{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,5]],"date-time":"2025-04-05T09:49:09Z","timestamp":1743846549132,"version":"3.37.3"},"reference-count":50,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,5,1]],"date-time":"2021-05-01T00:00:00Z","timestamp":1619827200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,5,1]],"date-time":"2021-05-01T00:00:00Z","timestamp":1619827200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,5,1]],"date-time":"2021-05-01T00:00:00Z","timestamp":1619827200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,5,1]],"date-time":"2021-05-01T00:00:00Z","timestamp":1619827200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,5,1]],"date-time":"2021-05-01T00:00:00Z","timestamp":1619827200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,5,1]],"date-time":"2021-05-01T00:00:00Z","timestamp":1619827200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Future Generation Computer Systems"],"published-print":{"date-parts":[[2021,5]]},"DOI":"10.1016\/j.future.2021.01.024","type":"journal-article","created":{"date-parts":[[2021,1,22]],"date-time":"2021-01-22T03:11:16Z","timestamp":1611285076000},"page":"297-309","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":69,"special_numbering":"C","title":["Scalable multi-channel dilated CNN\u2013BiLSTM model with attention mechanism for Chinese textual sentiment analysis"],"prefix":"10.1016","volume":"118","author":[{"given":"Chenquan","family":"Gan","sequence":"first","affiliation":[]},{"given":"Qingdong","family":"Feng","sequence":"additional","affiliation":[]},{"given":"Zufan","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1\u20132","key":"10.1016\/j.future.2021.01.024_b1","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1561\/1500000011","article-title":"Opinion mining and sentiment analysis","volume":"2","author":"Pang","year":"2008","journal-title":"Found. Trends Inf. Retr."},{"issue":"3","key":"10.1016\/j.future.2021.01.024_b2","doi-asserted-by":"crossref","first-page":"595","DOI":"10.1162\/COLI_r_00259","article-title":"Sentiment analysis: Mining opinions, sentiments, and emotions","volume":"42","author":"Zhao","year":"2016","journal-title":"Comput. Linguist."},{"key":"10.1016\/j.future.2021.01.024_b3","doi-asserted-by":"crossref","first-page":"395","DOI":"10.1016\/j.future.2017.09.048","article-title":"Sentiment analysis of Chinese micro-blog text based on extended sentiment dictionary","volume":"81","author":"Zhang","year":"2018","journal-title":"Future Gener. Comput. Syst."},{"key":"10.1016\/j.future.2021.01.024_b4","doi-asserted-by":"crossref","unstructured":"S. Naz, A. Sharan, N. Malik, Sentiment classification on Twitter data using support vector machine, in: 2018 IEEE\/WIC\/ACM International Conference on Web Intelligence, WI, 2018, pp. 676\u2013679.","DOI":"10.1109\/WI.2018.00-13"},{"key":"10.1016\/j.future.2021.01.024_b5","doi-asserted-by":"crossref","unstructured":"R. Bibi, U. Qamar, M. Ansar, A. Shaheen, Sentiment analysis for Urdu news tweets using decision tree, in: 2019 IEEE 17th International Conference on Software Engineering Research, Management and Applications, SERA, 2019, pp. 66\u201370.","DOI":"10.1109\/SERA.2019.8886788"},{"key":"10.1016\/j.future.2021.01.024_b6","doi-asserted-by":"crossref","unstructured":"B. Seref, E. Bostanci, Sentiment analysis using Naive Bayes and complement Naive Bayes classifier algorithms on hadoop framework, in: 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies, ISMSIT, 2018, pp. 1\u20137.","DOI":"10.1109\/ISMSIT.2018.8567243"},{"issue":"24","key":"10.1016\/j.future.2021.01.024_b7","doi-asserted-by":"crossref","first-page":"32213","DOI":"10.1007\/s11042-018-6168-1","article-title":"Deep neural network architecture for sentiment analysis and emotion identification of Twitter messages","volume":"77","author":"Stojanovski","year":"2018","journal-title":"Multimedia Tools Appl."},{"key":"10.1016\/j.future.2021.01.024_b8","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1016\/j.knosys.2018.11.023","article-title":"Identification of fact-implied implicit sentiment based on multi-level semantic fused representation","volume":"165","author":"Liao","year":"2019","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.future.2021.01.024_b9","doi-asserted-by":"crossref","first-page":"1407","DOI":"10.1016\/j.neucom.2017.09.080","article-title":"Textual sentiment analysis via three different attention convolutional neural networks and cross-modality consistent regression","volume":"275","author":"Zhang","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.future.2021.01.024_b10","unstructured":"H. Peng, E. Cambria, X. Zou, Radical-based hierarchical embeddings for Chinese sentiment analysis at sentence level, in: The Thirtieth International Flairs Conference, 2017."},{"key":"10.1016\/j.future.2021.01.024_b11","doi-asserted-by":"crossref","first-page":"116","DOI":"10.1016\/j.future.2020.05.022","article-title":"Multi-entity sentiment analysis using self-attention based hierarchical dilated convolutional neural network","volume":"112","author":"Gan","year":"2020","journal-title":"Future Gener. Comput. Syst."},{"key":"10.1016\/j.future.2021.01.024_b12","doi-asserted-by":"crossref","first-page":"36","DOI":"10.1016\/j.neucom.2018.04.068","article-title":"The optimally designed dynamic memory networks for targeted sentiment classification","volume":"309","author":"Zhang","year":"2018","journal-title":"Neurocomputing"},{"issue":"4","key":"10.1016\/j.future.2021.01.024_b13","doi-asserted-by":"crossref","first-page":"1245","DOI":"10.1016\/j.ipm.2019.02.018","article-title":"Deep learning-based sentiment classification of evaluative text based on multi-feature fusion","volume":"56","author":"Abdi","year":"2019","journal-title":"Inf. Process. Manage."},{"key":"10.1016\/j.future.2021.01.024_b14","doi-asserted-by":"crossref","first-page":"51522","DOI":"10.1109\/ACCESS.2019.2909919","article-title":"Sentiment analysis of comment texts based on BiLSTM","volume":"7","author":"Xu","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.future.2021.01.024_b15","article-title":"User reviews: Sentiment analysis using lexicon integrated two-channel CNN-LSTM family models","author":"Li","year":"2020","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.future.2021.01.024_b16","doi-asserted-by":"crossref","first-page":"279","DOI":"10.1016\/j.future.2020.08.005","article-title":"ABCDM: An attention-based bidirectional CNN-RNN deep model for sentiment analysis","volume":"115","author":"Basiri","year":"2021","journal-title":"Future Gener. Comput. Syst."},{"issue":"4","key":"10.1016\/j.future.2021.01.024_b17","doi-asserted-by":"crossref","first-page":"423","DOI":"10.1007\/s12559-017-9470-8","article-title":"A review of sentiment analysis research in Chinese language","volume":"9","author":"Peng","year":"2017","journal-title":"Cogn. Comput."},{"key":"10.1016\/j.future.2021.01.024_b18","doi-asserted-by":"crossref","unstructured":"M. Rathi, A. Malik, D. Varshney, R. Sharma, S. Mendiratta, Sentiment analysis of Tweets using machine learning approach, in: 2018 Eleventh International Conference on Contemporary Computing, IC3, 2018, pp. 1\u20133.","DOI":"10.1109\/IC3.2018.8530517"},{"issue":"ahead-of-print","key":"10.1016\/j.future.2021.01.024_b19","article-title":"Sentiment classification of Chinese cosmetic reviews based on integration of collocations and concepts","volume":"ahead-of-print","author":"Hung","year":"2019","journal-title":"Electron. Libr."},{"issue":"3","key":"10.1016\/j.future.2021.01.024_b20","doi-asserted-by":"crossref","first-page":"531","DOI":"10.1109\/TASLP.2018.2885775","article-title":"Emotion-semantic-enhanced neural network","volume":"27","author":"Yang","year":"2019","journal-title":"IEEE\/ACM Trans. Audio Speech Lang. Process."},{"key":"10.1016\/j.future.2021.01.024_b21","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1016\/j.knosys.2019.01.028","article-title":"P-CNN: Enhancing text matching with positional convolutional neural network","volume":"169","author":"Song","year":"2019","journal-title":"Knowl.-Based Syst."},{"issue":"3","key":"10.1016\/j.future.2021.01.024_b22","doi-asserted-by":"crossref","first-page":"38","DOI":"10.1109\/MIS.2019.2904691","article-title":"Sentiment and sarcasm classification with multitask learning","volume":"34","author":"Majumder and S. Poria and H. Peng and N. Chhaya and E. Cambria and A. Gelbukh","year":"2019","journal-title":"IEEE Intell. Syst."},{"year":"2018","series-title":"SAAN: A Sentiment-Aware Attention Network for Sentiment Analysis","author":"Lei","key":"10.1016\/j.future.2021.01.024_b23"},{"key":"10.1016\/j.future.2021.01.024_b24","article-title":"Sparse attention based separable dilated convolutional neural network for targeted sentiment analysis","author":"Gan","year":"2019","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.future.2021.01.024_b25","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1016\/j.knosys.2018.02.034","article-title":"Learning multi-grained aspect target sequence for Chinese sentiment analysis","volume":"148","author":"Peng","year":"2018","journal-title":"Knowl.-Based Syst."},{"issue":"1","key":"10.1016\/j.future.2021.01.024_b26","doi-asserted-by":"crossref","first-page":"59","DOI":"10.1007\/s11280-018-0529-6","article-title":"Attention based hierarchical LSTM network for context-aware microblog sentiment classification","volume":"22","author":"Feng","year":"2019","journal-title":"World Wide Web"},{"key":"10.1016\/j.future.2021.01.024_b27","doi-asserted-by":"crossref","unstructured":"Z. Lei, Y. Yang, M. Yang, Y. Liu, A multi-sentiment-resource enhanced attention network for sentiment classification, in: Proceedings of 56th Annual Meeting of the Association-for-Computational-Linguistics, ACL, 2018, pp. 758\u2013763.","DOI":"10.18653\/v1\/P18-2120"},{"key":"10.1016\/j.future.2021.01.024_b28","doi-asserted-by":"crossref","first-page":"38856","DOI":"10.1109\/ACCESS.2019.2905048","article-title":"Sentiment analysis of Chinese microblog based on stacked bidirectional LSTM","volume":"7","author":"Zhou","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.future.2021.01.024_b29","doi-asserted-by":"crossref","first-page":"111866","DOI":"10.1109\/ACCESS.2019.2934529","article-title":"Semantic-emotion neural network for emotion recognition from text","volume":"7","author":"Batbaatar","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.future.2021.01.024_b30","doi-asserted-by":"crossref","first-page":"27983","DOI":"10.1109\/ACCESS.2019.2900335","article-title":"Convolution-based neural attention with applications to sentiment classification","volume":"7","author":"Du","year":"2019","journal-title":"IEEE Access"},{"issue":"12","key":"10.1016\/j.future.2021.01.024_b31","doi-asserted-by":"crossref","first-page":"2127","DOI":"10.1109\/TASLP.2019.2942160","article-title":"Global-local mutual attention model for text classification","volume":"27","author":"Ma","year":"2019","journal-title":"IEEE\/ACM Trans. Audio Speech Lang. Process."},{"key":"10.1016\/j.future.2021.01.024_b32","doi-asserted-by":"crossref","first-page":"13949","DOI":"10.1109\/ACCESS.2018.2814818","article-title":"Convolutional recurrent deep learning model for sentence classification","volume":"6","author":"Hassan","year":"2018","journal-title":"IEEE Access"},{"key":"10.1016\/j.future.2021.01.024_b33","doi-asserted-by":"crossref","first-page":"292","DOI":"10.1016\/j.future.2018.12.018","article-title":"Sentiment analysis through recurrent variants latterly on convolutional neural network of Twitter","volume":"95","author":"Abid","year":"2019","journal-title":"Future Gener. Comput. Syst."},{"key":"10.1016\/j.future.2021.01.024_b34","doi-asserted-by":"crossref","first-page":"325","DOI":"10.1016\/j.neucom.2019.01.078","article-title":"Bidirectional LSTM with attention mechanism and convolutional layer for text classification","volume":"337","author":"Liu","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.future.2021.01.024_b35","unstructured":"J. Li, H. Xu, J. Deng, X. Sun, Hyperbolic linear units for deep convolutional neural networks, in: 2016 International Joint Conference on Neural Networks, IJCNN, 2016, pp. 353\u2013359."},{"issue":"5\u20136","key":"10.1016\/j.future.2021.01.024_b36","doi-asserted-by":"crossref","first-page":"602","DOI":"10.1016\/j.neunet.2005.06.042","article-title":"Framewise phoneme classification with bidirectional LSTM and other neural network architectures","volume":"18","author":"Graves","year":"2005","journal-title":"Neural Netw."},{"year":"2017","series-title":"A structured self-attentive sentence embedding","author":"Lin","key":"10.1016\/j.future.2021.01.024_b37"},{"key":"10.1016\/j.future.2021.01.024_b38","series-title":"Advances in Neural Information Processing Systems 30","first-page":"5998","article-title":"Attention is all you need","author":"Vaswani","year":"2017"},{"year":"2017","series-title":"Emotional chatting machine: Emotional conversation generation with internal and external memory","author":"Zhou","key":"10.1016\/j.future.2021.01.024_b39"},{"issue":"4","key":"10.1016\/j.future.2021.01.024_b40","doi-asserted-by":"crossref","first-page":"2622","DOI":"10.1016\/j.eswa.2007.05.028","article-title":"An empirical study of sentiment analysis for Chinese documents","volume":"34","author":"Tan","year":"2008","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.future.2021.01.024_b41","article-title":"Distributed representations of words and phrases and their compositionality","volume":"abs\/1310.4546","author":"Mikolov","year":"2013","journal-title":"CoRR"},{"year":"2014","series-title":"Adam: A method for stochastic optimization","author":"Kingma","key":"10.1016\/j.future.2021.01.024_b42"},{"year":"2012","series-title":"Improving neural networks by preventing co-adaptation of feature detectors","author":"Hinton","key":"10.1016\/j.future.2021.01.024_b43"},{"key":"10.1016\/j.future.2021.01.024_b44","series-title":"Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence","first-page":"2267","article-title":"Recurrent convolutional neural networks for text classification","author":"Lai","year":"2015"},{"key":"10.1016\/j.future.2021.01.024_b45","doi-asserted-by":"crossref","unstructured":"P. Zhou, W. Shi, J. Tian, Z. Qi, B. Li, H. Hao, B. Xu, Attention-Based bidirectional long short-term memory networks for relation classification, in: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), 2016, pp. 207\u2013212.","DOI":"10.18653\/v1\/P16-2034"},{"year":"2018","series-title":"Bert: Pre-training of deep bidirectional transformers for language understanding","author":"Devlin","key":"10.1016\/j.future.2021.01.024_b46"},{"year":"2019","series-title":"Pre-training with whole word masking for Chinese BERT","author":"Cui","key":"10.1016\/j.future.2021.01.024_b47"},{"year":"2019","series-title":"Ernie: Enhanced representation through knowledge integration","author":"Sun","key":"10.1016\/j.future.2021.01.024_b48"},{"key":"10.1016\/j.future.2021.01.024_b49","doi-asserted-by":"crossref","DOI":"10.1016\/j.chb.2018.06.032","article-title":"Predicting at-risk university students in a virtual learning environment via a machine learning algorithm","volume":"107","author":"Chui","year":"2020","journal-title":"Comput. Hum. Behav."},{"issue":"8","key":"10.1016\/j.future.2021.01.024_b50","doi-asserted-by":"crossref","first-page":"1586","DOI":"10.1109\/TKDE.2019.2912815","article-title":"Reliable accuracy estimates from k-fold cross validation","volume":"32","author":"Wong","year":"2020","journal-title":"IEEE Trans. Knowl. Data Eng."}],"container-title":["Future Generation Computer Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167739X21000340?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167739X21000340?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,1,9]],"date-time":"2023-01-09T12:04:39Z","timestamp":1673265879000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0167739X21000340"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,5]]},"references-count":50,"alternative-id":["S0167739X21000340"],"URL":"https:\/\/doi.org\/10.1016\/j.future.2021.01.024","relation":{},"ISSN":["0167-739X"],"issn-type":[{"type":"print","value":"0167-739X"}],"subject":[],"published":{"date-parts":[[2021,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Scalable multi-channel dilated CNN\u2013BiLSTM model with attention mechanism for Chinese textual sentiment analysis","name":"articletitle","label":"Article Title"},{"value":"Future Generation Computer Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.future.2021.01.024","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}