{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T09:40:01Z","timestamp":1726479601479},"reference-count":37,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Future Generation Computer Systems"],"published-print":{"date-parts":[[2024,1]]},"DOI":"10.1016\/j.future.2023.07.035","type":"journal-article","created":{"date-parts":[[2023,8,4]],"date-time":"2023-08-04T03:01:13Z","timestamp":1691118073000},"page":"160-170","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["Edge aggregation placement for semi-decentralized federated learning in Industrial Internet of Things"],"prefix":"10.1016","volume":"150","author":[{"given":"Bo","family":"Xu","sequence":"first","affiliation":[]},{"given":"Haitao","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Haotong","family":"Cao","sequence":"additional","affiliation":[]},{"given":"Sahil","family":"Garg","sequence":"additional","affiliation":[]},{"given":"Georges","family":"Kaddoum","sequence":"additional","affiliation":[]},{"given":"Mohammad Mehedi","family":"Hassan","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"2","key":"10.1016\/j.future.2023.07.035_b1","doi-asserted-by":"crossref","first-page":"1175","DOI":"10.1109\/COMST.2022.3158270","article-title":"A survey of intelligent network slicing management for industrial IoT: Integrated approaches for smart transportation, smart energy, and smart factory","volume":"24","author":"Wu","year":"2022","journal-title":"IEEE Commun. Surv. Tutor."},{"issue":"1","key":"10.1016\/j.future.2023.07.035_b2","doi-asserted-by":"crossref","first-page":"142","DOI":"10.1109\/JSTSP.2022.3224591","article-title":"Privacy-preserving intelligent resource allocation for federated edge learning in quantum internet","volume":"17","author":"Xu","year":"2023","journal-title":"IEEE J. Sel. Top. Signal Process."},{"issue":"6","key":"10.1016\/j.future.2023.07.035_b3","doi-asserted-by":"crossref","first-page":"4177","DOI":"10.1109\/TII.2019.2942190","article-title":"Lockchain and federated learning for privacy-preserved data sharing in industrial IoT","volume":"16","author":"Lu","year":"2020","journal-title":"IEEE Trans. Ind. Inform."},{"issue":"5","key":"10.1016\/j.future.2023.07.035_b4","doi-asserted-by":"crossref","first-page":"4260","DOI":"10.1109\/JIOT.2019.2963371","article-title":"Learning-based context-aware resource allocation for edge-computing-empowered industrial IoT","volume":"7","author":"Liao","year":"2020","journal-title":"IEEE Internet Things J."},{"key":"10.1016\/j.future.2023.07.035_b5","doi-asserted-by":"crossref","first-page":"619","DOI":"10.1016\/j.future.2020.10.007","article-title":"A survey on security and privacy of federated learning","volume":"115","author":"Mothukuri","year":"2021","journal-title":"Future Gener. Comput. Syst."},{"issue":"4","key":"10.1016\/j.future.2023.07.035_b6","doi-asserted-by":"crossref","first-page":"2545","DOI":"10.1109\/JIOT.2021.3077803","article-title":"Federated-learning-based anomaly detection for IoT security attacks","volume":"9","author":"Mothukuri","year":"2021","journal-title":"IEEE Internet Things J."},{"issue":"7","key":"10.1016\/j.future.2023.07.035_b7","doi-asserted-by":"crossref","first-page":"6348","DOI":"10.1109\/JIOT.2020.2966778","article-title":"FDC: A secure federated deep learning mechanism for data collaborations in the internet of things","volume":"7","author":"Yin","year":"2020","journal-title":"IEEE Internet Things J."},{"key":"10.1016\/j.future.2023.07.035_b8","doi-asserted-by":"crossref","unstructured":"T. Nishio, R. Yonetani, Client selection for federated learning with heterogeneous resources in mobile edge, in: Proc. IEEE Int. Conf. Commun. (ICC), Shanghai, China, 2019, pp. 1\u20137.","DOI":"10.1109\/ICC.2019.8761315"},{"key":"10.1016\/j.future.2023.07.035_b9","doi-asserted-by":"crossref","unstructured":"H.H. Yang, A. Arafa, T.Q. Quek, H.V. Poor, Age-based scheduling policy for federated learning in mobile edge networks, in: Proc. IEEE Int. Conf. Acoust. Speech. Signal. Process. (ICASSP), Brighton, UK, 2020, pp. 8743\u20138747.","DOI":"10.1109\/ICASSP40776.2020.9053740"},{"issue":"1","key":"10.1016\/j.future.2023.07.035_b10","doi-asserted-by":"crossref","first-page":"1149","DOI":"10.1109\/TVT.2022.3205778","article-title":"Resource allocation based on digital twin-enabled federated learning framework in heterogeneous cellular network","volume":"72","author":"He","year":"2022","journal-title":"IEEE Trans. Veh. Technol."},{"issue":"1","key":"10.1016\/j.future.2023.07.035_b11","doi-asserted-by":"crossref","first-page":"269","DOI":"10.1109\/TWC.2020.3024629","article-title":"A joint learning and communications framework for federated learning over wireless networks","volume":"20","author":"Chen","year":"2021","journal-title":"IEEE Trans. Wirel. Commun."},{"issue":"7","key":"10.1016\/j.future.2023.07.035_b12","doi-asserted-by":"crossref","first-page":"1434","DOI":"10.1109\/LWC.2021.3069541","article-title":"Online client scheduling for fast federated learning","volume":"10","author":"Xu","year":"2021","journal-title":"IEEE Wirel. Commun. Lett."},{"issue":"3","key":"10.1016\/j.future.2023.07.035_b13","first-page":"3394","article-title":"Joint training and resource allocation optimization for federated learning in uav swarm","volume":"10","author":"Shen","year":"2022","journal-title":"IEEE Internet Things J."},{"key":"10.1016\/j.future.2023.07.035_b14","doi-asserted-by":"crossref","unstructured":"L. Liu, J. Zhang, S.H. Song, K.B. Letaief, Client-Edge-Cloud Hierarchical Federated Learning, in: Proc. IEEE Int. Conf. Commun. (ICC), Virtual Conference, 2020, pp. 1\u20136.","DOI":"10.1109\/ICC40277.2020.9148862"},{"issue":"10","key":"10.1016\/j.future.2023.07.035_b15","doi-asserted-by":"crossref","first-page":"6535","DOI":"10.1109\/TWC.2020.3003744","article-title":"HFEL: Joint edge association and resource allocation for cost-efficient hierarchical federated edge learning","volume":"19","author":"Luo","year":"2020","journal-title":"IEEE Trans. Wirel. Commun."},{"issue":"8","key":"10.1016\/j.future.2023.07.035_b16","doi-asserted-by":"crossref","first-page":"3710","DOI":"10.1109\/TNNLS.2020.3015958","article-title":"Clustered federated learning: Model-agnostic distributed multitask optimization under privacy constraints","volume":"32","author":"Sattler","year":"2020","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"10","key":"10.1016\/j.future.2023.07.035_b17","doi-asserted-by":"crossref","first-page":"8441","DOI":"10.1109\/TWC.2022.3166386","article-title":"Mobility-aware cluster federated learning in hierarchical wireless networks","volume":"21","author":"Feng","year":"2022","journal-title":"IEEE Trans. Wirel. Commun."},{"issue":"4","key":"10.1016\/j.future.2023.07.035_b18","doi-asserted-by":"crossref","first-page":"2276","DOI":"10.1109\/JIOT.2020.3015772","article-title":"Communication-efficient federated learning and permissioned blockchain for digital twin edge networks","volume":"8","author":"Lu","year":"2021","journal-title":"IEEE Internet Things J."},{"issue":"2","key":"10.1016\/j.future.2023.07.035_b19","doi-asserted-by":"crossref","first-page":"2070","DOI":"10.1109\/TVT.2021.3135541","article-title":"Adaptive hierarchical federated learning over wireless networks","volume":"71","author":"Xu","year":"2021","journal-title":"IEEE Trans. Veh. Technol."},{"key":"10.1016\/j.future.2023.07.035_b20","doi-asserted-by":"crossref","unstructured":"Y. Sun, J. Shao, Y. Mao, J.H. Wang, J. Zhang, Semi-decentralized federated edge learning for fast convergence on non-iid data, in: Proc. IEEE Wireless Commun. Networking Conf (WCNC), Austin, TX, USA, 2022, pp. 1898\u20131903.","DOI":"10.1109\/WCNC51071.2022.9771904"},{"issue":"7","key":"10.1016\/j.future.2023.07.035_b21","doi-asserted-by":"crossref","first-page":"4443","DOI":"10.1109\/TITS.2020.3003211","article-title":"Trustworthy edge storage orchestration in intelligent transportation systems using reinforcement learning","volume":"22","author":"Qiao","year":"2021","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"issue":"12","key":"10.1016\/j.future.2023.07.035_b22","doi-asserted-by":"crossref","first-page":"3851","DOI":"10.1109\/JSAC.2021.3118344","article-title":"Semi-decentralized federated learning with cooperative D2D local model aggregations","volume":"39","author":"Lin","year":"2021","journal-title":"IEEE J. Sel. Areas Commun."},{"key":"10.1016\/j.future.2023.07.035_b23","first-page":"131","article-title":"Decentralized federated learning: Balancing communication and computing costs","volume":"8","author":"Liu","year":"2022","journal-title":"IEEE Trans. Signal Inf. Process."},{"issue":"12","key":"10.1016\/j.future.2023.07.035_b24","doi-asserted-by":"crossref","first-page":"4783","DOI":"10.1109\/TPDS.2022.3202887","article-title":"A decentralized federated learning framework via committee mechanism with convergence guarantee","volume":"33","author":"Che","year":"2022","journal-title":"IEEE Trans. Parallel Distrib. Syst."},{"issue":"2","key":"10.1016\/j.future.2023.07.035_b25","first-page":"2117","article-title":"Lyapunov-guided delay-aware energy efficient offloading in IIoT-MEC systems","volume":"19","author":"Wu","year":"2022","journal-title":"IEEE Trans. Ind. Electron."},{"issue":"2","key":"10.1016\/j.future.2023.07.035_b26","doi-asserted-by":"crossref","first-page":"394","DOI":"10.1109\/TPDS.2020.3023905","article-title":"Towards efficient scheduling of federated mobile devices under computational and statistical heterogeneity","volume":"32","author":"Wang","year":"2021","journal-title":"IEEE Trans. Parallel Distrib. Syst."},{"issue":"5","key":"10.1016\/j.future.2023.07.035_b27","doi-asserted-by":"crossref","first-page":"3606","DOI":"10.1109\/JIOT.2018.2823498","article-title":"Deploying edge computing nodes for large-scale IoT: A diversity aware approach","volume":"5","author":"Zhao","year":"2018","journal-title":"IEEE Internet Things J."},{"issue":"4","key":"10.1016\/j.future.2023.07.035_b28","doi-asserted-by":"crossref","first-page":"2274","DOI":"10.1109\/TITS.2020.3008420","article-title":"Edge learning for surveillance video uploading sharing in public transport systems","volume":"22","author":"Cui","year":"2021","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"issue":"4","key":"10.1016\/j.future.2023.07.035_b29","doi-asserted-by":"crossref","first-page":"4661","DOI":"10.1109\/TITS.2023.3241479","article-title":"Vulnerability-aware task scheduling for edge intelligence empowered trajectory analysis in intelligent transportation systems","volume":"24","author":"Feng","year":"2023","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"issue":"11","key":"10.1016\/j.future.2023.07.035_b30","doi-asserted-by":"crossref","first-page":"13593","DOI":"10.1109\/TVT.2020.3015268","article-title":"Importance-aware data selection and resource allocation in federated edge learning system","volume":"69","author":"He","year":"2020","journal-title":"IEEE Trans. Veh. Technol."},{"issue":"6","key":"10.1016\/j.future.2023.07.035_b31","doi-asserted-by":"crossref","first-page":"1205","DOI":"10.1109\/JSAC.2019.2904348","article-title":"Adaptive federated learning in resource constrained edge computing systems","volume":"37","author":"Wang","year":"2019","journal-title":"IEEE J. Sel. Areas Commun."},{"year":"2004","series-title":"Convex Optimization","author":"Stephen","key":"10.1016\/j.future.2023.07.035_b32"},{"issue":"5","key":"10.1016\/j.future.2023.07.035_b33","doi-asserted-by":"crossref","first-page":"1130","DOI":"10.1109\/JSAC.2019.2906790","article-title":"Application component placement in NFV-based hybrid cloud\/fog systems with mobile fog nodes","volume":"37","author":"Mouradian","year":"2019","journal-title":"IEEE J. Sel. Areas Commun."},{"issue":"1","key":"10.1016\/j.future.2023.07.035_b34","doi-asserted-by":"crossref","first-page":"34","DOI":"10.1109\/LWC.2020.3020003","article-title":"Pilot assignment in cell-free massive MIMO based on the Hungarian algorithm","volume":"10","author":"Buzzi","year":"2020","journal-title":"IEEE Wirel. Commun. Lett."},{"issue":"1","key":"10.1016\/j.future.2023.07.035_b35","doi-asserted-by":"crossref","first-page":"856","DOI":"10.1109\/TVT.2018.2881191","article-title":"Joint task offloading and resource allocation for multi-server mobile-edge computing networks","volume":"68","author":"Tran","year":"2018","journal-title":"IEEE Trans. Veh. Technol."},{"issue":"11","key":"10.1016\/j.future.2023.07.035_b36","doi-asserted-by":"crossref","first-page":"2278","DOI":"10.1109\/5.726791","article-title":"Gradient-based learning applied to document recognition","volume":"86","author":"Lecun","year":"1998","journal-title":"Proc. IEEE"},{"year":"2014","series-title":"The CIFAR-10 dataset","author":"Krizhevsky","key":"10.1016\/j.future.2023.07.035_b37"}],"container-title":["Future Generation Computer Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167739X23002923?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167739X23002923?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T15:49:29Z","timestamp":1711986569000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0167739X23002923"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,1]]},"references-count":37,"alternative-id":["S0167739X23002923"],"URL":"https:\/\/doi.org\/10.1016\/j.future.2023.07.035","relation":{},"ISSN":["0167-739X"],"issn-type":[{"type":"print","value":"0167-739X"}],"subject":[],"published":{"date-parts":[[2024,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Edge aggregation placement for semi-decentralized federated learning in Industrial Internet of Things","name":"articletitle","label":"Article Title"},{"value":"Future Generation Computer Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.future.2023.07.035","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}