geiger","year":"2002","journal-title":"Ann. Stat."},{"issue":"1","key":"10.1016\/j.ijar.2017.01.001_br0250","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1111\/j.2517-6161.1972.tb00889.x","article-title":"Nearest-neighbour systems and the auto-logistic model for binary data","volume":"34","author":"Besag","year":"1972","journal-title":"J. R. Stat. Soc. B"},{"key":"10.1016\/j.ijar.2017.01.001_br0260","series-title":"Probabilistic Graphical Models: Principles and Techniques","author":"Koller","year":"2009"},{"issue":"1","key":"10.1016\/j.ijar.2017.01.001_br0270","doi-asserted-by":"crossref","first-page":"342","DOI":"10.1214\/aos\/1176350709","article-title":"On the choice of a model to fit data from an exponential family","volume":"16","author":"Haughton","year":"1988","journal-title":"Ann. Stat."},{"issue":"1","key":"10.1016\/j.ijar.2017.01.001_br0280","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1214\/aos\/1176348511","article-title":"On predictive least squares principles","volume":"20","author":"Wei","year":"1992","journal-title":"Ann. Stat."},{"key":"10.1016\/j.ijar.2017.01.001_br0290","first-page":"507","article-title":"Optimal structure identification with greedy search","volume":"3","author":"Chickering","year":"2003","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.ijar.2017.01.001_br0300","series-title":"The 16th International FLAIRS Conference","first-page":"376","article-title":"Algorithms for large scale Markov blanket discovery","author":"Tsamardinos","year":"2003"},{"issue":"2","key":"10.1016\/j.ijar.2017.01.001_br0310","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1016\/j.ijar.2006.06.008","article-title":"Towards scalable and data efficient learning of Markov boundaries","volume":"45","author":"Pe\u00f1a","year":"2007","journal-title":"Int. J. Approx. Reason."},{"issue":"1","key":"10.1016\/j.ijar.2017.01.001_br0320","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1007\/s10994-006-6889-7","article-title":"The max\u2013min hill-climbing Bayesian network structure learning algorithm","volume":"65","author":"Tsamardinos","year":"2006","journal-title":"Mach. Learn."},{"key":"10.1016\/j.ijar.2017.01.001_br0330","series-title":"Bayesian Data Analysis","author":"Gelman","year":"2014"},{"key":"10.1016\/j.ijar.2017.01.001_br0340","first-page":"604","article-title":"Extended Bayesian information criteria for Gaussian graphical models","volume":"vol. 23","author":"Foygel","year":"2010"},{"key":"10.1016\/j.ijar.2017.01.001_br0350","author":"Friedman"},{"key":"10.1016\/j.ijar.2017.01.001_br0360","author":"Peng"},{"key":"10.1016\/j.ijar.2017.01.001_br0370","author":"Achard"},{"issue":"5","key":"10.1016\/j.ijar.2017.01.001_br0380","doi-asserted-by":"crossref","first-page":"381","DOI":"10.1089\/omi.2009.0027","article-title":"Resampling reveals sample-level differential expression in clinical genome-wide studies","volume":"13","author":"Hiissa","year":"2009","journal-title":"Omics. J. Integr. Biol."},{"key":"10.1016\/j.ijar.2017.01.001_br0390","author":"Altomare"},{"issue":"5721","key":"10.1016\/j.ijar.2017.01.001_br0400","doi-asserted-by":"crossref","first-page":"523","DOI":"10.1126\/science.1105809","article-title":"Causal protein-signaling networks derived from multiparameter single-cell data","volume":"308","author":"Sachs","year":"2005","journal-title":"Science"},{"issue":"4","key":"10.1016\/j.ijar.2017.01.001_br0410","doi-asserted-by":"crossref","first-page":"1197","DOI":"10.1111\/j.1541-0420.2012.01785.x","article-title":"Robust Gaussian graphical modeling via l1 penalization","volume":"68","author":"Sun","year":"2012","journal-title":"Biometrics"},{"key":"10.1016\/j.ijar.2017.01.001_br0420","series-title":"Applied Multivariate Analysis: Using Bayesian and Frequentist Method of Inference","author":"Press","year":"1982"},{"issue":"5","key":"10.1016\/j.ijar.2017.01.001_br0430","doi-asserted-by":"crossref","first-page":"412","DOI":"10.1093\/bioinformatics\/16.5.412","article-title":"Assessing the accuracy of prediction algorithms for classification: an overview","volume":"16","author":"Baldi","year":"2000","journal-title":"Bioinformatics"}],"container-title":["International Journal of Approximate Reasoning"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0888613X1730018X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0888613X1730018X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,6,21]],"date-time":"2024-06-21T18:52:40Z","timestamp":1718995960000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0888613X1730018X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,4]]},"references-count":43,"alternative-id":["S0888613X1730018X"],"URL":"https:\/\/doi.org\/10.1016\/j.ijar.2017.01.001","relation":{},"ISSN":["0888-613X"],"issn-type":[{"value":"0888-613X","type":"print"}],"subject":[],"published":{"date-parts":[[2017,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Learning Gaussian graphical models with fractional marginal pseudo-likelihood","name":"articletitle","label":"Article Title"},{"value":"International Journal of Approximate Reasoning","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ijar.2017.01.001","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier Inc.","name":"copyright","label":"Copyright"}]}}