{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,2]],"date-time":"2024-07-02T09:55:20Z","timestamp":1719914120803},"reference-count":42,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001665","name":"Agence Nationale de la Recherche","doi-asserted-by":"publisher","award":["ANR-19-CE10-011"],"id":[{"id":"10.13039\/501100001665","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Graphical Models"],"published-print":{"date-parts":[[2022,9]]},"DOI":"10.1016\/j.gmod.2022.101166","type":"journal-article","created":{"date-parts":[[2022,9,5]],"date-time":"2022-09-05T18:12:25Z","timestamp":1662401545000},"page":"101166","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["A data driven approach to generate realistic 3D tree barks"],"prefix":"10.1016","volume":"123","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-6100-0034","authenticated-orcid":false,"given":"Aishwarya","family":"Venkataramanan","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4018-699X","authenticated-orcid":false,"given":"Antoine","family":"Richard","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1746-2733","authenticated-orcid":false,"given":"C\u00e9dric","family":"Pradalier","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.gmod.2022.101166_b1","series-title":"11th Pacific Conference OnComputer Graphics and Applications, 2003. Proceedings","first-page":"83","article-title":"Interactive modeling of tree bark","author":"Wang","year":"2003"},{"key":"10.1016\/j.gmod.2022.101166_b2","series-title":"Procedural Modeling of Tree Bark","author":"Laitoch","year":"2018"},{"issue":"12","key":"10.1016\/j.gmod.2022.101166_b3","doi-asserted-by":"crossref","first-page":"2608","DOI":"10.1109\/TVCG.2015.2513409","article-title":"Tree modeling with real tree-parts examples","volume":"22","author":"Xie","year":"2015","journal-title":"IEEE Trans. Vis. Comput. Graphics"},{"key":"10.1016\/j.gmod.2022.101166_b4","series-title":"ACM SIGGRAPH Asia 2008 Papers","first-page":"1","article-title":"Sketch-based tree modeling using markov random field","author":"Chen","year":"2008"},{"key":"10.1016\/j.gmod.2022.101166_b5","series-title":"ACM SIGGRAPH 2006 Courses","first-page":"18","article-title":"Interactive design of botanical trees using freehand sketches and example-based editing","author":"Okabe","year":"2006"},{"key":"10.1016\/j.gmod.2022.101166_b6","series-title":"ACM SIGGRAPH 2007 Papers","first-page":"88","article-title":"Approximate image-based tree-modeling using particle flows","author":"Neubert","year":"2007"},{"key":"10.1016\/j.gmod.2022.101166_b7","article-title":"Realistic procedural plant modeling from multiple view images","author":"Guo","year":"2018","journal-title":"IEEE Trans. Vis. Comput. Graphics"},{"issue":"5","key":"10.1016\/j.gmod.2022.101166_b8","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/1409060.1409061","article-title":"Single image tree modeling","volume":"27","author":"Tan","year":"2008","journal-title":"ACM Trans. Graph."},{"key":"10.1016\/j.gmod.2022.101166_b9","series-title":"Advances in Neural Information Processing Systems","first-page":"2672","article-title":"Generative adversarial nets","author":"Goodfellow","year":"2014"},{"key":"10.1016\/j.gmod.2022.101166_b10","series-title":"ACM SIGGRAPH 2006 Papers","first-page":"599","article-title":"Image-based plant modeling","author":"Quan","year":"2006"},{"issue":"6","key":"10.1016\/j.gmod.2022.101166_b11","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/2070781.2024161","article-title":"Modeling and generating moving trees from video","volume":"30","author":"Li","year":"2011","journal-title":"ACM Trans. Graph."},{"key":"10.1016\/j.gmod.2022.101166_b12","doi-asserted-by":"crossref","DOI":"10.1016\/j.gmod.2021.101115","article-title":"Single image tree reconstruction via adversarial network","volume":"117","author":"Liu","year":"2021","journal-title":"Graph. Models"},{"key":"10.1016\/j.gmod.2022.101166_b13","series-title":"European Conference on Artificial Life","first-page":"572","article-title":"A multi-agent based approach to modelling and rendering of 3D tree bark textures","author":"Tao","year":"2003"},{"issue":"8\u201310","key":"10.1016\/j.gmod.2022.101166_b14","doi-asserted-by":"crossref","first-page":"717","DOI":"10.1007\/s00371-005-0317-z","article-title":"Modeling cracks and fractures","volume":"21","author":"Desbenoit","year":"2005","journal-title":"Vis. Comput."},{"key":"10.1016\/j.gmod.2022.101166_b15","series-title":"Comput. Graph. Forum, Vol. 34","first-page":"361","article-title":"Woodification: User-controlled cambial growth modeling","author":"Kratt","year":"2015"},{"issue":"3","key":"10.1016\/j.gmod.2022.101166_b16","doi-asserted-by":"crossref","first-page":"305","DOI":"10.1145\/325165.325249","article-title":"Modeling the mighty maple","volume":"19","author":"Bloomenthal","year":"1985","journal-title":"ACM SIGGRAPH Comput. Graph."},{"key":"10.1016\/j.gmod.2022.101166_b17","series-title":"Unsupervised representation learning with deep convolutional generative adversarial networks","author":"Radford","year":"2015"},{"key":"10.1016\/j.gmod.2022.101166_b18","doi-asserted-by":"crossref","unstructured":"X. Mao, Q. Li, H. Xie, R.Y. Lau, Z. Wang, S. Paul\u00a0Smolley, Least squares generative adversarial networks, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2794\u20132802.","DOI":"10.1109\/ICCV.2017.304"},{"key":"10.1016\/j.gmod.2022.101166_b19","series-title":"Wasserstein gan","author":"Arjovsky","year":"2017"},{"key":"10.1016\/j.gmod.2022.101166_b20","series-title":"Progressive growing of gans for improved quality, stability, and variation","author":"Karras","year":"2017"},{"key":"10.1016\/j.gmod.2022.101166_b21","doi-asserted-by":"crossref","unstructured":"T. Karras, S. Laine, T. Aila, A style-based generator architecture for generative adversarial networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 4401\u20134410.","DOI":"10.1109\/CVPR.2019.00453"},{"key":"10.1016\/j.gmod.2022.101166_b22","series-title":"Analyzing and improving the image quality of stylegan","author":"Karras","year":"2019"},{"key":"10.1016\/j.gmod.2022.101166_b23","doi-asserted-by":"crossref","unstructured":"P. Isola, J.-Y. Zhu, T. Zhou, A.A. Efros, Image-to-image translation with conditional adversarial networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1125\u20131134.","DOI":"10.1109\/CVPR.2017.632"},{"key":"10.1016\/j.gmod.2022.101166_b24","series-title":"Computer Vision (ICCV), 2017 IEEE International Conference on","article-title":"Unpaired image-to-image translation using cycle-consistent adversarial networkss","author":"Zhu","year":"2017"},{"key":"10.1016\/j.gmod.2022.101166_b25","doi-asserted-by":"crossref","unstructured":"Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, J. Choo, Stargan: Unified generative adversarial networks for multi-domain image-to-image translation, in: Proceedings of the IEEE of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8789\u20138797.","DOI":"10.1109\/CVPR.2018.00916"},{"key":"10.1016\/j.gmod.2022.101166_b26","series-title":"Self-attention generative adversarial networks","author":"Zhang","year":"2018"},{"key":"10.1016\/j.gmod.2022.101166_b27","doi-asserted-by":"crossref","unstructured":"T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, B. Catanzaro, High-resolution image synthesis and semantic manipulation with conditional gans, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8798\u20138807.","DOI":"10.1109\/CVPR.2018.00917"},{"key":"10.1016\/j.gmod.2022.101166_b28","doi-asserted-by":"crossref","unstructured":"T. Park, M.-Y. Liu, T.-C. Wang, J.-Y. Zhu, Semantic image synthesis with spatially-adaptive normalization, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 2337\u20132346.","DOI":"10.1109\/CVPR.2019.00244"},{"issue":"4","key":"10.1016\/j.gmod.2022.101166_b29","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3306346.3322993","article-title":"TileGAN: synthesis of large-scale non-homogeneous textures","volume":"38","author":"Fr\u00fchst\u00fcck","year":"2019","journal-title":"ACM Trans. Graph."},{"key":"10.1016\/j.gmod.2022.101166_b30","unstructured":"S. Pix4D, Pix4Dmapper 4.1 User Manual, in: Pix4D SA, Lausanne, Switzerland, 2017."},{"key":"10.1016\/j.gmod.2022.101166_b31","doi-asserted-by":"crossref","unstructured":"H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, Pyramid scene parsing network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2881\u20132890.","DOI":"10.1109\/CVPR.2017.660"},{"key":"10.1016\/j.gmod.2022.101166_b32","doi-asserted-by":"crossref","unstructured":"T. Sattler, W. Maddern, C. Toft, A. Torii, L. Hammarstrand, E. Stenborg, D. Safari, M. Okutomi, M. Pollefeys, J. Sivic, et al. Benchmarking 6dof outdoor visual localization in changing conditions, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8601\u20138610.","DOI":"10.1109\/CVPR.2018.00897"},{"key":"10.1016\/j.gmod.2022.101166_b33","doi-asserted-by":"crossref","unstructured":"J.L. Schonberger, J.-M. Frahm, Structure-from-motion revisited, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 4104\u20134113.","DOI":"10.1109\/CVPR.2016.445"},{"key":"10.1016\/j.gmod.2022.101166_b34","series-title":"European Conference on Computer Vision","first-page":"501","article-title":"Pixelwise view selection for unstructured multi-view stereo","author":"Sch\u00f6nberger","year":"2016"},{"key":"10.1016\/j.gmod.2022.101166_b35","doi-asserted-by":"crossref","unstructured":"K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770\u2013778.","DOI":"10.1109\/CVPR.2016.90"},{"key":"10.1016\/j.gmod.2022.101166_b36","series-title":"European Conference on Computer Vision","first-page":"694","article-title":"Perceptual losses for real-time style transfer and super-resolution","author":"Johnson","year":"2016"},{"key":"10.1016\/j.gmod.2022.101166_b37","series-title":"The Visualization Toolkit: An Object-Oriented Approach To 3D Graphics","author":"Schroeder","year":"2004"},{"key":"10.1016\/j.gmod.2022.101166_b38","series-title":"Edgeconnect: Generative image inpainting with adversarial edge learning","author":"Nazeri","year":"2019"},{"key":"10.1016\/j.gmod.2022.101166_b39","series-title":"Advances in Neural Information Processing Systems","first-page":"6626","article-title":"Gans trained by a two time-scale update rule converge to a local nash equilibrium","author":"Heusel","year":"2017"},{"key":"10.1016\/j.gmod.2022.101166_b40","doi-asserted-by":"crossref","unstructured":"L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, H. Adam, Encoder-decoder with atrous separable convolution for semantic image segmentation, in: Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 801\u2013818.","DOI":"10.1007\/978-3-030-01234-2_49"},{"key":"10.1016\/j.gmod.2022.101166_b41","series-title":"SRFlow: Learning the super-resolution space with normalizing flow","author":"Lugmayr","year":"2020"},{"key":"10.1016\/j.gmod.2022.101166_b42","series-title":"Advances in Neural Information Processing Systems","first-page":"10215","article-title":"Glow: Generative flow with invertible 1x1 convolutions","author":"Kingma","year":"2018"}],"container-title":["Graphical Models"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S152407032200042X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S152407032200042X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,4,3]],"date-time":"2023-04-03T13:31:11Z","timestamp":1680528671000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S152407032200042X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,9]]},"references-count":42,"alternative-id":["S152407032200042X"],"URL":"https:\/\/doi.org\/10.1016\/j.gmod.2022.101166","relation":{},"ISSN":["1524-0703"],"issn-type":[{"value":"1524-0703","type":"print"}],"subject":[],"published":{"date-parts":[[2022,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A data driven approach to generate realistic 3D tree barks","name":"articletitle","label":"Article Title"},{"value":"Graphical Models","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.gmod.2022.101166","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"101166"}}