{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,8]],"date-time":"2024-07-08T21:04:23Z","timestamp":1720472663196},"reference-count":36,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100013058","name":"Jiangsu Provincial Key Research and Development Program","doi-asserted-by":"publisher","award":["BE2020084-1"],"id":[{"id":"10.13039\/501100013058","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Future Generation Computer Systems"],"published-print":{"date-parts":[[2024,1]]},"DOI":"10.1016\/j.future.2023.09.017","type":"journal-article","created":{"date-parts":[[2023,9,15]],"date-time":"2023-09-15T05:58:50Z","timestamp":1694757530000},"page":"412-423","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["A Graph reinforcement learning based SDN routing path selection for optimizing long-term revenue"],"prefix":"10.1016","volume":"150","author":[{"given":"Jiawei","family":"Xu","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0448-325X","authenticated-orcid":false,"given":"Yufeng","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Bo","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Jianhua","family":"Ma","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.future.2023.09.017_b1","unstructured":"https:\/\/www.cisco.com\/c\/en\/us\/solutions\/collateral\/executive-perspectives\/annual-internet-report\/white-paper-c11-741490.html."},{"key":"10.1016\/j.future.2023.09.017_b2","doi-asserted-by":"crossref","first-page":"184","DOI":"10.1016\/j.comcom.2022.09.029","article-title":"Deep reinforcement learning meets graph neural networks: Exploring a routing optimization use case","volume":"196","author":"Almasan","year":"2022","journal-title":"Comput. Commun."},{"key":"10.1016\/j.future.2023.09.017_b3","doi-asserted-by":"crossref","unstructured":"K. Rusek, J. Su\u00e1rez-Varela, A. Mestres, P. Barlet-Ros, A. Cabellos-Aparicio, Unveiling the potential of Graph Neural Networks for network modeling and optimization in SDN, in: Proc. of ACM Symposium on SDN Research, 2019, pp. 140\u2013151.","DOI":"10.1145\/3314148.3314357"},{"issue":"10","key":"10.1016\/j.future.2023.09.017_b4","doi-asserted-by":"crossref","first-page":"2260","DOI":"10.1109\/JSAC.2020.3000405","article-title":"RouteNet: Leveraging Graph Neural Networks for network modeling and optimization in SDN","volume":"38","author":"Rusek","year":"2020","journal-title":"IEEE J. Sel. Areas Commun."},{"key":"10.1016\/j.future.2023.09.017_b5","doi-asserted-by":"crossref","first-page":"213","DOI":"10.1016\/j.comcom.2021.07.010","article-title":"Reinforcement learning multi-agent system for faults diagnosis of mircoservices in industrial settings","volume":"177","author":"Belhadi","year":"2021","journal-title":"Comput. Commun."},{"key":"10.1016\/j.future.2023.09.017_b6","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1016\/j.patrec.2022.03.018","article-title":"Hyper-graph-based attention curriculum learning using a lexical algorithm for mental health","volume":"157","author":"Ahmed","year":"2022","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.future.2023.09.017_b7","doi-asserted-by":"crossref","first-page":"40","DOI":"10.1016\/j.comcom.2021.12.015","article-title":"Graph-based deep learning for communication networks: A survey","volume":"185","author":"Jiang","year":"2022","journal-title":"Comput. Commun."},{"key":"10.1016\/j.future.2023.09.017_b8","series-title":"Relational inductive biases, deep learning, and graph networks","author":"Battaglia","year":"2018"},{"key":"10.1016\/j.future.2023.09.017_b9","doi-asserted-by":"crossref","unstructured":"M. Beshley, M. Seliuchenko, O. Panchenko, A. Polishuk, Adaptive flow routing model in SDN, in: Proc. of Experience of Designing & Application of Cad Systems in Microelectronics, 2017.","DOI":"10.1109\/CADSM.2017.7916140"},{"key":"10.1016\/j.future.2023.09.017_b10","doi-asserted-by":"crossref","unstructured":"A. Hernandez, E. Magana, One-way delay measurement and characterization, in: Proc. of International Conference on Networking and Services (ICNS\u201907), 2007.","DOI":"10.1109\/ICNS.2007.87"},{"key":"10.1016\/j.future.2023.09.017_b11","doi-asserted-by":"crossref","first-page":"104582","DOI":"10.1109\/ACCESS.2021.3099092","article-title":"A survey on machine learning techniques for routing optimization in SDN","volume":"9","author":"Amin","year":"2021","journal-title":"IEEE Access"},{"issue":"9","key":"10.1016\/j.future.2023.09.017_b12","doi-asserted-by":"crossref","first-page":"671","DOI":"10.1364\/JOCN.4.000671","article-title":"Add\/drop contention-aware RWA with directionless ROADMs: The offline lightpath restoration case","volume":"4","author":"Pavon-Marino","year":"2012","journal-title":"IEEE\/OSA J. Opt. Commun. Netw."},{"key":"10.1016\/j.future.2023.09.017_b13","doi-asserted-by":"crossref","unstructured":"P. Pavon-Marino, M.V. Bueno-Delgado, Distributed online RWA considering add\/drop contention in the nodes for directionless and colorless ROADMs, in: Proc. of OFC\/NFOEC, 2012.","DOI":"10.1364\/NFOEC.2012.NW3F.4"},{"key":"10.1016\/j.future.2023.09.017_b14","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s11432-015-5510-8","article-title":"Lightpath blocking analysis for optical networks with ROADM intra-node add-drop contention","volume":"59","author":"Li","year":"2016","journal-title":"Sci. China Inf. Sci."},{"issue":"4","key":"10.1016\/j.future.2023.09.017_b15","doi-asserted-by":"crossref","first-page":"1318","DOI":"10.1109\/TNSM.2019.2947905","article-title":"A deep reinforcement learning approach for VNF forwarding graph embedding","volume":"16","author":"Quang","year":"2019","journal-title":"IEEE Trans. Netw. Serv. Manage."},{"issue":"18","key":"10.1016\/j.future.2023.09.017_b16","doi-asserted-by":"crossref","first-page":"5216","DOI":"10.3390\/s20185216","article-title":"A graph convolutional network-based deep reinforcement learning approach for resource allocation in a cognitive radio network","volume":"20","author":"Zhao","year":"2020","journal-title":"Sensors"},{"key":"10.1016\/j.future.2023.09.017_b17","doi-asserted-by":"crossref","unstructured":"Z. He, L. Wang, H. Ye, G.Y. Li, B.-H.F. Juang, Resource allocation based on graph neural networks in vehicular communications, in: Proc. of IEEE Global Communications Conference, 2020, pp. 1\u20135.","DOI":"10.1109\/GLOBECOM42002.2020.9322537"},{"issue":"16","key":"10.1016\/j.future.2023.09.017_b18","doi-asserted-by":"crossref","first-page":"4155","DOI":"10.1109\/JLT.2019.2923615","article-title":"DeepRMSA: a deep reinforcement learning framework for routing, modulation and spectrum assignment in elastic optical networks","volume":"37","author":"Chen","year":"2019","journal-title":"J. Lightwave Technol."},{"issue":"11","key":"10.1016\/j.future.2023.09.017_b19","doi-asserted-by":"crossref","first-page":"547","DOI":"10.1364\/JOCN.11.000547","article-title":"Routing in optical transport networks with deep reinforcement learning","volume":"11","author":"Su\u00e1rez-Varela","year":"2019","journal-title":"J. Opt. Commun. Netw."},{"key":"10.1016\/j.future.2023.09.017_b20","doi-asserted-by":"crossref","first-page":"64533","DOI":"10.1109\/ACCESS.2018.2877686","article-title":"DROM: Optimizing the routing in software-defined networks with deep reinforcement learning","volume":"6","author":"Yu","year":"2018","journal-title":"IEEE Access"},{"issue":"4","key":"10.1016\/j.future.2023.09.017_b21","doi-asserted-by":"crossref","first-page":"3185","DOI":"10.1109\/TNSE.2020.3017751","article-title":"RL-routing: An SDN routing algorithm based on deep reinforcement learning","volume":"7","author":"Chen","year":"2020","journal-title":"IEEE Trans. Netw. Sci. Eng."},{"key":"10.1016\/j.future.2023.09.017_b22","doi-asserted-by":"crossref","unstructured":"M. Eisen, A. Ribeiro, Large scale wireless power allocation with graph neural networks, in: Proc. of the IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2019, pp. 1\u20135.","DOI":"10.1109\/SPAWC.2019.8815526"},{"key":"10.1016\/j.future.2023.09.017_b23","doi-asserted-by":"crossref","unstructured":"A. Chowdhury, G. Verma, C. Rao, A. Swami, S. Segarra, Efficient power allocation using graph neural networks and deep algorithm unfolding, in: Proc. of ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021, pp. 4725\u20134729.","DOI":"10.1109\/ICASSP39728.2021.9415106"},{"issue":"1","key":"10.1016\/j.future.2023.09.017_b24","doi-asserted-by":"crossref","first-page":"101","DOI":"10.1109\/JSAC.2020.3036965","article-title":"Graph neural networks for scalable radio resource management: Architecture design and theoretical analysis","volume":"39","author":"Shen","year":"2020","journal-title":"IEEE J. Sel. Areas Commun."},{"key":"10.1016\/j.future.2023.09.017_b25","doi-asserted-by":"crossref","unstructured":"N. Naderializadeh, M. Eisen, A. Ribeiro, Wireless power control via counterfactual optimization of graph neural networks, in: Proc. of 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2020, pp. 1\u20135.","DOI":"10.1109\/SPAWC48557.2020.9154336"},{"key":"10.1016\/j.future.2023.09.017_b26","doi-asserted-by":"crossref","unstructured":"K. He, Y. Huang, X. Chen, Z. Zhou, S. Yu, Graph attention spatial\u2013temporal network for deep learning based mobile traffic prediction, in: Proc. of IEEE Global Communications Conference (GLOBECOM), 2019, pp. 1\u20136.","DOI":"10.1109\/GLOBECOM38437.2019.9013136"},{"issue":"4","key":"10.1016\/j.future.2023.09.017_b27","doi-asserted-by":"crossref","first-page":"1244","DOI":"10.1109\/TMC.2020.3020582","article-title":"Graph attention spatial\u2013temporal network with collaborative global-local learning for citywide mobile traffic prediction","volume":"21","author":"He","year":"2022","journal-title":"IEEE Trans. Mobile Comput."},{"issue":"9","key":"10.1016\/j.future.2023.09.017_b28","doi-asserted-by":"crossref","first-page":"1014","DOI":"10.3390\/electronics10091014","article-title":"Dc-stgcn: Dual-channel based graph convolutional networks for network traffic forecasting","volume":"10","author":"Pan","year":"2021","journal-title":"Electronics"},{"issue":"12","key":"10.1016\/j.future.2023.09.017_b29","doi-asserted-by":"crossref","first-page":"4456","DOI":"10.1109\/TMC.2021.3079117","article-title":"Mobile data traffic prediction by exploiting time-evolving user mobility patterns","volume":"21","author":"Sun","year":"2022","journal-title":"IEEE Trans. Mobile Comput."},{"key":"10.1016\/j.future.2023.09.017_b30","unstructured":"J. Zhou, Z. Xu, A.M. Rush, M. Yu, Automating botnet detection with graph neural networks, in: Proc. of AutoML for Networking and Systems Workshop of MLSys 2020 Conference, 2020, pp. 1\u20138."},{"issue":"6","key":"10.1016\/j.future.2023.09.017_b31","doi-asserted-by":"crossref","first-page":"1564","DOI":"10.1109\/LCOMM.2020.3048995","article-title":"Discovering attack scenarios via intrusion alert correlation using graph convolutional networks","volume":"25","author":"Cheng","year":"2021","journal-title":"IEEE Commun. Lett."},{"key":"10.1016\/j.future.2023.09.017_b32","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1016\/j.comcom.2021.07.025","article-title":"GraphNET: Graph neural networks for routing optimization in software defined networks","volume":"178","author":"Swaminathan","year":"2021","journal-title":"Comput. Commun."},{"key":"10.1016\/j.future.2023.09.017_b33","unstructured":"J.B. Hamrick, K.R. Allen, V. Bapst, T. Zhu, K.R. McKee, J.B. Tenenbaum, P.W. Battaglia, Relational inductive bias for physical construction in humans and machines, in: Proc. of the Annual Meeting of the Cognitive Science Society (CogSci), 2018."},{"key":"10.1016\/j.future.2023.09.017_b34","unstructured":"A. Sanchez-Gonzalez, N. Heess, J.T. Springenberg, J. Merel, M. Riedmiller, R. Hadsell, P. Battaglia, Graph networks as learnable physics engines for inference and control, in: Proc. of International Conference on Machine Learning, PMLR, 2018, pp. 4470\u20134479."},{"key":"10.1016\/j.future.2023.09.017_b35","doi-asserted-by":"crossref","unstructured":"J. Pedro, J. Santos, J. Pires, Performance evaluation of integrated OTN\/DWDM networks with single-stage multiplexing of optical channel data units, in: Proc. of ICTON, 2011.","DOI":"10.1109\/ICTON.2011.5970940"},{"issue":"9","key":"10.1016\/j.future.2023.09.017_b36","doi-asserted-by":"crossref","first-page":"4385","DOI":"10.1109\/TKDE.2020.3039463","article-title":"Modelling high-order social relations for item recommendation","volume":"34","author":"Liu","year":"2022","journal-title":"IEEE Trans. Knowl. Data Eng."}],"container-title":["Future Generation Computer Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167739X23003497?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167739X23003497?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T15:51:10Z","timestamp":1711986670000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0167739X23003497"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,1]]},"references-count":36,"alternative-id":["S0167739X23003497"],"URL":"https:\/\/doi.org\/10.1016\/j.future.2023.09.017","relation":{},"ISSN":["0167-739X"],"issn-type":[{"value":"0167-739X","type":"print"}],"subject":[],"published":{"date-parts":[[2024,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A Graph reinforcement learning based SDN routing path selection for optimizing long-term revenue","name":"articletitle","label":"Article Title"},{"value":"Future Generation Computer Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.future.2023.09.017","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}