{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,6]],"date-time":"2024-07-06T00:47:26Z","timestamp":1720226846248},"reference-count":50,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2015,12,1]],"date-time":"2015-12-01T00:00:00Z","timestamp":1448928000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2019,12,1]],"date-time":"2019-12-01T00:00:00Z","timestamp":1575158400000},"content-version":"vor","delay-in-days":1461,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["International Journal of Approximate Reasoning"],"published-print":{"date-parts":[[2015,12]]},"DOI":"10.1016\/j.ijar.2015.06.003","type":"journal-article","created":{"date-parts":[[2015,6,13]],"date-time":"2015-06-13T23:33:15Z","timestamp":1434238395000},"page":"73-110","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["Learning failure-free PRISM programs"],"prefix":"10.1016","volume":"67","author":[{"given":"Waleed","family":"Alsanie","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1363-2336","authenticated-orcid":false,"given":"James","family":"Cussens","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ijar.2015.06.003_br0010","series-title":"Proceedings on XI International Conference on Artificial Intelligence: (Al-24'2009)","first-page":"5","article-title":"Application of dynamic Bayesian networks to cervical cancer screening","author":"Agnieszka Druzdzel","year":"2009"},{"key":"10.1016\/j.ijar.2015.06.003_br0020","series-title":"Proceedings of the 10th European Conference on Machine Learning (ECML-98)","first-page":"226","article-title":"Predicate invention and learning from positive examples only","volume":"vol. 1398","author":"Bostr\u00f6m","year":"1998"},{"issue":"1","key":"10.1016\/j.ijar.2015.06.003_br0030","doi-asserted-by":"crossref","first-page":"172","DOI":"10.1016\/j.cell.2009.01.055","article-title":"A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches","volume":"137","author":"Cantone","year":"2009","journal-title":"Cell"},{"key":"10.1016\/j.ijar.2015.06.003_br0040","series-title":"Proceedings of the 33rd Annual Meeting on Association for Computational Linguistics","first-page":"228","article-title":"Bayesian grammar induction for language modeling","author":"Chen","year":"1995"},{"key":"10.1016\/j.ijar.2015.06.003_br0050","series-title":"Learning from Data: Artificial Intelligence and Statistics V","article-title":"Learning bayesian networks is NP-complete","author":"Chickering","year":"1996"},{"key":"10.1016\/j.ijar.2015.06.003_br0060","series-title":"Proceedings of the Twelfth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-96)","first-page":"158","article-title":"Efficient approximations for the marginal likelihood of incomplete data given a bayesian network","author":"Chickering","year":"1996"},{"key":"10.1016\/j.ijar.2015.06.003_br0070","first-page":"1287","article-title":"Large-sample learning of Bayesian networks is NP-hard","volume":"5","author":"Chickering","year":"2004","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.ijar.2015.06.003_br0080","series-title":"Proceedings of the 2001 Workshop on Computational Natural Language Learning","first-page":"1","article-title":"Unsupervised induction of stochastic context-free grammars using distributional clustering","author":"Clark","year":"2001"},{"key":"10.1016\/j.ijar.2015.06.003_br0090","series-title":"Probabilistic Networks and Expert Systems: Exact Computational Methods for Bayesian Networks (Information Science and Statistics)","author":"Cowell","year":"2007"},{"issue":"3","key":"10.1016\/j.ijar.2015.06.003_br0100","doi-asserted-by":"crossref","first-page":"245","DOI":"10.1023\/A:1010924021315","article-title":"Parameter estimation in stochastic logic programs","volume":"44","author":"Cussens","year":"2001","journal-title":"Mach. Learn."},{"key":"10.1016\/j.ijar.2015.06.003_br0110","series-title":"Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI-11)","first-page":"153","article-title":"Bayesian network learning with cutting planes","author":"Cussens","year":"2011"},{"key":"10.1016\/j.ijar.2015.06.003_br0120","first-page":"1","article-title":"Online Bayesian inference for the parameters of PRISM programs","author":"Cussens","year":"2012","journal-title":"Mach. Learn."},{"issue":"9","key":"10.1016\/j.ijar.2015.06.003_br0130","doi-asserted-by":"crossref","first-page":"1332","DOI":"10.1016\/j.patcog.2005.01.003","article-title":"A bibliographical study of grammatical inference","volume":"38","author":"de la Higuera","year":"2005","journal-title":"Pattern Recognit."},{"issue":"1","key":"10.1016\/j.ijar.2015.06.003_br0140","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1111\/j.2517-6161.1977.tb01600.x","article-title":"Maximum likelihood from incomplete data via the EM algorithm","volume":"39","author":"Dempster","year":"1977","journal-title":"J. R. Stat. Soc. B"},{"key":"10.1016\/j.ijar.2015.06.003_br0150","series-title":"Metaheuristics for Hard Optimization","author":"Dr\u00e9o","year":"2006"},{"key":"10.1016\/j.ijar.2015.06.003_br0160","series-title":"Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids","author":"Durbin","year":"1998"},{"key":"10.1016\/j.ijar.2015.06.003_br0170","series-title":"Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI)","first-page":"139","article-title":"Learning the structure of dynamic probabilistic networks","author":"Friedman","year":"1998"},{"key":"10.1016\/j.ijar.2015.06.003_br0180","series-title":"Proceedings of the International Workshop on Parsing Technologies","first-page":"89","article-title":"Probabilistic feature grammars","author":"Goodman","year":"1997"},{"issue":"3","key":"10.1016\/j.ijar.2015.06.003_br0190","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1007\/BF00994016","article-title":"Learning Bayesian networks: the combination of knowledge and statistical data","volume":"20","author":"Heckerman","year":"1995","journal-title":"Mach. Learn."},{"key":"10.1016\/j.ijar.2015.06.003_br0200","series-title":"Proceedings of the 12th International Conference on Parsing Technologies","first-page":"63","article-title":"Bayesian network automata for modelling unbounded structures","author":"Henderson","year":"2011"},{"key":"10.1016\/j.ijar.2015.06.003_br0210","series-title":"Introduction to Automata Theory, Languages, and Computation","author":"Hopcroft","year":"2000"},{"key":"10.1016\/j.ijar.2015.06.003_br0220","series-title":"Introduction to Statistical Relational Learning","first-page":"291","article-title":"Bayesian logic programming: theory and tool","author":"Kersting","year":"2007"},{"issue":"4598","key":"10.1016\/j.ijar.2015.06.003_br0230","doi-asserted-by":"crossref","first-page":"671","DOI":"10.1126\/science.220.4598.671","article-title":"Optimization by simulated annealing","volume":"220","author":"Kirkpatrick","year":"1983","journal-title":"Science"},{"key":"10.1016\/j.ijar.2015.06.003_br0240","series-title":"International Joint Conference on Natural Language Processing Workshop Beyond Shallow Analyses","article-title":"An application of the variational Bayesian approach to probabilistic context-free grammars","author":"Kurihara","year":"2004"},{"key":"10.1016\/j.ijar.2015.06.003_br0250","series-title":"Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics","first-page":"75","article-title":"Probabilistic CFG with latent annotations","author":"Matsuzaki","year":"2005"},{"issue":"2\u20133","key":"10.1016\/j.ijar.2015.06.003_br0260","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1023\/A:1007469629108","article-title":"Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables","volume":"29","author":"Maxwell Chickering","year":"1997","journal-title":"Mach. Learn."},{"key":"10.1016\/j.ijar.2015.06.003_br0270","series-title":"IEEE International Conference on Industrial Engineering and Engineering Management (IEEM 2009)","first-page":"1155","article-title":"Using dynamic Bayesian networks for prognostic modelling to inform maintenance decision making","author":"McNaught","year":"2009"},{"issue":"3\u20134","key":"10.1016\/j.ijar.2015.06.003_br0280","doi-asserted-by":"crossref","first-page":"245","DOI":"10.1007\/BF03037227","article-title":"Inverse entailment and progol","volume":"13","author":"Muggleton","year":"1995","journal-title":"New Gener. Comput."},{"key":"10.1016\/j.ijar.2015.06.003_br0290","series-title":"Proceedings of the AAAI 2000, Workshop on Learning Statistical Models from Relational Data","article-title":"Learning stochastic logic programs","author":"Muggleton","year":"2000"},{"key":"10.1016\/j.ijar.2015.06.003_br0300","series-title":"Dynamic Bayesian networks: representation, inference and learning","author":"Murphy","year":"2002"},{"key":"10.1016\/j.ijar.2015.06.003_br0310","series-title":"Modelling gene expression data using dynamic Bayesian networks","author":"Murphy","year":"1999"},{"key":"10.1016\/j.ijar.2015.06.003_br0320","first-page":"153","article-title":"A Note on Inductive Generalization","volume":"vol. 5","author":"Plotkin","year":"1970"},{"key":"10.1016\/j.ijar.2015.06.003_br0330","first-page":"3647","article-title":"Learning non-stationary dynamic Bayesian networks","volume":"11","author":"Robinson","year":"2010","journal-title":"J. Mach. Learn. Res."},{"issue":"2\u20133","key":"10.1016\/j.ijar.2015.06.003_br0340","doi-asserted-by":"crossref","first-page":"223","DOI":"10.1016\/0304-3975(90)90017-C","article-title":"Learning context-free grammars from structural data in polynomial time","volume":"76","author":"Sakakibara","year":"1990","journal-title":"Theor. Comput. Sci."},{"issue":"1","key":"10.1016\/j.ijar.2015.06.003_br0350","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1016\/0890-5401(92)90003-X","article-title":"Efficient learning of context-free grammars from positive structural examples","volume":"97","author":"Sakakibara","year":"1992","journal-title":"Inf. Comput."},{"key":"10.1016\/j.ijar.2015.06.003_br0360","series-title":"Grammatical Inference: Algorithms and Applications","first-page":"245","article-title":"Learning context-free grammars from partially structured examples","author":"Sakakibara","year":"2000"},{"key":"10.1016\/j.ijar.2015.06.003_br0370","series-title":"Proceedings of the 12th International Conference on Logic Programming (ICLP'95)","first-page":"715","article-title":"A statistical learning method for logic programs with distribution semantics","author":"Sato","year":"1995"},{"key":"10.1016\/j.ijar.2015.06.003_br0380","series-title":"Logic Programming","first-page":"24","article-title":"Generative modeling by PRISM","volume":"vol. 5649","author":"Sato","year":"2009"},{"key":"10.1016\/j.ijar.2015.06.003_br0390","series-title":"Proceedings of the 15th International Joint Conference on Artificial Intelligence","first-page":"1330","article-title":"PRISM: a language for symbolic-statistical modeling","author":"Sato","year":"1997"},{"key":"10.1016\/j.ijar.2015.06.003_br0400","doi-asserted-by":"crossref","first-page":"391","DOI":"10.1613\/jair.912","article-title":"Parameter learning of logic programs for symbolic-statistical modeling","volume":"15","author":"Sato","year":"2001","journal-title":"J. Artif. Intell. Res."},{"key":"10.1016\/j.ijar.2015.06.003_br0410","series-title":"Probabilistic Inductive Logic Programming","article-title":"New advances in logic-based probabilistic modeling by PRISM","volume":"vol. 4911","author":"Sato","year":"2008"},{"issue":"1\u20133","key":"10.1016\/j.ijar.2015.06.003_br0420","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1007\/s10472-009-9135-8","article-title":"Variational Bayes via propositionalized probability computation in PRISM","volume":"54","author":"Sato","year":"2008","journal-title":"Ann. Math. Artif. Intell."},{"issue":"2","key":"10.1016\/j.ijar.2015.06.003_br0430","doi-asserted-by":"crossref","first-page":"461","DOI":"10.1214\/aos\/1176344136","article-title":"Estimating the dimension of a model","volume":"6","author":"Schwarz","year":"1978","journal-title":"Ann. Stat."},{"issue":"2","key":"10.1016\/j.ijar.2015.06.003_br0440","doi-asserted-by":"crossref","first-page":"166","DOI":"10.1038\/ng1165","article-title":"Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data","volume":"34","author":"Segal","year":"2003","journal-title":"Nat. Genet."},{"key":"10.1016\/j.ijar.2015.06.003_br0450","series-title":"Best-first model merging for hidden Markov model induction","author":"Stolcke","year":"1994"},{"key":"10.1016\/j.ijar.2015.06.003_br0460","series-title":"Proceedings of the 9th International Colloquium on Grammatical Inference","first-page":"224","article-title":"Unsupervised learning of probabilistic context-free grammar using iterative biclustering","volume":"vol. 5278","author":"Tu","year":"2008"},{"issue":"1","key":"10.1016\/j.ijar.2015.06.003_br0470","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1007\/BF00058754","article-title":"A version space approach to learning context-free grammars","volume":"2","author":"Vanlehn","year":"1987","journal-title":"Mach. Learn."},{"issue":"19","key":"10.1016\/j.ijar.2015.06.003_br0480","doi-asserted-by":"crossref","first-page":"2765","DOI":"10.1093\/bioinformatics\/btr457","article-title":"Globalmit: learning globally optimal dynamic Bayesian network with the mutual information test criterion","volume":"27","author":"Vinh","year":"2011","journal-title":"Bioinformatics"},{"key":"10.1016\/j.ijar.2015.06.003_br0490","series-title":"Graphical Models, Exponential Families, and Variational Inference. Foundations and Trends in Machine Learning","author":"Wainwright","year":"2008"},{"issue":"1","key":"10.1016\/j.ijar.2015.06.003_br0500","doi-asserted-by":"crossref","first-page":"357","DOI":"10.1186\/1471-2105-8-357","article-title":"An evolutionary method for learning HMM structure: prediction of protein secondary structure","volume":"8","author":"Won","year":"2007","journal-title":"BMC Bioinform."}],"container-title":["International Journal of Approximate Reasoning"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0888613X15000870?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0888613X15000870?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,6,9]],"date-time":"2024-06-09T14:02:05Z","timestamp":1717941725000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0888613X15000870"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,12]]},"references-count":50,"alternative-id":["S0888613X15000870"],"URL":"https:\/\/doi.org\/10.1016\/j.ijar.2015.06.003","relation":{},"ISSN":["0888-613X"],"issn-type":[{"value":"0888-613X","type":"print"}],"subject":[],"published":{"date-parts":[[2015,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Learning failure-free PRISM programs","name":"articletitle","label":"Article Title"},{"value":"International Journal of Approximate Reasoning","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ijar.2015.06.003","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2015 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}