{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,4]],"date-time":"2024-09-04T12:59:00Z","timestamp":1725454740597},"reference-count":29,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,8,21]],"date-time":"2023-08-21T00:00:00Z","timestamp":1692576000000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Future Generation Computer Systems"],"published-print":{"date-parts":[[2024,1]]},"DOI":"10.1016\/j.future.2023.08.021","type":"journal-article","created":{"date-parts":[[2023,8,21]],"date-time":"2023-08-21T21:10:42Z","timestamp":1692652242000},"page":"78-89","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":3,"special_numbering":"C","title":["Federated Discrete Reinforcement Learning for Automatic Guided Vehicle Control"],"prefix":"10.1016","volume":"150","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-6088-9954","authenticated-orcid":false,"given":"J. Enrique","family":"Sierra-Garcia","sequence":"first","affiliation":[]},{"given":"Matilde","family":"Santos","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.future.2023.08.021_b1","doi-asserted-by":"crossref","first-page":"82","DOI":"10.4995\/riai.2020.12846","article-title":"Transporte multi-AGV de una carga: estado del arte y propuesta centralizada","volume":"18","author":"Espinosa","year":"2020","journal-title":"Rev. Iberoamericana Autom. e Inf. Ind."},{"key":"10.1016\/j.future.2023.08.021_b2","doi-asserted-by":"crossref","first-page":"96430","DOI":"10.1109\/ACCESS.2021.3094279","article-title":"UWB-based safety system for autonomous guided vehicles without hardware on the infrastructure","volume":"9","author":"Zamora-Cadenas","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.future.2023.08.021_b3","series-title":"2018 Chinese Automation Congress","first-page":"58","article-title":"Research on intelligent AGV control system","author":"Zhou","year":"2018"},{"issue":"4","key":"10.1016\/j.future.2023.08.021_b4","doi-asserted-by":"crossref","first-page":"1400","DOI":"10.1109\/TNNLS.2020.3042120","article-title":"Design and implementation of deep neural network-based control for automatic parking maneuver process","volume":"33","author":"Chai","year":"2020","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.future.2023.08.021_b5","doi-asserted-by":"crossref","DOI":"10.1111\/exsy.13076","article-title":"Combining reinforcement learning and conventional control to improve automatic guided vehicles tracking of complex trajectories","author":"Sierra-Garcia","year":"2022","journal-title":"Expert Syst."},{"key":"10.1016\/j.future.2023.08.021_b6","series-title":"Google Scholar","first-page":"329","article-title":"Reinforcement learning: An introduction","author":"Sutton","year":"2018"},{"issue":"3","key":"10.1016\/j.future.2023.08.021_b7","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1109\/MSP.2020.2975749","article-title":"Federated learning: Challenges, methods, and future directions","volume":"37","author":"Li","year":"2020","journal-title":"IEEE Signal Process. Mag."},{"key":"10.1016\/j.future.2023.08.021_b8","first-page":"374","article-title":"Towards federated learning at scale: System design","volume":"1","author":"Bonawitz","year":"2019","journal-title":"Proc. Mach. Learn. Syst."},{"issue":"2","key":"10.1016\/j.future.2023.08.021_b9","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3298981","article-title":"Federated machine learning: Concept and applications","volume":"10","author":"Yang","year":"2019","journal-title":"ACM Trans. Intell. Syst. Technol."},{"issue":"4","key":"10.1016\/j.future.2023.08.021_b10","doi-asserted-by":"crossref","first-page":"2490","DOI":"10.1109\/TSC.2020.3038641","article-title":"Blockchain security: A survey of techniques and research directions","volume":"15","author":"Leng","year":"2020","journal-title":"IEEE Trans. Serv. Comput."},{"issue":"1","key":"10.1016\/j.future.2023.08.021_b11","doi-asserted-by":"crossref","first-page":"84","DOI":"10.4995\/riai.2021.14622","article-title":"Modelado de un AGV h\u00edbrido triciclo-diferencial","volume":"19","author":"S\u00e1nchez","year":"2022","journal-title":"Rev. Iberoamericana Autom. e Inf. Ind."},{"key":"10.1016\/j.future.2023.08.021_b12","doi-asserted-by":"crossref","DOI":"10.1016\/j.jocs.2023.101956","article-title":"Federated learning for improved prediction of failures in autonomous guided vehicles","volume":"68","author":"Shubyn","year":"2023","journal-title":"J. Comput. Sci."},{"key":"10.1016\/j.future.2023.08.021_b13","series-title":"Computational Science\u2013ICCS 2022: 22nd International Conference, London, UK, June 21\u201323, 2022, Proceedings, Part IV","first-page":"409","article-title":"Federated learning for anomaly detection in industrial IoT-enabled production environment supported by autonomous guided vehicles","author":"Shubyn","year":"2022"},{"issue":"1","key":"10.1016\/j.future.2023.08.021_b14","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s13677-022-00352-z","article-title":"Reinforcement learning empowered multi-AGV offloading scheduling in edge-cloud IIoT","volume":"11","author":"Liu","year":"2022","journal-title":"J. Cloud Comput."},{"key":"10.1016\/j.future.2023.08.021_b15","doi-asserted-by":"crossref","first-page":"24258","DOI":"10.1109\/ACCESS.2020.2970433","article-title":"Deep interactive reinforcement learning for path following of autonomous underwater vehicle","volume":"8","author":"Zhang","year":"2020","journal-title":"IEEE Access"},{"issue":"29","key":"10.1016\/j.future.2023.08.021_b16","doi-asserted-by":"crossref","first-page":"329","DOI":"10.1016\/j.ifacol.2018.09.502","article-title":"Straight-path following for underactuated marine vessels using deep reinforcement learning","volume":"51","author":"Martinsen","year":"2018","journal-title":"IFAC-PapersOnLine"},{"issue":"1","key":"10.1016\/j.future.2023.08.021_b17","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1007\/s10514-020-09951-8","article-title":"Deep reinforcement learning for quadrotor path following with adaptive velocity","volume":"45","author":"Rub\u00ed","year":"2021","journal-title":"Auton. Robots"},{"issue":"11","key":"10.1016\/j.future.2023.08.021_b18","doi-asserted-by":"crossref","first-page":"4487","DOI":"10.1109\/TNNLS.2019.2955699","article-title":"A path-integral-based reinforcement learning algorithm for path following of an autoassembly mobile robot","volume":"31","author":"Zhu","year":"2019","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"12","key":"10.1016\/j.future.2023.08.021_b19","doi-asserted-by":"crossref","first-page":"7968","DOI":"10.1109\/TII.2021.3059676","article-title":"Self-adaptive traffic control model with behavior trees and reinforcement learning for AGV in industry 4.0","volume":"17","author":"Hu","year":"2021","journal-title":"IEEE Trans. Ind. Inform."},{"key":"10.1016\/j.future.2023.08.021_b20","doi-asserted-by":"crossref","DOI":"10.1016\/j.cie.2020.106749","article-title":"Deep reinforcement learning based AGVs real-time scheduling with mixed rule for flexible shop floor in industry 4.0","volume":"149","author":"Hu","year":"2020","journal-title":"Comput. Ind. Eng."},{"key":"10.1016\/j.future.2023.08.021_b21","series-title":"2018 IEEE International Conference on Industrial Technology","first-page":"1557","article-title":"A reinforcement learning method for multi-AGV scheduling in manufacturing","author":"Xue","year":"2018"},{"key":"10.1016\/j.future.2023.08.021_b22","doi-asserted-by":"crossref","DOI":"10.1109\/TASE.2022.3221352","article-title":"Federated deep reinforcement learning for task scheduling in heterogeneous autonomous robotic system","author":"Ho","year":"2022","journal-title":"IEEE Trans. Autom. Sci. Eng."},{"key":"10.1016\/j.future.2023.08.021_b23","doi-asserted-by":"crossref","DOI":"10.1016\/j.jclepro.2020.124405","article-title":"A loosely-coupled deep reinforcement learning approach for order acceptance decision of mass-individualized printed circuit board manufacturing in industry 4.0","volume":"280","author":"Leng","year":"2021","journal-title":"J. Clean. Prod."},{"issue":"21","key":"10.1016\/j.future.2023.08.021_b24","doi-asserted-by":"crossref","first-page":"7462","DOI":"10.3390\/app10217462","article-title":"Exploring reward strategies for wind turbine pitch control by reinforcement learning","volume":"10","author":"Sierra-Garc\u00eda","year":"2020","journal-title":"Appl. Sci."},{"key":"10.1016\/j.future.2023.08.021_b25","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2022.104769","article-title":"Wind turbine pitch reinforcement learning control improved by PID regulator and learning observer","volume":"111","author":"Sierra-Garcia","year":"2022","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.future.2023.08.021_b26","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1155\/2020\/6687816","article-title":"Mechatronic modelling of industrial AGVs: a complex system architecture","volume":"2020","author":"Sierra-Garc\u00eda","year":"2020","journal-title":"Complexity"},{"issue":"24","key":"10.1016\/j.future.2023.08.021_b27","doi-asserted-by":"crossref","first-page":"4783","DOI":"10.3390\/math10244783","article-title":"Performance and extreme conditions analysis based on iterative modelling algorithm for multi-trailer AGVs","volume":"10","author":"S\u00e1nchez-Martinez","year":"2022","journal-title":"Mathematics"},{"key":"10.1016\/j.future.2023.08.021_b28","doi-asserted-by":"crossref","unstructured":"A. Ghasempour, M. Martinez-Ramon, Short-Term Electric Load Prediction in Smart Grid using Multi-Output Gaussian Processes Regression, in: IEEE Kansas Power and Energy Conference, IEEE KPEC, 2023.","DOI":"10.1109\/KPEC58008.2023.10215490"},{"issue":"9","key":"10.1016\/j.future.2023.08.021_b29","doi-asserted-by":"crossref","first-page":"2008","DOI":"10.3390\/s17092008","article-title":"Prediction-based energy saving mechanism in 3GPP NB-IoT networks","volume":"17","author":"Lee","year":"2017","journal-title":"Sensors"}],"container-title":["Future Generation Computer Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167739X23003217?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167739X23003217?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,10,18]],"date-time":"2023-10-18T02:38:44Z","timestamp":1697596724000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0167739X23003217"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,1]]},"references-count":29,"alternative-id":["S0167739X23003217"],"URL":"https:\/\/doi.org\/10.1016\/j.future.2023.08.021","relation":{},"ISSN":["0167-739X"],"issn-type":[{"value":"0167-739X","type":"print"}],"subject":[],"published":{"date-parts":[[2024,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Federated Discrete Reinforcement Learning for Automatic Guided Vehicle Control","name":"articletitle","label":"Article Title"},{"value":"Future Generation Computer Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.future.2023.08.021","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 The Author(s). Published by Elsevier B.V.","name":"copyright","label":"Copyright"}]}}